organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4′-bromo-2′,5-dioxo-4H,5H-pyrano[3,2-c]chromene-4-spiro-3′(2′H)-1′H-indole-3-carbo­nitrile N,N-di­methyl­formamide solvate

aDepartment of Chemistry, Xuzhou Medical College, Xuzhou 221002, People's Republic of China
*Correspondence e-mail: songleizhu@126.com

(Received 22 May 2008; accepted 23 May 2008; online 30 May 2008)

In the mol­ecule of the title compound, C20H10BrN3O4·C3H7NO, the spiro pyran ring adopts a twist conformation. The indole and coumarin ring systems are each nearly planar, and are oriented at a dihedral angle of 79.29 (3)°. In the crystal structure, inter­molecular N—H⋯O, N—H⋯N, C—H⋯O and C—H⋯N hydrogen bonds link the mol­ecules.

Related literature

For general background, see: da Silva et al. (2001[Silva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273-324.]); Joshi & Chand (1982[Joshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1-12.]); Abdel-Rahman et al. (2004[Abdel-Rahman, A. H., Keshk, E. M., Hanna, M. A. & El-Bady, Sh. M. (2004). Bioorg. Med. Chem. 12, 2483-2488.]); Zhu et al. (2007[Zhu, S. L., Ji, S. J. & Zhang, Y. (2007). Tetrahedron, 63, 9365-9372.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H10BrN3O4·C3H7NO

  • Mr = 509.32

  • Monoclinic, P 21 /c

  • a = 17.004 (3) Å

  • b = 9.0452 (15) Å

  • c = 14.415 (3) Å

  • β = 108.340 (3)°

  • V = 2104.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.00 mm−1

  • T = 153 (2) K

  • 0.45 × 0.30 × 0.20 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.434, Tmax = 0.670

  • 19919 measured reflections

  • 3847 independent reflections

  • 3597 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.067

  • S = 1.09

  • 3847 reflections

  • 309 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.89 (3) 2.02 (3) 2.891 (2) 165 (2)
N1—H1B⋯N2ii 0.84 (3) 2.27 (3) 3.090 (3) 166 (2)
N3—H3⋯O5iii 0.88 1.93 2.785 (2) 163
C11—H11⋯O2iv 0.95 2.54 3.462 (3) 165
C19—H19⋯O4i 0.95 2.50 3.173 (3) 128
C22—H22A⋯N2v 0.98 2.48 3.443 (3) 166
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+2, -y, -z+1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x, y-1, z; (v) x, y+1, z.

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Version 1.30. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The indole nucleus is the well known heterocycle (da-Silva et al., 2001). Compounds carrying the indole moiety exhibit antibacterial and fungicidal activities (Joshi & Chand, 1982). Spirooxindole ring systems are found in a number of alkaloids like horsifiline, spirotryprostatin and elacomine (Abdel-Rahman et al., 2004). As a part of our programme devoted to the preparation of heterocyclic compounds involving indole derivatives (Zhu et al., 2007), we have synthesized a series of spirooxindoles via reactions of substituted isatins together with malononitrile and 4-hydroxycoumarin in water. We report herein the crystal structure of the title compound, (I).

In the molecule of (I), (Fig. 1), rings B (N3/C3/C7/C8/C13), C (C8-C13), D (O3/C4/C5/C14/C15/C20) and E (C15-C20) are, of course, planar. The dihedral angles between them are B/C = 1.51 (3)° and D/E = 4.24 (3)°. So, rings B, C and D,E are nearly coplanar. The coplanar ring systems are oriented at a dihedral angle of 79.29 (3)°. Ring A (O1/C1-C5) adopts twisted conformation, having total puckering amplitude, QT, of 0.122 (3) Å (Cremer & Pople, 1975).

In the crystal structure, intermolecular N-H···O, N-H···N, C-H···O and C-H···N hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: da-Silva et al. (2001); Joshi & Chand (1982); Abdel-Rahman et al. (2004); Zhu et al. (2007). For ring-puckering parameters, see: Cremer & Pople (1975).

Experimental top

Compound (I) was prepared by the reaction of 4-bromoisatin (1 mmol), malononitrile (1 mmol) and 4-hydroxycoumarin (1 mmol) in water (5 ml). The reaction was catalyzed by TEBAC (triethylbenzylammonium chloride, 1 mmol). After stirring at 333 K for 5 h, the reaction mixture was cooled and washed with small amount of ethanol. The crude product was filtered and single crystals of the title compound were obtained from DMF solution by slow evaporation at room temperature (yield; 80%, m.p. > 573 K). Spectroscopic analysis: IR (KBr, n, cm-1): 3372, 3310, 3179, 2192, 1728, 1674, 1605, 1450, 1358, 1234, 1111, 1080, 972, 910, 872, 764, 578. 1H NMR (400 MHz, DMSO-d6): 10.99 (s, 1H, NH), 7.96 (d, 1H, J = 7.6 Hz, ArH), 7.84 (br s, 2H, NH2), 7.79 (t, 1H, J = 8.4 Hz, ArH), 7.53–7.59 (m, 2H, ArH), 7.21 (t, 1H, J = 8.0 Hz, ArH), 7.12 (d, 1H, J = 8.0 Hz, ArH), 6.91 (d, 1H, J = 7.6 Hz, ArH).

Refinement top

H atoms (for NH2) were located in a difference syntheses and refined [N-H = 0.89 (3) and 0.84 (3) Å; Uiso(H) = 0.022 (7) and 0.018 (6) Å2]. The remaining H atoms were positioned geometrically, with N-H = 0.88 Å (for NH) and C-H = 0.95 and 0.98 Å for aromatic and methyl H and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
2-Amino-4'-bromo-2',5-dioxo-4H,5H-pyrano[3,2-c]chromene-4-spiro-3'(2'H)- 1'H-indole-3-carbonitrile N,N-dimethylformamide solvate top
Crystal data top
C20H10BrN3O4·C3H7NOF(000) = 1032
Mr = 509.32Dx = 1.607 Mg m3
Monoclinic, P21/cMelting point > 573 K
Hall symbol: -P 2 y b cMo Kα radiation, λ = 0.71070 Å
a = 17.004 (3) ÅCell parameters from 7931 reflections
b = 9.0452 (15) Åθ = 3.2–25.3°
c = 14.415 (3) ŵ = 2.00 mm1
β = 108.340 (3)°T = 153 K
V = 2104.5 (7) Å3Block, colorless
Z = 40.45 × 0.30 × 0.20 mm
Data collection top
Rigaku Mercury
diffractometer
3847 independent reflections
Radiation source: fine-focus sealed tube3597 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 7.31 pixels mm-1θmax = 25.3°, θmin = 3.2°
ω scansh = 1720
Absorption correction: multi-scan
(Jacobson, 1998)
k = 109
Tmin = 0.434, Tmax = 0.670l = 1717
19919 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0219P)2 + 2.2795P]
where P = (Fo2 + 2Fc2)/3
3847 reflections(Δ/σ)max = 0.002
309 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C20H10BrN3O4·C3H7NOV = 2104.5 (7) Å3
Mr = 509.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.004 (3) ŵ = 2.00 mm1
b = 9.0452 (15) ÅT = 153 K
c = 14.415 (3) Å0.45 × 0.30 × 0.20 mm
β = 108.340 (3)°
Data collection top
Rigaku Mercury
diffractometer
3847 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
3597 reflections with I > 2σ(I)
Tmin = 0.434, Tmax = 0.670Rint = 0.031
19919 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.56 e Å3
3847 reflectionsΔρmin = 0.38 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.674546 (15)0.23487 (3)0.370899 (16)0.02528 (8)
O10.72297 (9)0.17427 (16)0.38347 (10)0.0165 (3)
O20.80028 (9)0.17370 (16)0.69972 (11)0.0195 (3)
O30.54289 (9)0.16195 (17)0.51984 (11)0.0205 (3)
O40.61528 (9)0.00093 (17)0.62894 (11)0.0218 (3)
O50.86929 (11)0.5130 (2)0.42641 (12)0.0350 (4)
N10.84875 (12)0.1416 (2)0.37211 (14)0.0165 (4)
H1A0.8332 (15)0.211 (3)0.3263 (19)0.022 (7)*
H1B0.8976 (16)0.110 (3)0.3921 (17)0.018 (6)*
N20.97044 (12)0.0393 (2)0.58997 (14)0.0245 (4)
N30.80382 (11)0.07714 (19)0.72793 (13)0.0170 (4)
H30.82670.07670.79180.020*
N40.94175 (11)0.5142 (2)0.58794 (13)0.0216 (4)
C10.79982 (12)0.1140 (2)0.42627 (15)0.0135 (4)
C20.81869 (12)0.0379 (2)0.51188 (15)0.0135 (4)
C30.75548 (12)0.0029 (2)0.56233 (15)0.0132 (4)
C40.67684 (12)0.0815 (2)0.51288 (15)0.0135 (4)
C50.66610 (13)0.1649 (2)0.43275 (15)0.0143 (4)
C60.90223 (13)0.0065 (2)0.55498 (15)0.0159 (4)
C70.78839 (12)0.0454 (2)0.67200 (15)0.0154 (4)
C80.74743 (12)0.1686 (2)0.57294 (15)0.0140 (4)
C90.71969 (13)0.2801 (2)0.50567 (15)0.0166 (4)
C100.72305 (14)0.4273 (2)0.53575 (17)0.0206 (5)
H100.70350.50390.48910.025*
C110.75512 (14)0.4604 (2)0.63403 (18)0.0229 (5)
H110.75770.56070.65430.027*
C120.78381 (13)0.3505 (2)0.70414 (17)0.0199 (5)
H120.80590.37390.77160.024*
C130.77895 (13)0.2058 (2)0.67179 (15)0.0153 (4)
C140.61196 (13)0.0753 (2)0.55878 (15)0.0168 (5)
C150.53467 (13)0.2528 (2)0.44043 (16)0.0178 (5)
C160.46555 (14)0.3429 (3)0.41187 (18)0.0247 (5)
H160.42520.33890.44480.030*
C170.45632 (14)0.4387 (3)0.33474 (18)0.0264 (5)
H170.40970.50260.31530.032*
C180.51418 (14)0.4430 (3)0.28502 (17)0.0240 (5)
H180.50660.50870.23150.029*
C190.58252 (13)0.3522 (2)0.31330 (16)0.0195 (5)
H190.62200.35500.27910.023*
C200.59384 (13)0.2557 (2)0.39248 (15)0.0156 (4)
C210.90376 (15)0.5775 (3)0.50259 (18)0.0290 (6)
H210.90340.68250.50070.035*
C220.98163 (16)0.6027 (3)0.67431 (19)0.0330 (6)
H22A0.97250.70790.65810.050*
H22B1.04120.58210.69680.050*
H22C0.95800.57770.72620.050*
C230.94561 (18)0.3560 (3)0.6002 (2)0.0376 (7)
H23A0.90970.32570.63820.056*
H23B1.00280.32640.63470.056*
H23C0.92700.30820.53590.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03215 (15)0.02519 (14)0.01580 (13)0.00378 (10)0.00365 (10)0.00394 (9)
O10.0129 (7)0.0220 (8)0.0152 (8)0.0032 (6)0.0053 (6)0.0050 (6)
O20.0243 (8)0.0164 (8)0.0170 (8)0.0025 (6)0.0051 (7)0.0043 (6)
O30.0157 (8)0.0256 (9)0.0225 (8)0.0047 (6)0.0095 (7)0.0063 (7)
O40.0234 (8)0.0243 (9)0.0204 (8)0.0027 (7)0.0110 (7)0.0059 (7)
O50.0318 (10)0.0512 (12)0.0194 (9)0.0038 (9)0.0042 (8)0.0030 (8)
N10.0130 (10)0.0197 (10)0.0172 (10)0.0038 (8)0.0051 (8)0.0054 (8)
N20.0193 (11)0.0316 (12)0.0235 (10)0.0053 (9)0.0079 (9)0.0070 (9)
N30.0199 (10)0.0187 (10)0.0105 (9)0.0003 (8)0.0022 (7)0.0023 (7)
N40.0205 (10)0.0256 (11)0.0180 (10)0.0003 (8)0.0051 (8)0.0019 (8)
C10.0119 (10)0.0122 (10)0.0160 (10)0.0005 (8)0.0037 (8)0.0037 (8)
C20.0129 (10)0.0137 (11)0.0139 (10)0.0000 (8)0.0043 (8)0.0003 (8)
C30.0137 (10)0.0142 (11)0.0119 (10)0.0009 (8)0.0045 (8)0.0006 (8)
C40.0131 (10)0.0135 (10)0.0133 (10)0.0008 (8)0.0034 (8)0.0025 (8)
C50.0141 (10)0.0153 (11)0.0143 (10)0.0015 (8)0.0055 (8)0.0040 (8)
C60.0216 (12)0.0145 (11)0.0140 (11)0.0012 (9)0.0089 (9)0.0020 (8)
C70.0122 (10)0.0194 (12)0.0151 (11)0.0003 (8)0.0051 (9)0.0014 (9)
C80.0121 (10)0.0137 (11)0.0179 (11)0.0012 (8)0.0070 (9)0.0016 (8)
C90.0137 (10)0.0213 (11)0.0158 (11)0.0000 (9)0.0063 (9)0.0006 (9)
C100.0195 (11)0.0158 (11)0.0290 (13)0.0023 (9)0.0112 (10)0.0042 (9)
C110.0224 (12)0.0145 (11)0.0356 (14)0.0031 (9)0.0146 (11)0.0060 (10)
C120.0191 (11)0.0201 (12)0.0222 (12)0.0030 (9)0.0090 (10)0.0061 (9)
C130.0133 (10)0.0172 (11)0.0167 (11)0.0013 (8)0.0064 (9)0.0009 (9)
C140.0161 (11)0.0160 (11)0.0172 (11)0.0000 (9)0.0036 (9)0.0026 (9)
C150.0163 (11)0.0187 (11)0.0175 (11)0.0012 (9)0.0042 (9)0.0002 (9)
C160.0181 (12)0.0276 (13)0.0312 (13)0.0031 (10)0.0117 (10)0.0008 (10)
C170.0180 (12)0.0272 (13)0.0313 (13)0.0085 (10)0.0041 (10)0.0050 (10)
C180.0186 (12)0.0263 (13)0.0237 (12)0.0025 (10)0.0016 (10)0.0071 (10)
C190.0179 (11)0.0212 (12)0.0182 (11)0.0009 (9)0.0040 (9)0.0015 (9)
C200.0131 (10)0.0158 (11)0.0159 (11)0.0019 (8)0.0018 (9)0.0014 (8)
C210.0244 (13)0.0374 (15)0.0263 (14)0.0049 (11)0.0097 (11)0.0008 (11)
C220.0299 (14)0.0340 (15)0.0299 (14)0.0011 (11)0.0017 (11)0.0052 (11)
C230.0446 (17)0.0293 (15)0.0357 (15)0.0074 (12)0.0078 (13)0.0020 (12)
Geometric parameters (Å, º) top
Br1—C91.895 (2)C8—C91.376 (3)
O1—C11.370 (2)C8—C131.396 (3)
O1—C51.371 (2)C9—C101.395 (3)
O2—C71.223 (3)C10—C111.381 (3)
O3—C141.376 (3)C10—H100.9500
O3—C151.380 (3)C11—C121.392 (3)
O4—C141.201 (3)C11—H110.9500
O5—C211.219 (3)C12—C131.383 (3)
N1—C11.331 (3)C12—H120.9500
N1—H1A0.89 (3)C15—C161.382 (3)
N1—H1B0.84 (3)C15—C201.389 (3)
N2—C61.149 (3)C16—C171.379 (3)
N3—C71.347 (3)C16—H160.9500
N3—C131.404 (3)C17—C181.388 (3)
N3—H30.8800C17—H170.9500
N4—C211.326 (3)C18—C191.376 (3)
N4—C231.441 (3)C18—H180.9500
N4—C221.456 (3)C19—C201.401 (3)
C1—C21.360 (3)C19—H190.9500
C2—C61.418 (3)C21—H210.9500
C2—C31.521 (3)C22—H22A0.9800
C3—C41.509 (3)C22—H22B0.9800
C3—C81.517 (3)C22—H22C0.9800
C3—C71.564 (3)C23—H23A0.9800
C4—C51.343 (3)C23—H23B0.9800
C4—C141.455 (3)C23—H23C0.9800
C5—C201.440 (3)
C1—O1—C5118.06 (16)C12—C11—H11119.2
C14—O3—C15121.88 (16)C13—C12—C11117.5 (2)
C1—N1—H1A118.2 (16)C13—C12—H12121.3
C1—N1—H1B118.0 (16)C11—C12—H12121.3
H1A—N1—H1B122 (2)C12—C13—C8122.3 (2)
C7—N3—C13111.74 (17)C12—C13—N3127.9 (2)
C7—N3—H3124.1C8—C13—N3109.74 (18)
C13—N3—H3124.1O4—C14—O3118.06 (19)
C21—N4—C23122.2 (2)O4—C14—C4124.3 (2)
C21—N4—C22121.1 (2)O3—C14—C4117.68 (18)
C23—N4—C22116.8 (2)O3—C15—C16116.93 (19)
N1—C1—C2127.9 (2)O3—C15—C20121.61 (19)
N1—C1—O1110.17 (18)C16—C15—C20121.4 (2)
C2—C1—O1121.94 (18)C17—C16—C15118.8 (2)
C1—C2—C6117.31 (18)C17—C16—H16120.6
C1—C2—C3123.80 (18)C15—C16—H16120.6
C6—C2—C3118.89 (18)C16—C17—C18121.0 (2)
C4—C3—C8116.89 (17)C16—C17—H17119.5
C4—C3—C2107.82 (17)C18—C17—H17119.5
C8—C3—C2112.82 (17)C19—C18—C17120.0 (2)
C4—C3—C7108.55 (16)C19—C18—H18120.0
C8—C3—C7100.89 (16)C17—C18—H18120.0
C2—C3—C7109.49 (16)C18—C19—C20120.0 (2)
C5—C4—C14119.68 (19)C18—C19—H19120.0
C5—C4—C3123.41 (18)C20—C19—H19120.0
C14—C4—C3116.85 (18)C15—C20—C19118.8 (2)
C4—C5—O1123.57 (19)C15—C20—C5116.64 (19)
C4—C5—C20122.36 (19)C19—C20—C5124.40 (19)
O1—C5—C20114.06 (18)O5—C21—N4125.8 (3)
N2—C6—C2178.5 (2)O5—C21—H21117.1
O2—C7—N3127.16 (19)N4—C21—H21117.1
O2—C7—C3124.40 (19)N4—C22—H22A109.5
N3—C7—C3108.38 (17)N4—C22—H22B109.5
C9—C8—C13118.63 (19)H22A—C22—H22B109.5
C9—C8—C3132.46 (19)N4—C22—H22C109.5
C13—C8—C3108.84 (18)H22A—C22—H22C109.5
C8—C9—C10120.6 (2)H22B—C22—H22C109.5
C8—C9—Br1120.17 (16)N4—C23—H23A109.5
C10—C9—Br1119.23 (16)N4—C23—H23B109.5
C11—C10—C9119.3 (2)H23A—C23—H23B109.5
C11—C10—H10120.3N4—C23—H23C109.5
C9—C10—H10120.3H23A—C23—H23C109.5
C10—C11—C12121.7 (2)H23B—C23—H23C109.5
C10—C11—H11119.2
C5—O1—C1—N1175.77 (17)C13—C8—C9—Br1178.87 (15)
C5—O1—C1—C24.4 (3)C3—C8—C9—Br14.6 (3)
N1—C1—C2—C66.6 (3)C8—C9—C10—C110.4 (3)
O1—C1—C2—C6173.60 (18)Br1—C9—C10—C11179.33 (16)
N1—C1—C2—C3172.6 (2)C9—C10—C11—C120.4 (3)
O1—C1—C2—C37.1 (3)C10—C11—C12—C130.1 (3)
C1—C2—C3—C411.5 (3)C11—C12—C13—C80.6 (3)
C6—C2—C3—C4169.26 (18)C11—C12—C13—N3179.9 (2)
C1—C2—C3—C8119.1 (2)C9—C8—C13—C120.5 (3)
C6—C2—C3—C860.1 (2)C3—C8—C13—C12176.78 (19)
C1—C2—C3—C7129.4 (2)C9—C8—C13—N3179.94 (18)
C6—C2—C3—C751.3 (2)C3—C8—C13—N32.6 (2)
C8—C3—C4—C5122.6 (2)C7—N3—C13—C12178.8 (2)
C2—C3—C4—C55.7 (3)C7—N3—C13—C81.8 (2)
C7—C3—C4—C5124.3 (2)C15—O3—C14—O4178.80 (19)
C8—C3—C4—C1460.4 (2)C15—O3—C14—C40.4 (3)
C2—C3—C4—C14171.33 (17)C5—C4—C14—O4178.0 (2)
C7—C3—C4—C1452.8 (2)C3—C4—C14—O44.8 (3)
C14—C4—C5—O1178.31 (18)C5—C4—C14—O32.9 (3)
C3—C4—C5—O14.7 (3)C3—C4—C14—O3174.33 (17)
C14—C4—C5—C203.2 (3)C14—O3—C15—C16175.4 (2)
C3—C4—C5—C20173.79 (19)C14—O3—C15—C203.4 (3)
C1—O1—C5—C410.4 (3)O3—C15—C16—C17178.0 (2)
C1—O1—C5—C20168.17 (17)C20—C15—C16—C170.8 (3)
C13—N3—C7—O2177.2 (2)C15—C16—C17—C181.3 (4)
C13—N3—C7—C35.3 (2)C16—C17—C18—C190.8 (4)
C4—C3—C7—O252.7 (3)C17—C18—C19—C200.2 (3)
C8—C3—C7—O2176.1 (2)O3—C15—C20—C19178.96 (19)
C2—C3—C7—O264.8 (3)C16—C15—C20—C190.2 (3)
C4—C3—C7—N3129.72 (18)O3—C15—C20—C53.0 (3)
C8—C3—C7—N36.3 (2)C16—C15—C20—C5175.7 (2)
C2—C3—C7—N3112.82 (19)C18—C19—C20—C150.7 (3)
C4—C3—C8—C960.5 (3)C18—C19—C20—C5174.9 (2)
C2—C3—C8—C965.3 (3)C4—C5—C20—C150.3 (3)
C7—C3—C8—C9177.9 (2)O1—C5—C20—C15178.91 (18)
C4—C3—C8—C13122.70 (19)C4—C5—C20—C19175.4 (2)
C2—C3—C8—C13111.45 (19)O1—C5—C20—C193.2 (3)
C7—C3—C8—C135.3 (2)C23—N4—C21—O50.7 (4)
C13—C8—C9—C100.0 (3)C22—N4—C21—O5179.4 (2)
C3—C8—C9—C10176.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.89 (3)2.02 (3)2.891 (2)165 (2)
N1—H1B···N2ii0.84 (3)2.27 (3)3.090 (3)166 (2)
N3—H3···O5iii0.881.932.785 (2)163
C11—H11···O2iv0.952.543.462 (3)165
C19—H19···O4i0.952.503.173 (3)128
C22—H22A···N2v0.982.483.443 (3)166
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y1, z; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H10BrN3O4·C3H7NO
Mr509.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)17.004 (3), 9.0452 (15), 14.415 (3)
β (°) 108.340 (3)
V3)2104.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.00
Crystal size (mm)0.45 × 0.30 × 0.20
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.434, 0.670
No. of measured, independent and
observed [I > 2σ(I)] reflections
19919, 3847, 3597
Rint0.031
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.067, 1.09
No. of reflections3847
No. of parameters309
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.38

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.89 (3)2.02 (3)2.891 (2)165 (2)
N1—H1B···N2ii0.84 (3)2.27 (3)3.090 (3)166 (2)
N3—H3···O5iii0.881.932.785 (2)162.7
C11—H11···O2iv0.952.543.462 (3)165.1
C19—H19···O4i0.952.503.173 (3)128.0
C22—H22A···N2v0.982.483.443 (3)165.7
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y1, z; (v) x, y+1, z.
 

Acknowledgements

This work was partially supported by the Natural Science Foundation of Jiangsu Province (grant No. BK2006048), the National Natural Science Foundation of China (grant No. 20672079) and a research grant from the Innovation Project for Graduate Students of Jiangsu Province.

References

First citationAbdel-Rahman, A. H., Keshk, E. M., Hanna, M. A. & El-Bady, Sh. M. (2004). Bioorg. Med. Chem. 12, 2483–2488.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationJoshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1–12.  CAS PubMed Web of Science Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Version 1.30. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324.  CrossRef Google Scholar
First citationZhu, S. L., Ji, S. J. & Zhang, Y. (2007). Tetrahedron, 63, 9365–9372.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds