metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages m792-m793

Poly[di­aqua­bis­(μ2-azido-κ2N1:N1)bis­­(μ3-1-oxoisonicotinato-κ3O:O′:O′′)dicadmium(II)]

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China, and bDepartment of Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 2 March 2008; accepted 5 May 2008; online 10 May 2008)

In the title compound, [Cd2(C6H4NO3)2(N3)2(H2O)2]n, one CdII atom is located on an inversion center and is coordinated by four O atoms from four bridging 1-oxoisonicotinate ligands and two N atoms of two bridging azide ligands in a slightly distorted octa­hedral geometry. The other CdII atom, also lying on an inversion center, is coordinated by four O atoms from two bridging 1-oxoisonicotinate ligands and two water mol­ecules and two N atoms of two bridging azide ligands in a slightly distorted octa­hedral geometry. The Cd atoms are connected via the 1-oxoisonicotinate and azide ligands into a two-dimensional coordination network. The crystal structure involves O—H⋯N and O—H⋯O hydrogen bonds.

Related literature

For general background, see: Du et al. (2006[Du, M., Zhang, Z.-H., Zhao, X.-J. & Xu, Q. (2006). Inorg. Chem. 45, 5785-5792.]); Dybtsev et al. (2004[Dybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. & Kim, K. (2004). J. Am. Chem. Soc. 126, 32-33.]). For related structures, see: Bai et al. (2004[Bai, L.-X., Han, W., Wang, W.-Z., Liu, X., Yan, S.-P. & Liao, D.-Z. (2004). Acta Cryst. E60, m953-m954.]); He et al. (2005[He, Z., Gao, E. Q., Wang, Z. M., Yan, C. H. & Kurmoo, M. (2005). Inorg. Chem. 44, 862-874.]); Zhao et al. (2007[Zhao, Y.-H., Xu, H.-B., Shao, K.-Z., Xing, Y., Su, Z.-M. & Ma, J.-F. (2007). Cryst. Growth Des. 7, 513-520.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C6H4NO3)2(N3)2(H2O)2]

  • Mr = 621.10

  • Triclinic, [P \overline 1]

  • a = 6.5409 (17) Å

  • b = 7.850 (2) Å

  • c = 9.410 (3) Å

  • α = 99.668 (6)°

  • β = 97.164 (6)°

  • γ = 107.566 (5)°

  • V = 446.1 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.45 mm−1

  • T = 223 (2) K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Rigaku Scxmini 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.612, Tmax = 0.613

  • 5082 measured reflections

  • 1567 independent reflections

  • 1438 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.087

  • S = 1.08

  • 1567 reflections

  • 139 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −1.02 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—N1 2.259 (3)
Cd1—O1 2.289 (3)
Cd1—O3i 2.370 (3)
Cd2—O2 2.242 (3)
Cd2—N1ii 2.284 (3)
Cd2—O4 2.363 (3)
N1—Cd1—O1 85.90 (12)
N1iii—Cd1—O1 94.10 (12)
N1—Cd1—O3i 90.18 (12)
O1—Cd1—O3i 89.01 (11)
N1—Cd1—O3iv 89.82 (12)
O2—Cd2—N1ii 85.06 (12)
O2—Cd2—O4v 87.87 (12)
O2v—Cd2—O4v 92.13 (12)
N1ii—Cd2—O4v 94.08 (12)
N1iii—Cd2—O4v 85.92 (12)
Symmetry codes: (i) -x, -y+1, -z+2; (ii) x, y-1, z; (iii) -x, -y+1, -z+1; (iv) x, y, z-1; (v) -x, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4C⋯N3vi 0.90 2.36 3.239 (7) 167
O4—H4B⋯O3vii 0.83 2.05 2.716 (4) 137
Symmetry codes: (vi) -x+1, -y+1, -z+1; (vii) -x+1, -y+1, -z+2.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There is currently considerable interest in the synthesis and characterization of metal–organic frameworks because of their potential applications in molecular adsorption and separation processes, gas storage, ion exchange, catalysis, sensor technology and electronics (Du et al., 2006; Dybtsev et al., 2004). The isonicotinic acid N-oxide ligand possesses a longer bridging spacer and richer coordination modes to form a fascinating structure (He et al., 2005; Zhao et al., 2007). It is well known that azide anion is an excellent bridging ligand (Bai et al., 2004). Therefore, we expect to obtain higher dimensional structures based on isonicotinic acid N-oxide and azide ligands and transition metal ions through the control of their molar ratios. We report here the synthesis and crystal structure of the title compound.

In the title compound, the Cd1 atom is located on an inversion center and is coordinated by four O atoms from four bridging isonicotinate-N-oxide ligands and two N atoms of two bridging azide ligands in a slightly distorted octahedral geometry. The Cd2 atom, also lying on an inversion center, is coordinated by four O atoms from two bridging isonicotinate-N-oxide ligands and two water molecules and two N atoms of two azide ligands in a slightly distorted octahedral geometry (Fig. 1; Table 1). The Cd atoms are connected via the isonicotinate-N-oxide and azide ligands into a two-dimensional coordination network. Furthermore, a three-dimensional supramolecular network is formed by the intermolecular O—H···N and O—H···O hydrogen bonds (Fig. 2; Table 2).

Related literature top

For general background, see: Du et al. (2006); Dybtsev et al. (2004). For related structures, see: Bai et al. (2004); He et al. (2005); Zhao et al. (2007).

Experimental top

All reagents and solvents were used as obtained without further purification. Cd(NO3)2.4H2O (0.062 g, 0.2 mmol), isonicotinic acid N-oxide (0.028 g, 0.2 mmol), NaN3 (0.013 g, 0.2 mmol) and NaOH (0.016 g, 0.4 mmol) were dissolved in distilled water (10 ml). The mixture was sealed in a Teflon-lined stainless steel vessel and held at 443 K for one week. The vessel was gradually cooled to room temperature and colorless crystals suitable for crystallographic analysis were obtained.

Refinement top

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C–H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms of the water molecule were located in a difference Fourier map and fixed in the refinements with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, together with symmetry-related atoms to complete the coordination units. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x, -y, 1 - z; (iii) -x, 1 - y, 2 - z; (iv) x, y, -1 + z; (v) x, 1 + y, z; (vi) x, -1 + y, z.]
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
Poly[diaquabis(µ2-azido-κ2N1:N1)bis(µ3-1- oxoisonicotinato-κ3O:O':O'')dicadmium(II)] top
Crystal data top
[Cd2(C6H4NO3)2(N3)2(H2O)2]Z = 1
Mr = 621.10F(000) = 300
Triclinic, P1Dx = 2.312 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5409 (17) ÅCell parameters from 2159 reflections
b = 7.850 (2) Åθ = 3.1–26.8°
c = 9.410 (3) ŵ = 2.45 mm1
α = 99.668 (6)°T = 223 K
β = 97.164 (6)°Block, colorless
γ = 107.566 (5)°0.3 × 0.2 × 0.2 mm
V = 446.1 (2) Å3
Data collection top
Rigaku Scxmini 1K CCD area-detector
diffractometer
1567 independent reflections
Radiation source: fine-focus sealed tube1438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 2.8°
thin–slice ω scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 97
Tmin = 0.612, Tmax = 0.613l = 1110
5082 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.05P)2 + 1.3747P]
where P = (Fo2 + 2Fc2)/3
1567 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.60 e Å3
1 restraintΔρmin = 1.02 e Å3
Crystal data top
[Cd2(C6H4NO3)2(N3)2(H2O)2]γ = 107.566 (5)°
Mr = 621.10V = 446.1 (2) Å3
Triclinic, P1Z = 1
a = 6.5409 (17) ÅMo Kα radiation
b = 7.850 (2) ŵ = 2.45 mm1
c = 9.410 (3) ÅT = 223 K
α = 99.668 (6)°0.3 × 0.2 × 0.2 mm
β = 97.164 (6)°
Data collection top
Rigaku Scxmini 1K CCD area-detector
diffractometer
1567 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1438 reflections with I > 2σ(I)
Tmin = 0.612, Tmax = 0.613Rint = 0.022
5082 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.087H-atom parameters constrained
S = 1.08Δρmax = 0.60 e Å3
1567 reflectionsΔρmin = 1.02 e Å3
139 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.50000.50000.01556 (17)
Cd20.00000.00000.50000.01683 (17)
O10.1884 (5)0.4600 (4)0.7066 (3)0.0244 (7)
O20.0598 (6)0.1674 (4)0.7283 (3)0.0311 (8)
O30.3130 (5)0.5495 (5)1.3892 (3)0.0270 (7)
O40.3676 (5)0.1301 (5)0.4778 (4)0.0295 (8)
H4B0.43610.20550.55460.035*
H4C0.41270.09510.39450.035*
N10.1164 (6)0.7997 (5)0.6110 (4)0.0201 (8)
N20.2664 (6)0.8640 (5)0.7131 (4)0.0227 (8)
N30.4108 (8)0.9283 (6)0.8078 (6)0.0506 (14)
N40.2847 (6)0.5005 (5)1.2437 (4)0.0208 (8)
C10.3105 (6)0.6288 (6)1.1625 (5)0.0213 (9)
H1A0.35340.75291.20950.026*
C20.2752 (6)0.5808 (6)1.0126 (5)0.0171 (8)
H2A0.29540.67140.95690.021*
C30.2086 (6)0.3959 (6)0.9430 (4)0.0168 (8)
C40.1925 (7)0.2671 (6)1.0312 (5)0.0216 (9)
H4A0.15470.14230.98730.026*
C50.2314 (7)0.3216 (6)1.1804 (5)0.0240 (9)
H5A0.22110.23451.23910.029*
C60.1483 (7)0.3368 (6)0.7782 (5)0.0189 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0215 (3)0.0136 (2)0.0112 (2)0.00553 (18)0.00313 (17)0.00218 (17)
Cd20.0216 (3)0.0152 (3)0.0132 (3)0.00717 (18)0.00221 (17)0.00086 (17)
O10.0288 (16)0.0273 (17)0.0148 (15)0.0069 (14)0.0003 (12)0.0050 (13)
O20.049 (2)0.0251 (18)0.0161 (15)0.0136 (16)0.0021 (14)0.0019 (13)
O30.0253 (16)0.0362 (19)0.0095 (15)0.0004 (14)0.0045 (12)0.0036 (13)
O40.0259 (17)0.0337 (19)0.0214 (17)0.0014 (15)0.0050 (14)0.0010 (14)
N10.028 (2)0.0120 (16)0.0175 (18)0.0069 (15)0.0020 (16)0.0005 (14)
N20.027 (2)0.0149 (17)0.027 (2)0.0079 (16)0.0011 (19)0.0071 (16)
N30.054 (3)0.024 (2)0.055 (3)0.004 (2)0.029 (3)0.003 (2)
N40.0178 (17)0.028 (2)0.0146 (17)0.0054 (15)0.0059 (14)0.0020 (15)
C10.0146 (19)0.024 (2)0.022 (2)0.0038 (17)0.0020 (17)0.0015 (18)
C20.0159 (19)0.020 (2)0.018 (2)0.0079 (16)0.0050 (16)0.0061 (16)
C30.0133 (18)0.020 (2)0.017 (2)0.0061 (16)0.0044 (16)0.0029 (16)
C40.030 (2)0.017 (2)0.020 (2)0.0099 (18)0.0079 (18)0.0047 (17)
C50.025 (2)0.028 (2)0.017 (2)0.0057 (19)0.0076 (18)0.0046 (18)
C60.017 (2)0.027 (2)0.016 (2)0.0120 (18)0.0034 (16)0.0047 (18)
Geometric parameters (Å, º) top
Cd1—N12.259 (3)O4—H4B0.8300
Cd1—N1i2.259 (3)O4—H4C0.9000
Cd1—O12.289 (3)N1—N21.201 (5)
Cd1—O1i2.289 (3)N1—Cd2vii2.284 (3)
Cd1—O3ii2.370 (3)N2—N31.137 (6)
Cd1—O3iii2.370 (3)N4—C11.347 (6)
Cd2—O22.242 (3)N4—C51.349 (6)
Cd2—O2iv2.242 (3)C1—C21.369 (6)
Cd2—N1v2.284 (3)C1—H1A0.9400
Cd2—N1i2.284 (3)C2—C31.397 (6)
Cd2—O4iv2.363 (3)C2—H2A0.9400
Cd2—O42.363 (3)C3—C41.401 (6)
O1—C61.252 (5)C3—C61.507 (6)
O2—C61.257 (5)C4—C51.365 (6)
O3—N41.332 (5)C4—H4A0.9400
O3—Cd1vi2.370 (3)C5—H5A0.9400
N1—Cd1—N1i180.000 (1)C6—O2—Cd2130.6 (3)
N1—Cd1—O185.90 (12)N4—O3—Cd1vi118.5 (2)
N1i—Cd1—O194.10 (12)Cd2—O4—H4B109.5
N1—Cd1—O1i94.10 (12)Cd2—O4—H4C120.1
N1i—Cd1—O1i85.90 (12)H4B—O4—H4C130.4
O1—Cd1—O1i180.0N2—N1—Cd1122.0 (3)
N1—Cd1—O3ii90.18 (12)N2—N1—Cd2vii117.2 (3)
N1i—Cd1—O3ii89.82 (12)Cd1—N1—Cd2vii119.53 (15)
O1—Cd1—O3ii89.01 (11)N3—N2—N1178.2 (5)
O1i—Cd1—O3ii90.99 (11)O3—N4—C1120.0 (4)
N1—Cd1—O3iii89.82 (12)O3—N4—C5118.9 (4)
N1i—Cd1—O3iii90.18 (12)C1—N4—C5121.2 (4)
O1—Cd1—O3iii90.99 (11)N4—C1—C2120.9 (4)
O1i—Cd1—O3iii89.01 (11)N4—C1—H1A119.5
O3ii—Cd1—O3iii180.0C2—C1—H1A119.5
O2—Cd2—O2iv180.0C1—C2—C3119.4 (4)
O2—Cd2—N1v85.06 (12)C1—C2—H2A120.3
O2iv—Cd2—N1v94.94 (12)C3—C2—H2A120.3
O2—Cd2—N1i94.94 (12)C2—C3—C4118.0 (4)
O2iv—Cd2—N1i85.06 (12)C2—C3—C6120.9 (4)
N1v—Cd2—N1i180.000 (1)C4—C3—C6121.1 (4)
O2—Cd2—O4iv87.87 (12)C5—C4—C3120.4 (4)
O2iv—Cd2—O4iv92.13 (12)C5—C4—H4A119.8
N1v—Cd2—O4iv94.08 (12)C3—C4—H4A119.8
N1i—Cd2—O4iv85.92 (12)N4—C5—C4119.9 (4)
O2—Cd2—O492.13 (12)N4—C5—H5A120.0
O2iv—Cd2—O487.87 (12)C4—C5—H5A120.0
N1v—Cd2—O485.92 (12)O1—C6—O2127.4 (4)
N1i—Cd2—O494.08 (12)O1—C6—C3117.1 (4)
O4iv—Cd2—O4180.0O2—C6—C3115.5 (4)
C6—O1—Cd1132.5 (3)
N1—Cd1—O1—C6141.5 (4)O3—N4—C1—C2177.8 (4)
N1i—Cd1—O1—C638.5 (4)C5—N4—C1—C22.5 (6)
O3ii—Cd1—O1—C651.2 (4)N4—C1—C2—C30.8 (6)
O3iii—Cd1—O1—C6128.8 (4)C1—C2—C3—C43.5 (6)
N1v—Cd2—O2—C6136.6 (4)C1—C2—C3—C6174.4 (4)
N1i—Cd2—O2—C643.4 (4)C2—C3—C4—C52.9 (6)
O4iv—Cd2—O2—C6129.1 (4)C6—C3—C4—C5174.9 (4)
O4—Cd2—O2—C650.9 (4)O3—N4—C5—C4177.2 (4)
O1—Cd1—N1—N217.4 (4)C1—N4—C5—C43.1 (6)
O1i—Cd1—N1—N2162.6 (4)C3—C4—C5—N40.3 (7)
O3ii—Cd1—N1—N2106.4 (4)Cd1—O1—C6—O238.1 (7)
O3iii—Cd1—N1—N273.6 (4)Cd1—O1—C6—C3140.8 (3)
O1—Cd1—N1—Cd2vii176.10 (19)Cd2—O2—C6—O115.1 (7)
O1i—Cd1—N1—Cd2vii3.90 (19)Cd2—O2—C6—C3166.0 (3)
O3ii—Cd1—N1—Cd2vii87.11 (18)C2—C3—C6—O19.4 (6)
O3iii—Cd1—N1—Cd2vii92.89 (18)C4—C3—C6—O1172.8 (4)
Cd1vi—O3—N4—C1103.7 (4)C2—C3—C6—O2169.6 (4)
Cd1vi—O3—N4—C576.7 (4)C4—C3—C6—O28.1 (6)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z+2; (iii) x, y, z1; (iv) x, y, z+1; (v) x, y1, z; (vi) x, y, z+1; (vii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4C···N3viii0.902.363.239 (7)167
O4—H4B···O3ix0.832.052.716 (4)137
Symmetry codes: (viii) x+1, y+1, z+1; (ix) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cd2(C6H4NO3)2(N3)2(H2O)2]
Mr621.10
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)6.5409 (17), 7.850 (2), 9.410 (3)
α, β, γ (°)99.668 (6), 97.164 (6), 107.566 (5)
V3)446.1 (2)
Z1
Radiation typeMo Kα
µ (mm1)2.45
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerRigaku Scxmini 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.612, 0.613
No. of measured, independent and
observed [I > 2σ(I)] reflections
5082, 1567, 1438
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.087, 1.08
No. of reflections1567
No. of parameters139
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 1.02

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006) and SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cd1—N12.259 (3)Cd2—O22.242 (3)
Cd1—O12.289 (3)Cd2—N1ii2.284 (3)
Cd1—O3i2.370 (3)Cd2—O42.363 (3)
N1—Cd1—O185.90 (12)O2—Cd2—N1ii85.06 (12)
N1iii—Cd1—O194.10 (12)O2—Cd2—O4v87.87 (12)
N1—Cd1—O3i90.18 (12)O2v—Cd2—O4v92.13 (12)
O1—Cd1—O3i89.01 (11)N1ii—Cd2—O4v94.08 (12)
N1—Cd1—O3iv89.82 (12)N1iii—Cd2—O4v85.92 (12)
Symmetry codes: (i) x, y+1, z+2; (ii) x, y1, z; (iii) x, y+1, z+1; (iv) x, y, z1; (v) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4C···N3vi0.902.363.239 (7)167
O4—H4B···O3vii0.832.052.716 (4)137
Symmetry codes: (vi) x+1, y+1, z+1; (vii) x+1, y+1, z+2.
 

References

First citationBai, L.-X., Han, W., Wang, W.-Z., Liu, X., Yan, S.-P. & Liao, D.-Z. (2004). Acta Cryst. E60, m953–m954.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDu, M., Zhang, Z.-H., Zhao, X.-J. & Xu, Q. (2006). Inorg. Chem. 45, 5785–5792.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. & Kim, K. (2004). J. Am. Chem. Soc. 126, 32–33.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHe, Z., Gao, E. Q., Wang, Z. M., Yan, C. H. & Kurmoo, M. (2005). Inorg. Chem. 44, 862–874.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Y.-H., Xu, H.-B., Shao, K.-Z., Xing, Y., Su, Z.-M. & Ma, J.-F. (2007). Cryst. Growth Des. 7, 513–520.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages m792-m793
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds