organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3-amino­phen­yl) sulfone aceto­nitrile solvate

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: fangshi.li@njut.edu.cn

(Received 14 May 2008; accepted 16 May 2008; online 21 May 2008)

In the sulfone mol­ecule of the title compound, C12H12N2O2S·C2H3N, the two benzene rings are oriented at a dihedral angle of 80.69 (3)°. Weak intra­molecular C—H⋯O hydrogen bonds result in the formation of two five-membered rings, which both have envelope conformations. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For related literature, see: Yang et al. (2003[Yang, C. P., Woo, E. M. & Jou, G. L. (2003). J. Therm. Anal. Calorim. 74, 843-852.]); Rudyk et al. (2003[Rudyk, H., Knaggs, M. H., Vasiljevic, S., Hope, J., Birkett, C. & Gilbert, I. H. (2003). Eur. J. Med. Chem. 38, 567-579.]); Ayyangar et al. (1981[Ayyangar, N. R., Lugade, A. G., Nikrad, P. V. & Sharma, V. K. (1981). Synthesis, pp. 640-643.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2O2S·C2H3N

  • Mr = 289.35

  • Orthorhombic, P b c a

  • a = 9.1690 (18) Å

  • b = 15.559 (3) Å

  • c = 20.960 (4) Å

  • V = 2990.2 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 294 (2) K

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.917, Tmax = 0.937

  • 2674 measured reflections

  • 2674 independent reflections

  • 1644 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.135

  • S = 1.03

  • 2674 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O1 0.93 2.53 2.913 (4) 105
C8—H8A⋯O2 0.93 2.53 2.906 (4) 104
N1—H1B⋯O1i 0.86 2.32 3.147 (5) 161
N2—H2B⋯O2ii 0.86 2.28 3.079 (4) 155
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), is used for preparing diimide-dicarboxylic acid (Yang et al., 2003) and corresponding truncated dyes analogs of Congo red (Rudyk et al., 2003). As part of our studies in this area, we report herein the synthesis and crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The asymmetric unit also contains one acetonitrile solvent molecule. Rings A (C1-C6) and B (C7-C12) are, of course, planar and they are oriented at a dihedral angle of A/B = 80.69 (3)°. The weak intramolecular C-H···O hydrogen bonds (Table 1) result in the formation of two five-membered rings C (S/C5/C6/H6A) and D (S/C8/C9/H8A). They adopt envelope conformations, with O1 and O2 atoms displaced by 0.251 (3) and -0.529 (3) Å from the planes of the other ring atoms, respectively.

In the crystal structure, intermolecular N1-H1B···O1i [H1B···O1 2.32 Å, N1···O1 3.147 (3) Å and N1-H1B···O1 161.0°] and N2-H2B···O2ii [H2B···O2 2.28 Å, N2···O2 3.079 (3) Å and N2-H2B···O2 155.0°] hydrogen bonds [symmetry codes: (i) x + 1/2, y, 1/2 - z; (ii) 1/2 - x, y - 1/2, z] link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related literature, see: Yang et al. (2003); Rudyk et al. (2003); Ayyangar et al. (1981). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I), was prepared according to the literature method (Ayyangar et al., 1981). Crystals suitable for X-ray analysis were obtained by dissolving (I) (0.2 g) in acetonitrile (25 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH2) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.
Bis(3-aminophenyl) sulfone acetonitrile solvate top
Crystal data top
C12H12N2O2S·C2H3NF(000) = 1216
Mr = 289.35Dx = 1.285 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 9.1690 (18) Åθ = 10–13°
b = 15.559 (3) ŵ = 0.22 mm1
c = 20.960 (4) ÅT = 294 K
V = 2990.2 (10) Å3Block, light yellow
Z = 80.40 × 0.30 × 0.30 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1644 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.1°, θmin = 1.9°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 018
Tmin = 0.917, Tmax = 0.937l = 024
2674 measured reflections3 standard reflections every 120 min
2674 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.05P)2 + 2P]
where P = (Fo2 + 2Fc2)/3
2674 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C12H12N2O2S·C2H3NV = 2990.2 (10) Å3
Mr = 289.35Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.1690 (18) ŵ = 0.22 mm1
b = 15.559 (3) ÅT = 294 K
c = 20.960 (4) Å0.40 × 0.30 × 0.30 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1644 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.917, Tmax = 0.9373 standard reflections every 120 min
2674 measured reflections intensity decay: none
2674 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.03Δρmax = 0.36 e Å3
2674 reflectionsΔρmin = 0.23 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.45811 (9)0.20077 (5)0.17605 (4)0.0493 (3)
O10.5131 (3)0.23557 (15)0.23465 (12)0.0692 (8)
O20.3393 (3)0.24395 (14)0.14448 (13)0.0662 (7)
N10.9991 (3)0.2160 (3)0.11603 (18)0.0941 (13)
H1B1.01850.23050.15470.113*
H1C1.06830.21160.08850.113*
N20.1514 (3)0.06128 (19)0.11889 (14)0.0639 (9)
H2B0.12480.11380.12400.077*
H2C0.10960.02980.09050.077*
N30.8308 (6)0.0861 (3)0.0059 (2)0.125
C10.8592 (4)0.2000 (2)0.09841 (18)0.0560 (9)
C20.8255 (5)0.1794 (2)0.03521 (19)0.0657 (11)
H2D0.90050.17460.00560.079*
C30.6825 (5)0.1660 (3)0.01564 (19)0.0690 (11)
H3A0.66330.15130.02660.083*
C40.5695 (4)0.1741 (2)0.05805 (17)0.0582 (10)
H4A0.47340.16650.04500.070*
C50.6022 (3)0.19405 (19)0.12110 (15)0.0428 (8)
C60.7437 (4)0.2064 (2)0.14153 (16)0.0502 (8)
H6A0.76220.21890.18410.060*
C70.2607 (4)0.0275 (2)0.15608 (15)0.0454 (8)
C80.3005 (3)0.05871 (19)0.14943 (15)0.0434 (8)
H8A0.25630.09270.11850.052*
C90.4056 (3)0.09322 (19)0.18883 (15)0.0431 (8)
C100.4737 (4)0.0444 (2)0.23542 (17)0.0582 (10)
H10A0.54330.06850.26230.070*
C110.4356 (4)0.0407 (2)0.24077 (19)0.0650 (11)
H11A0.48180.07490.27110.078*
C120.3309 (4)0.0763 (2)0.20243 (17)0.0563 (9)
H12A0.30640.13390.20740.068*
C130.6947 (7)0.0534 (4)0.1078 (2)0.130 (2)
H13A0.66320.10620.12700.195*
H13B0.61130.01820.09860.195*
H13C0.75800.02340.13680.195*
C140.7706 (5)0.0714 (3)0.0506 (2)0.0858 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0474 (5)0.0365 (4)0.0641 (6)0.0012 (4)0.0097 (5)0.0078 (4)
O10.0785 (18)0.0611 (15)0.0680 (17)0.0187 (14)0.0159 (15)0.0280 (13)
O20.0520 (14)0.0409 (13)0.106 (2)0.0105 (12)0.0076 (15)0.0041 (13)
N10.0447 (19)0.153 (4)0.085 (3)0.007 (2)0.0034 (18)0.003 (2)
N20.075 (2)0.0524 (17)0.064 (2)0.0164 (16)0.0116 (18)0.0000 (15)
N30.1250.1250.1250.0000.0000.000
C10.045 (2)0.060 (2)0.063 (2)0.0023 (19)0.0006 (18)0.0063 (19)
C20.064 (3)0.073 (3)0.060 (3)0.006 (2)0.019 (2)0.003 (2)
C30.072 (3)0.088 (3)0.046 (2)0.002 (2)0.002 (2)0.004 (2)
C40.051 (2)0.069 (2)0.054 (2)0.0041 (19)0.0050 (19)0.0003 (18)
C50.0463 (18)0.0338 (16)0.048 (2)0.0005 (15)0.0029 (16)0.0007 (15)
C60.0490 (19)0.0523 (19)0.049 (2)0.0045 (18)0.0020 (18)0.0006 (17)
C70.0461 (19)0.0424 (18)0.048 (2)0.0019 (16)0.0052 (17)0.0044 (15)
C80.0448 (19)0.0408 (17)0.0447 (18)0.0043 (15)0.0052 (16)0.0023 (15)
C90.0413 (18)0.0376 (17)0.050 (2)0.0034 (14)0.0030 (16)0.0015 (15)
C100.059 (2)0.053 (2)0.063 (2)0.0074 (18)0.013 (2)0.0013 (18)
C110.070 (3)0.055 (2)0.069 (2)0.005 (2)0.021 (2)0.0174 (19)
C120.064 (2)0.0436 (19)0.061 (2)0.0034 (19)0.002 (2)0.0042 (17)
C130.182 (7)0.111 (4)0.097 (4)0.030 (4)0.051 (4)0.002 (3)
C140.092 (4)0.087 (3)0.078 (3)0.013 (3)0.002 (3)0.004 (3)
Geometric parameters (Å, º) top
S—O11.434 (2)C5—C61.380 (4)
S—O21.441 (2)C6—H6A0.9300
S—C51.756 (3)C7—C121.390 (5)
S—C91.762 (3)C7—C81.398 (4)
C1—N11.358 (5)C8—C91.378 (4)
C1—C61.396 (5)C8—H8A0.9300
C1—C21.397 (5)C9—C101.386 (4)
N1—H1B0.8600C10—C111.375 (5)
N1—H1C0.8600C10—H10A0.9300
N2—C71.374 (4)C11—C121.368 (5)
N2—H2B0.8600C11—H11A0.9300
N2—H2C0.8600C12—H12A0.9300
C2—C31.390 (5)C13—C141.415 (6)
C2—H2D0.9300C13—H13A0.9600
C3—C41.371 (5)C13—H13B0.9600
C3—H3A0.9300C13—H13C0.9600
C4—C51.390 (5)C14—N31.111 (6)
C4—H4A0.9300
O1—S—O2118.90 (16)C5—C6—H6A119.9
O1—S—C5108.65 (16)C1—C6—H6A119.9
O2—S—C5107.18 (15)N2—C7—C12121.7 (3)
O1—S—C9108.95 (15)N2—C7—C8120.1 (3)
O2—S—C9107.82 (15)C12—C7—C8118.2 (3)
C5—S—C9104.40 (14)C9—C8—C7119.8 (3)
N1—C1—C6121.8 (3)C9—C8—H8A120.1
N1—C1—C2120.6 (4)C7—C8—H8A120.1
C6—C1—C2117.6 (3)C8—C9—C10121.6 (3)
C1—N1—H1B120.0C8—C9—S118.1 (2)
C1—N1—H1C120.0C10—C9—S120.3 (3)
H1B—N1—H1C120.0C11—C10—C9118.1 (3)
C7—N2—H2B120.0C11—C10—H10A121.0
C7—N2—H2C120.0C9—C10—H10A121.0
H2B—N2—H2C120.0C12—C11—C10121.3 (3)
C3—C2—C1121.5 (4)C12—C11—H11A119.3
C3—C2—H2D119.2C10—C11—H11A119.3
C1—C2—H2D119.2C11—C12—C7121.0 (3)
C4—C3—C2120.5 (4)C11—C12—H12A119.5
C4—C3—H3A119.7C7—C12—H12A119.5
C2—C3—H3A119.7C14—C13—H13A109.5
C3—C4—C5118.3 (3)C14—C13—H13B109.5
C3—C4—H4A120.9H13A—C13—H13B109.5
C5—C4—H4A120.9C14—C13—H13C109.5
C6—C5—C4121.9 (3)H13A—C13—H13C109.5
C6—C5—S119.7 (3)H13B—C13—H13C109.5
C4—C5—S118.3 (3)N3—C14—C13179.4 (6)
C5—C6—C1120.2 (3)
N1—C1—C2—C3177.5 (4)N2—C7—C8—C9177.1 (3)
C6—C1—C2—C30.2 (6)C12—C7—C8—C90.7 (5)
C1—C2—C3—C41.2 (6)C7—C8—C9—C100.0 (5)
C2—C3—C4—C51.5 (6)C7—C8—C9—S177.0 (2)
C3—C4—C5—C60.6 (5)O1—S—C9—C8154.6 (2)
C3—C4—C5—S177.8 (3)O2—S—C9—C824.3 (3)
O1—S—C5—C611.1 (3)C5—S—C9—C889.5 (3)
O2—S—C5—C6140.7 (3)O1—S—C9—C1028.3 (3)
C9—S—C5—C6105.0 (3)O2—S—C9—C10158.6 (3)
O1—S—C5—C4170.5 (3)C5—S—C9—C1087.6 (3)
O2—S—C5—C440.9 (3)C8—C9—C10—C111.2 (5)
C9—S—C5—C473.3 (3)S—C9—C10—C11175.8 (3)
C4—C5—C6—C10.8 (5)C9—C10—C11—C121.5 (6)
S—C5—C6—C1179.1 (3)C10—C11—C12—C70.8 (6)
N1—C1—C6—C5176.6 (4)N2—C7—C12—C11177.4 (3)
C2—C1—C6—C51.2 (5)C8—C7—C12—C110.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O10.932.532.913 (4)105
C8—H8A···O20.932.532.906 (4)104
N1—H1B···O1i0.862.323.147 (5)161
N2—H2B···O2ii0.862.283.079 (4)155
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC12H12N2O2S·C2H3N
Mr289.35
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)294
a, b, c (Å)9.1690 (18), 15.559 (3), 20.960 (4)
V3)2990.2 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.917, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
2674, 2674, 1644
Rint0.000
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.135, 1.03
No. of reflections2674
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.23

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O10.932.532.913 (4)105.00
C8—H8A···O20.932.532.906 (4)104.00
N1—H1B···O1i0.862.323.147 (5)161
N2—H2B···O2ii0.862.283.079 (4)155
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y1/2, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAyyangar, N. R., Lugade, A. G., Nikrad, P. V. & Sharma, V. K. (1981). Synthesis, pp. 640–643.  CrossRef Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRudyk, H., Knaggs, M. H., Vasiljevic, S., Hope, J., Birkett, C. & Gilbert, I. H. (2003). Eur. J. Med. Chem. 38, 567–579.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, C. P., Woo, E. M. & Jou, G. L. (2003). J. Therm. Anal. Calorim. 74, 843–852.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds