organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[2-(2-Methoxyphenyl)benzyl­idene]-tert-butyl­amine N-oxide

aLaboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China, and bDepartment of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
*Correspondence e-mail: wyz@zju.edu.cn

(Received 7 May 2008; accepted 14 May 2008; online 17 May 2008)

In the mol­ecule of the title compound, C18H21NO2, the two benzene rings are oriented at a dihedral angle of 58.19 (3)°. Intra­molecular C—H⋯O hydrogen bonds result in the formation of one six- and one five-membered ring, which adopt twist and envelope conformations, respectively. In the crystal structure, C—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For general background, see: Hamburger & McCay (1989[Hamburger, S. A. & McCay, P. B. (1989). Circ. Shock, 29, 329-334.]); Jotti et al. (1992[Jotti, A., Paracchini, L., Perletti, G. & Piccinini, F. (1992). Pharmcol. Res. 26, 143-150.]); Murphy et al. (2003[Murphy, M. P., Echtay, K. S., Blaikie, F. H., Asin-Gayuela, J., Cocheme, H. M., Green, K., Buckingam, J. A., Taylor, E. R., Hurrell, F., Hughes, G., Miwa, S., Cooper, C. E., Svitunenko, D. A., Smith, R. A. J. & Brand, M. D. (2003). J. Biol. Chem. 278, 48534-48545.]); Green et al. (2003[Green, A. R., Ashwood, T., Odergren, T. & Jackson, D. M. (2003). Pharm. Ther. 100, 195-214.]); Durand et al. (2007[Durand, G., Poeggeler, B., Boker, J., Raynal, S., Polidori, A., Pappolla, M. A., Hardeland, R. & Pucci, B. (2007). J. Med. Chem. 50, 3976-3979.]); Hay et al. (2005[Hay, A., Burkitt, M. J., Jones, C. M. & Hartley, R. C. (2005). Arch. Biochem. Biophys. 435, 336-346.]). For related literature, see: Fevig et al. (1996[Fevig, T. L., Bowen, S. M., Janowick, D. A., Jones, B. K., Munson, H. R., Ohlweiler, D. F. & Thomas, G. E. (1996). J. Med. Chem. 39, 4988-4996.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21NO2

  • Mr = 283.37

  • Monoclinic, P 21

  • a = 10.2526 (15) Å

  • b = 8.5576 (13) Å

  • c = 10.3333 (16) Å

  • β = 115.742 (3)°

  • V = 816.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 (1) K

  • 0.30 × 0.28 × 0.09 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.968, Tmax = 0.993

  • 7869 measured reflections

  • 1981 independent reflections

  • 967 reflections with F2 > 2σ(F2)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.058

  • S = 1.00

  • 1981 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1 0.93 2.26 2.806 (3) 117
C17—H171⋯O1 0.96 2.41 2.791 (3) 104
C18—H181⋯O1i 0.96 2.50 3.280 (3) 139
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+2].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) and Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 291-294. Copenhagen: Munksgaard.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

N-tert-Butyl-α-phenylnitrone (PBN) and its derivatives have been widely used as spin trapping agents in biology for detecting active free radicals such as oxygen- and carbon-centered radicals (Hamburger & McCay, 1989; Jotti et al., 1992; Murphy et al., 2003) and as antioxidant for treating age-related diseases (Green et al., 2003). The amphiphilic spin traps have been developed for potential use as therapeutic antioxidants (Durand et al., 2007), while the lipophilic spin traps are targeted for interception of radicals within non-aqueous phases and detection of radicals in complex biphasic biological systems (Hay et al., 2005). To explore the effect of the substituent attached to the benzene ring of PBN on the spin trapping ability, we have designed and synthesized a number of novel lipophilic spin traps derived from PBN, to which an additional aromatic group is attached.

In the molecule of (I), (Fig. 1), rings A (C2-C7) and B (C8-C13) are, of course, planar, and they are oriented at a dihedral angle of 58.19 (3)°. Unlike the N-tert-Butyl-α-phenylnitrone (Fevig et al., 1996), atoms C1, N1 and O1 is not coplanar with ring A. Intramolecular C-H···O hydrogen bonds result in the formation of one six- and one five-membered rings C (C1-C3/O1/N1/H3) and D (O1/N1/C15/C17/H171). Ring C adopts twisted conformation having total puckering amplitude, QT, of 0.443 (3) Å, while ring D has envelope conformation, with C15 atom displaced by -0.663 (3) Å from the plane of the other ring atoms.

In the crystal structure, intermolecular C-H···O hydrogen bonds link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Hamburger & McCay (1989); Jotti et al. (1992); Murphy et al. (2003); Green et al. (2003); Durand et al. (2007); Hay et al. (2005). For related literature, see: Fevig et al. (1996).

Experimental top

For the preparation of the title compound, activated zinc powder (195.0 mg, 3.0 mmol) was added to a solution of 2-(2-methoxyphenyl)benzaldehyde (212.0 mg, 1.0 mmol) and 2-methyl-2-nitropropane (309.0 mg, 3.0 mmol) in ethanol (95%, 15 ml) at 283 K. Glacial acetic acid (0.35 ml, 6.0 mmol) was added dropwise to the resultant suspension in 1 h with stirring. After stirring at room temperature for 12 h, the reaction mixture was kept for another 48 h in a refrigerator. It was filtered to remove the solid materials and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with ethylacetate and hexane (1:3) as the eluent to give the title compound (yield; 122.0 mg, 43%, m.p. 351-353 K). 1H NMR (400 MHz, CDCl3) δ: 9.43 (d, J = 8.8 Hz, 1H), 7.43-7.37 (m, 3H), 7.31 (s, 1H), 7.28-7.26 (m,1H), 7.17 (d, J = 6.4 Hz, 1H), 7.04 (t, J = 7.2 Hz, 1H), 6.98 (d, J = 8.0 Hz, 1H), 3.72 (s, 3H), 1.42 (s, 9H); 13 C NMR (100 MHz, CDCl3) δ: 156.2, 138.9, 131.5, 130.0, 129.5, 129.4, 129.2, 128.8 (2), 127.5, 127.4, 120.7 (2), 110.5, 70.6, 55.3, 28.0 (3); MS (ESI) m/z 284 (M + H). Anal. Calcd for C18H21NO2: C, 76.29; H, 7.47; N, 4.94. Found: C, 76.40; H, 7.45; N, 4.67. Single crystals of (I) suitable for X-ray analysis were grown in ethylacetate and hexane.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004) and Larson (1970); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.
N-[2-(2-Methoxyphenyl)benzylidene]-tert-butylamine N-oxide top
Crystal data top
C18H21NO2F(000) = 304.00
Mr = 283.37Dx = 1.152 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ybCell parameters from 4871 reflections
a = 10.2526 (15) Åθ = 3.2–27.4°
b = 8.5576 (13) ŵ = 0.08 mm1
c = 10.3333 (16) ÅT = 296 K
β = 115.742 (3)°Platelet, colorless
V = 816.6 (2) Å30.30 × 0.28 × 0.09 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
967 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.035
ω scansθmax = 27.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1313
Tmin = 0.968, Tmax = 0.993k = 1110
7869 measured reflectionsl = 1313
1981 independent reflections
Refinement top
Refinement on F2 w = 1/[1.0600σ(Fo2)]/(4Fo2)
R[F2 > 2σ(F2)] = 0.034(Δ/σ)max < 0.001
wR(F2) = 0.058Δρmax = 0.23 e Å3
S = 1.00Δρmin = 0.21 e Å3
1981 reflectionsExtinction correction: Larson (1970)
191 parametersExtinction coefficient: 287 (12)
H-atom parameters constrained
Crystal data top
C18H21NO2V = 816.6 (2) Å3
Mr = 283.37Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.2526 (15) ŵ = 0.08 mm1
b = 8.5576 (13) ÅT = 296 K
c = 10.3333 (16) Å0.30 × 0.28 × 0.09 mm
β = 115.742 (3)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
1981 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
967 reflections with F2 > 2σ(F2)
Tmin = 0.968, Tmax = 0.993Rint = 0.035
7869 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034191 parameters
wR(F2) = 0.058H-atom parameters constrained
S = 1.00Δρmax = 0.23 e Å3
1981 reflectionsΔρmin = 0.21 e Å3
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9021 (2)0.3664 (2)0.8067 (2)0.1211 (8)
O20.89199 (16)0.2119 (2)0.40803 (18)0.0749 (6)
N10.8516 (2)0.2377 (2)0.7378 (2)0.0699 (7)
C10.7579 (2)0.2359 (3)0.6043 (2)0.0539 (7)
C20.6914 (2)0.3714 (3)0.5161 (2)0.0519 (7)
C30.6741 (2)0.5115 (3)0.5752 (2)0.0657 (9)
C40.6018 (2)0.6370 (3)0.4891 (3)0.0749 (9)
C50.5479 (2)0.6233 (3)0.3431 (3)0.0794 (10)
C60.5634 (2)0.4858 (3)0.2821 (2)0.0706 (9)
C70.6339 (2)0.3570 (3)0.3658 (2)0.0552 (8)
C80.6389 (2)0.2103 (3)0.2930 (2)0.0569 (8)
C90.5111 (2)0.1408 (3)0.1954 (2)0.0729 (9)
C100.5107 (3)0.0054 (4)0.1245 (2)0.0890 (11)
C110.6400 (3)0.0637 (3)0.1491 (2)0.0910 (11)
C120.7694 (3)0.0020 (3)0.2437 (2)0.0775 (10)
C130.7690 (2)0.1373 (3)0.3151 (2)0.0644 (9)
C141.0274 (2)0.1362 (3)0.4454 (3)0.0978 (11)
C150.9129 (2)0.0920 (3)0.8265 (2)0.0704 (9)
C160.8509 (3)0.0534 (3)0.7407 (3)0.1022 (12)
C171.0746 (2)0.0986 (4)0.8838 (3)0.1160 (12)
C180.8694 (2)0.1013 (4)0.9492 (2)0.1048 (11)
H10.73070.13850.56100.065*
H30.71180.52110.67450.079*
H40.59000.72940.53020.090*
H50.50040.70740.28470.095*
H60.52600.47870.18260.085*
H90.42320.18780.17780.087*
H100.42380.03900.06050.107*
H110.64050.15580.10160.109*
H120.85660.04520.25910.093*
H1411.02700.03610.48730.117*
H1421.04250.12220.36080.117*
H1431.10400.19920.51350.117*
H1610.87240.05520.65900.123*
H1620.74790.05460.70850.123*
H1630.89290.14350.79950.123*
H1711.10860.19910.92630.139*
H1721.11730.01870.95500.139*
H1731.10150.08220.80660.139*
H1810.88920.00330.99930.126*
H1820.76780.12400.91170.126*
H1830.92370.18271.01440.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1395 (18)0.0722 (15)0.0812 (15)0.0167 (15)0.0179 (12)0.0059 (13)
O20.0562 (9)0.0805 (13)0.0934 (13)0.0110 (10)0.0374 (8)0.0032 (12)
N10.0728 (13)0.0637 (16)0.0555 (14)0.0094 (14)0.0113 (11)0.0029 (14)
C10.0509 (11)0.0599 (18)0.0493 (15)0.0037 (15)0.0203 (11)0.0017 (15)
C20.0405 (12)0.0608 (18)0.0561 (16)0.0024 (12)0.0227 (11)0.0011 (15)
C30.0477 (14)0.078 (2)0.0703 (19)0.0052 (14)0.0250 (13)0.0124 (18)
C40.0504 (14)0.068 (2)0.103 (2)0.0064 (15)0.0308 (14)0.0027 (19)
C50.0627 (16)0.076 (2)0.097 (2)0.0188 (17)0.0328 (16)0.021 (2)
C60.0618 (16)0.082 (2)0.069 (2)0.0091 (15)0.0299 (14)0.0130 (19)
C70.0431 (13)0.0695 (19)0.0572 (17)0.0068 (14)0.0257 (11)0.0083 (17)
C80.0621 (14)0.0682 (19)0.0450 (14)0.0043 (16)0.0274 (12)0.0012 (15)
C90.0699 (17)0.094 (2)0.0497 (16)0.0017 (16)0.0212 (13)0.0003 (17)
C100.102 (2)0.103 (2)0.0586 (19)0.015 (2)0.0314 (17)0.012 (2)
C110.126 (2)0.086 (2)0.067 (2)0.004 (2)0.0474 (19)0.0130 (18)
C120.097 (2)0.078 (2)0.069 (2)0.0104 (17)0.0472 (17)0.0009 (18)
C130.0699 (16)0.075 (2)0.0579 (17)0.0022 (16)0.0366 (13)0.0008 (16)
C140.0666 (15)0.105 (2)0.130 (2)0.0198 (18)0.0496 (15)0.008 (2)
C150.0706 (17)0.069 (2)0.0573 (18)0.0000 (17)0.0146 (13)0.0103 (17)
C160.129 (2)0.066 (2)0.087 (2)0.008 (2)0.0230 (19)0.0098 (19)
C170.0771 (17)0.121 (2)0.124 (2)0.003 (2)0.0196 (16)0.033 (2)
C180.113 (2)0.120 (2)0.0668 (19)0.010 (2)0.0254 (17)0.025 (2)
Geometric parameters (Å, º) top
O1—N11.291 (3)C1—H10.930
O2—C131.366 (2)C3—H30.930
O2—C141.425 (3)C4—H40.930
N1—C11.293 (2)C5—H50.930
N1—C151.514 (3)C6—H60.930
C1—C21.450 (3)C9—H90.930
C2—C31.391 (4)C10—H100.930
C2—C71.407 (3)C11—H110.930
C3—C41.386 (3)C12—H120.930
C4—C51.368 (4)C14—H1410.960
C5—C61.376 (4)C14—H1420.960
C6—C71.394 (3)C14—H1430.960
C7—C81.476 (3)C16—H1610.960
C8—C91.393 (3)C16—H1620.960
C8—C131.399 (3)C16—H1630.960
C9—C101.370 (4)C17—H1710.960
C10—C111.371 (5)C17—H1720.960
C11—C121.381 (3)C17—H1730.960
C12—C131.373 (4)C18—H1810.960
C15—C161.499 (3)C18—H1820.960
C15—C171.500 (3)C18—H1830.960
C15—C181.518 (4)
C13—O2—C14118.1 (2)C4—C5—H5119.8
O1—N1—C1122.2 (2)C6—C5—H5119.8
O1—N1—C15114.02 (18)C5—C6—H6119.2
C1—N1—C15123.8 (2)C7—C6—H6119.2
N1—C1—C2126.1 (2)C8—C9—H9118.9
C1—C2—C3121.9 (2)C10—C9—H9118.9
C1—C2—C7118.8 (2)C9—C10—H10120.4
C3—C2—C7119.2 (2)C11—C10—H10120.4
C2—C3—C4121.4 (2)C10—C11—H11119.7
C3—C4—C5119.2 (2)C12—C11—H11119.7
C4—C5—C6120.5 (2)C11—C12—H12120.1
C5—C6—C7121.6 (2)C13—C12—H12120.1
C2—C7—C6118.1 (2)O2—C14—H141109.5
C2—C7—C8123.1 (2)O2—C14—H142109.5
C6—C7—C8118.7 (2)O2—C14—H143109.5
C7—C8—C9120.2 (2)H141—C14—H142109.5
C7—C8—C13122.56 (19)H141—C14—H143109.5
C9—C8—C13117.3 (2)H142—C14—H143109.5
C8—C9—C10122.1 (2)C15—C16—H161109.5
C9—C10—C11119.2 (2)C15—C16—H162109.5
C10—C11—C12120.7 (3)C15—C16—H163109.5
C11—C12—C13119.9 (3)H161—C16—H162109.5
O2—C13—C8115.4 (2)H161—C16—H163109.5
O2—C13—C12123.7 (2)H162—C16—H163109.5
C8—C13—C12120.9 (2)C15—C17—H171109.5
N1—C15—C16111.56 (19)C15—C17—H172109.5
N1—C15—C17107.7 (2)C15—C17—H173109.5
N1—C15—C18105.5 (2)H171—C17—H172109.5
C16—C15—C17112.1 (2)H171—C17—H173109.5
C16—C15—C18109.6 (2)H172—C17—H173109.5
C17—C15—C18110.1 (2)C15—C18—H181109.5
N1—C1—H1116.9C15—C18—H182109.5
C2—C1—H1116.9C15—C18—H183109.5
C2—C3—H3119.3H181—C18—H182109.5
C4—C3—H3119.3H181—C18—H183109.5
C3—C4—H4120.4H182—C18—H183109.5
C5—C4—H4120.4
C14—O2—C13—C8174.2 (2)C3—C4—C5—C60.9 (4)
C14—O2—C13—C127.4 (4)C4—C5—C6—C70.1 (3)
O1—N1—C1—C23.3 (4)C5—C6—C7—C20.9 (4)
O1—N1—C15—C16179.7 (2)C5—C6—C7—C8176.3 (2)
O1—N1—C15—C1756.2 (3)C2—C7—C8—C9121.0 (2)
O1—N1—C15—C1861.4 (2)C2—C7—C8—C1360.5 (4)
C1—N1—C15—C160.3 (4)C6—C7—C8—C956.0 (3)
C1—N1—C15—C17123.2 (2)C6—C7—C8—C13122.5 (2)
C1—N1—C15—C18119.2 (2)C7—C8—C9—C10179.5 (2)
C15—N1—C1—C2177.4 (2)C7—C8—C13—O20.6 (4)
N1—C1—C2—C326.8 (4)C7—C8—C13—C12179.0 (2)
N1—C1—C2—C7157.7 (2)C9—C8—C13—O2178.0 (2)
C1—C2—C3—C4175.7 (2)C9—C8—C13—C120.5 (4)
C1—C2—C7—C6176.6 (2)C13—C8—C9—C100.9 (4)
C1—C2—C7—C80.5 (3)C8—C9—C10—C110.5 (5)
C3—C2—C7—C61.0 (3)C9—C10—C11—C120.2 (4)
C3—C2—C7—C8176.1 (2)C10—C11—C12—C130.6 (5)
C7—C2—C3—C40.2 (3)C11—C12—C13—O2178.5 (2)
C2—C3—C4—C50.8 (4)C11—C12—C13—C80.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.932.262.806 (3)117
C17—H171···O10.962.412.791 (3)104
C18—H181···O1i0.962.503.280 (3)139
Symmetry code: (i) x+2, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC18H21NO2
Mr283.37
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)10.2526 (15), 8.5576 (13), 10.3333 (16)
β (°) 115.742 (3)
V3)816.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.28 × 0.09
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.968, 0.993
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
7869, 1981, 967
Rint0.035
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.058, 1.00
No. of reflections1981
No. of parameters191
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004) and Larson (1970), SIR97 (Altomare et al., 1999), CRYSTALS (Betteridge et al., 2003), ORTEP-3 for Windows (Farrugia, 1997), CrystalStructure (Rigaku/MSC, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.932.262.806 (3)117.00
C17—H171···O10.962.412.791 (3)104.00
C18—H181···O1i0.962.503.280 (3)139.00
Symmetry code: (i) x+2, y1/2, z+2.
 

Acknowledgements

This work is supported by a research grant from the Natural Science Foundation of Zhejiang Province in China (grant No. Y207295). Mr Jianming Gu and Xiurong Hu of the X-ray crystallography facility of Zhejiang University are acknowledged for their assistance with the crystal structural analysis.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDurand, G., Poeggeler, B., Boker, J., Raynal, S., Polidori, A., Pappolla, M. A., Hardeland, R. & Pucci, B. (2007). J. Med. Chem. 50, 3976–3979.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFevig, T. L., Bowen, S. M., Janowick, D. A., Jones, B. K., Munson, H. R., Ohlweiler, D. F. & Thomas, G. E. (1996). J. Med. Chem. 39, 4988–4996.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGreen, A. R., Ashwood, T., Odergren, T. & Jackson, D. M. (2003). Pharm. Ther. 100, 195–214.  Web of Science CrossRef CAS Google Scholar
First citationHamburger, S. A. & McCay, P. B. (1989). Circ. Shock, 29, 329–334.  CAS PubMed Web of Science Google Scholar
First citationHay, A., Burkitt, M. J., Jones, C. M. & Hartley, R. C. (2005). Arch. Biochem. Biophys. 435, 336–346.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJotti, A., Paracchini, L., Perletti, G. & Piccinini, F. (1992). Pharmcol. Res. 26, 143–150.  CrossRef CAS Web of Science Google Scholar
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar
First citationMurphy, M. P., Echtay, K. S., Blaikie, F. H., Asin-Gayuela, J., Cocheme, H. M., Green, K., Buckingam, J. A., Taylor, E. R., Hurrell, F., Hughes, G., Miwa, S., Cooper, C. E., Svitunenko, D. A., Smith, R. A. J. & Brand, M. D. (2003). J. Biol. Chem. 278, 48534–48545.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds