metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages m775-m776

{2,2′-[Ethyl­enebis(nitrilo­methyl­­idyne)]diphenolato-κ4O,N,N′,O′}oxido­vanadium(IV)

aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and bMudanjiang Lingtai Pharmaceutical Co. Ltd, Heilongjiang University, Mudanjiang 157000, People's Republic of China
*Correspondence e-mail: wangc_93@yahoo.com

(Received 10 March 2008; accepted 17 April 2008; online 7 May 2008)

The title compound, [V(C16H14N2O2)O], was synthesized by the reaction of vanadyl(IV) sulfate and N,N′-bis­(salicyl­idene)ethyl­enediamine under hydro­thermal conditions. The asymmetric unit contains two mol­ecules. Each VIV atom is coordinated in a square-pyramidal geometry by two N atoms and two O atoms from a ligand in the basal plane and by an oxide O atom in the apical position. Weak C—H⋯O hydrogen bonds lead to a three-dimensional supra­molecular structure.

Related literature

For related literature, see: Butler & Walker (1993[Butler, A. & Walker, J. V. (1993). Chem. Rev. 93, 1937-1944.]); Deng et al. (2007[Deng, Z. P., Gao, S., Zhao, H. & Huo, L. H. (2007). Chin. J. Inorg. Chem. 23, 173-176.]); Martinez et al. (2001[Martinez, J. S., Carroll, G. L., Tschirret-Guth, R. A., Altenhoff, G., Little, R. D. & Butler, A. (2001). J. Am. Chem. Soc. 123, 3289-3294.]); Sun et al. (1996[Sun, Y., James, B. R., Rettig, S. J. & Orvig, C. (1996). Inorg. Chem. 35, 1667-1673.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C16H14N2O2)O]

  • Mr = 333.23

  • Monoclinic, P 21

  • a = 13.648 (3) Å

  • b = 6.8085 (14) Å

  • c = 15.952 (3) Å

  • β = 98.24 (3)°

  • V = 1466.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 293 (2) K

  • 0.32 × 0.21 × 0.11 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.809, Tmax = 0.930

  • 14358 measured reflections

  • 6102 independent reflections

  • 4561 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.109

  • S = 1.03

  • 6102 reflections

  • 397 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.43 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2456 Friedel pairs

  • Flack parameter: 0.01 (2)

Table 1
Selected geometric parameters (Å, °)

V1—O1 1.584 (3)
V1—O4 1.922 (3)
V1—O3 1.931 (2)
V1—N1 2.058 (3)
V1—N2 2.059 (3)
V2—O2 1.582 (3)
V2—O5 1.917 (3)
V2—O6 1.926 (2)
V2—N3 2.056 (3)
V2—N4 2.067 (3)
O1—V1—O4 111.65 (15)
O1—V1—O3 106.38 (13)
O4—V1—O3 88.68 (10)
O1—V1—N1 107.53 (15)
O4—V1—N1 140.24 (11)
O3—V1—N1 86.73 (11)
O1—V1—N2 102.72 (13)
O4—V1—N2 86.65 (11)
O3—V1—N2 150.17 (11)
N1—V1—N2 78.34 (12)
O2—V2—O5 109.95 (15)
O2—V2—O6 106.92 (15)
O5—V2—O6 88.01 (11)
O2—V2—N3 105.39 (15)
O5—V2—N3 87.24 (12)
O6—V2—N3 147.00 (12)
O2—V2—N4 107.48 (17)
O5—V2—N4 142.21 (13)
O6—V2—N4 86.06 (13)
N3—V2—N4 78.04 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O4i 0.97 2.55 3.139 (3) 119
C14—H14⋯O3ii 0.93 2.56 3.364 (3) 145
C24—H24B⋯O1iii 0.97 2.34 3.178 (3) 144
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z]; (iii) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past few decades, there has been increased interest in coordination chemistry and biochemistry of oxovanadium. The main reason is that the function of vanadium in biological system has been recognized, such as the regulation of carbohydrate metabolism (Butler & Walker, 1993; Martinez et al., 2001; Sun et al., 1996). Generally, Schiff base is coordinated to vanadium through O and N atoms (Deng et al., 2007), similar to those in the biological systems. Therefore, it is important to intensively study the relationship of syntheses and structural properties of vanadium-schiff base complexes. We report here the crystal structure of the title compound, a vanadium complex with a schiff-base ligand, N,N'-bis(salicylidene)ethylenediamine (H2salen).

In the asymmetric unit, there are two crystallographically independent molecules (Fig. 1). Each VIV atom is coordinated by two N atoms and two O atoms from a salen ligand in the equatorial plane and an oxido O atom in the apical position, resulting in a five-coordinated square-pyramidal geometry (Table 1). The V ?O bond lengths are 1.582 (2) and 1.583 (2) Å, which are in the normal range. In the crystal structure, though each salen ligand contains two phenyl ring with dihedral angles of 156.3 (4)° and 164.1 (4)°, respectively, there are no ππ interactions between the molecules. In virtue of weak intermolecular C—H···O hydrogen bonds (Table 2), a three-dimensional hydrogen-bonding network is constructed (Fig. 2).

Related literature top

For related literature, see: Butler & Walker (1993); Deng et al. (2007); Martinez et al. (2001); Sun et al. (1996).

Experimental top

A mixture of VOSO4.4H2O (1.175 g, 5 mmol), H2salen (0.725 g, 5 mmol), triethylamine (0.20 mmol) and methanol (0.50 mol) in water was stirred for 1 h, and then heated at 413 K for 3 d in a sealed 25 ml Teflon-lined stainless steel vessel under autogenous pressure. After the reaction mixture was slowly cooled to room temperature at a rate of 5 K h-1, black block crystals of the title compound were collected by filtration, washed with distilled water and dried in air.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.97Å (CH2) and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the crystal packing. Hydrogen bonds are drawn as dashed lines.
{2,2'-[Ethylenebis(nitrilomethylidyne)]diphenolato- κ4O,N,N',O'}oxidovanadium(IV) top
Crystal data top
[V(C16H14N2O2)O]F(000) = 684
Mr = 333.23Dx = 1.509 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9875 reflections
a = 13.648 (3) Åθ = 3.0–27.5°
b = 6.8085 (14) ŵ = 0.69 mm1
c = 15.952 (3) ÅT = 293 K
β = 98.24 (3)°Block, black
V = 1466.9 (5) Å30.32 × 0.21 × 0.11 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6102 independent reflections
Radiation source: rotating anode4561 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1717
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 88
Tmin = 0.809, Tmax = 0.930l = 2019
14358 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.1081P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.006
6102 reflectionsΔρmax = 0.57 e Å3
397 parametersΔρmin = 0.44 e Å3
2 restraintsAbsolute structure: Flack (1983), 2456 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
[V(C16H14N2O2)O]V = 1466.9 (5) Å3
Mr = 333.23Z = 4
Monoclinic, P21Mo Kα radiation
a = 13.648 (3) ŵ = 0.69 mm1
b = 6.8085 (14) ÅT = 293 K
c = 15.952 (3) Å0.32 × 0.21 × 0.11 mm
β = 98.24 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6102 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4561 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 0.930Rint = 0.029
14358 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.57 e Å3
S = 1.03Δρmin = 0.44 e Å3
6102 reflectionsAbsolute structure: Flack (1983), 2456 Friedel pairs
397 parametersAbsolute structure parameter: 0.01 (2)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.27998 (4)0.86758 (8)0.08474 (3)0.04713 (15)
V20.73287 (4)0.88060 (8)0.57991 (3)0.04920 (15)
N10.2175 (2)1.1335 (4)0.04608 (19)0.0488 (7)
N20.3847 (2)1.0619 (4)0.14130 (17)0.0510 (7)
N30.6545 (3)1.1035 (4)0.62647 (19)0.0596 (8)
N40.7996 (3)1.1273 (4)0.5380 (2)0.0683 (9)
O10.2286 (2)0.7938 (4)0.16192 (18)0.0759 (8)
O20.8039 (3)0.7978 (4)0.65914 (19)0.0841 (9)
O30.20463 (17)0.7577 (3)0.01603 (15)0.0507 (6)
O40.38881 (19)0.7014 (3)0.06653 (15)0.0565 (6)
O50.61179 (19)0.7339 (3)0.56339 (14)0.0555 (6)
O60.7688 (2)0.7514 (4)0.48130 (16)0.0598 (6)
C10.1221 (3)0.8198 (5)0.0612 (2)0.0455 (8)
C20.0694 (3)0.6938 (6)0.1214 (2)0.0602 (10)
H20.09340.56790.12830.072*
C30.0166 (3)0.7526 (7)0.1700 (3)0.0677 (11)
H30.05040.66510.20860.081*
C40.0541 (3)0.9403 (6)0.1627 (2)0.0618 (10)
H40.11250.97900.19590.074*
C50.0043 (3)1.0658 (6)0.1062 (2)0.0565 (9)
H50.02921.19170.10110.068*
C60.0835 (3)1.0116 (5)0.0554 (2)0.0465 (8)
C70.1371 (3)1.1600 (5)0.0042 (2)0.0508 (8)
H70.11111.28650.00790.061*
C80.2716 (3)1.3091 (5)0.0809 (2)0.0613 (10)
H8A0.22531.40920.09370.074*
H8B0.31071.36220.04010.074*
C90.3379 (3)1.2495 (5)0.1604 (3)0.0655 (10)
H9A0.38791.34910.17640.079*
H9B0.29961.23240.20670.079*
C100.4778 (3)1.0407 (5)0.1580 (2)0.0556 (9)
H100.51431.14530.18360.067*
C110.5313 (3)0.8654 (7)0.13993 (19)0.0540 (7)
C120.6340 (3)0.8573 (8)0.1668 (2)0.0697 (10)
H120.66570.96540.19420.084*
C130.6879 (3)0.6955 (8)0.1537 (3)0.0760 (13)
H130.75570.69310.17200.091*
C140.6415 (3)0.5350 (7)0.1133 (2)0.0702 (12)
H140.67800.42270.10580.084*
C150.5407 (3)0.5390 (6)0.0837 (2)0.0584 (9)
H150.51090.43090.05490.070*
C160.4833 (3)0.7039 (5)0.0967 (2)0.0515 (8)
C170.5307 (3)0.7501 (5)0.5992 (2)0.0506 (8)
C180.4647 (3)0.5918 (7)0.5952 (2)0.0599 (9)
H180.47900.47740.56750.072*
C190.3798 (3)0.6014 (8)0.6310 (2)0.0695 (11)
H190.33830.49260.62830.083*
C200.3545 (3)0.7698 (8)0.6711 (3)0.0798 (13)
H200.29640.77480.69520.096*
C210.4155 (3)0.9279 (7)0.6749 (2)0.0707 (12)
H210.39751.04270.70040.085*
C220.5057 (3)0.9226 (5)0.6412 (2)0.0561 (9)
C230.5682 (4)1.0928 (6)0.6496 (2)0.0658 (11)
H230.54451.20430.67380.079*
C240.7116 (5)1.2892 (6)0.6381 (3)0.0991 (19)
H24A0.66691.39880.64190.119*
H24B0.75781.28380.69030.119*
C250.7656 (5)1.3167 (7)0.5658 (4)0.119 (2)
H25A0.72261.37860.51960.143*
H25B0.82201.40230.58190.143*
C260.8629 (4)1.1322 (6)0.4880 (3)0.0761 (12)
H260.89541.25070.48280.091*
C270.8889 (3)0.9717 (6)0.4386 (3)0.0642 (11)
C280.9623 (4)0.9992 (9)0.3841 (3)0.0943 (16)
H280.99601.11800.38490.113*
C290.9831 (4)0.8558 (12)0.3318 (3)0.1094 (19)
H291.03100.87640.29670.131*
C300.9342 (4)0.6780 (9)0.3294 (3)0.0943 (16)
H300.94910.57990.29270.113*
C310.8646 (3)0.6461 (7)0.3805 (3)0.0742 (12)
H310.83270.52510.37850.089*
C320.8391 (3)0.7910 (6)0.4364 (2)0.0571 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0570 (3)0.0332 (2)0.0502 (3)0.0080 (3)0.0042 (2)0.0022 (3)
V20.0635 (4)0.0335 (3)0.0486 (3)0.0022 (3)0.0011 (2)0.0011 (3)
N10.0523 (18)0.0317 (13)0.0634 (17)0.0046 (11)0.0115 (14)0.0086 (12)
N20.058 (2)0.0402 (15)0.0517 (15)0.0092 (13)0.0015 (14)0.0046 (13)
N30.086 (3)0.0376 (15)0.0562 (17)0.0007 (15)0.0125 (17)0.0066 (13)
N40.070 (2)0.0378 (15)0.099 (3)0.0036 (14)0.021 (2)0.0029 (16)
O10.091 (2)0.0718 (18)0.0661 (16)0.0279 (15)0.0150 (15)0.0010 (13)
O20.107 (2)0.0601 (16)0.0731 (17)0.0166 (16)0.0276 (17)0.0025 (14)
O30.0551 (15)0.0352 (11)0.0596 (13)0.0047 (10)0.0002 (11)0.0074 (10)
O40.0562 (16)0.0389 (12)0.0703 (15)0.0014 (11)0.0049 (12)0.0058 (12)
O50.0669 (17)0.0444 (13)0.0576 (13)0.0018 (11)0.0176 (12)0.0068 (11)
O60.0676 (17)0.0475 (14)0.0673 (15)0.0011 (12)0.0199 (13)0.0065 (12)
C10.048 (2)0.0438 (19)0.0456 (16)0.0060 (13)0.0084 (15)0.0008 (13)
C20.073 (3)0.048 (2)0.058 (2)0.0034 (18)0.004 (2)0.0103 (18)
C30.064 (3)0.077 (3)0.060 (2)0.013 (2)0.001 (2)0.011 (2)
C40.054 (2)0.083 (3)0.0466 (18)0.0014 (19)0.0004 (16)0.0002 (18)
C50.053 (2)0.062 (2)0.0548 (19)0.0058 (18)0.0100 (17)0.0008 (18)
C60.048 (2)0.0452 (18)0.0482 (17)0.0047 (14)0.0137 (15)0.0017 (15)
C70.049 (2)0.0370 (17)0.068 (2)0.0027 (14)0.0119 (18)0.0022 (15)
C80.068 (3)0.0352 (17)0.080 (3)0.0031 (15)0.007 (2)0.0101 (16)
C90.076 (3)0.0449 (19)0.073 (2)0.0094 (18)0.003 (2)0.0191 (19)
C100.066 (3)0.0445 (19)0.0522 (19)0.0122 (16)0.0066 (17)0.0051 (16)
C110.057 (2)0.0536 (18)0.0494 (15)0.005 (2)0.0014 (14)0.004 (2)
C120.062 (2)0.087 (3)0.0583 (19)0.010 (3)0.0032 (17)0.008 (3)
C130.051 (3)0.115 (4)0.061 (2)0.003 (3)0.0072 (19)0.002 (3)
C140.066 (3)0.093 (3)0.054 (2)0.020 (2)0.017 (2)0.005 (2)
C150.065 (3)0.056 (2)0.0548 (19)0.0054 (18)0.0095 (18)0.0010 (18)
C160.060 (2)0.0502 (19)0.0432 (17)0.0002 (16)0.0024 (16)0.0043 (16)
C170.058 (2)0.0517 (19)0.0398 (16)0.0064 (17)0.0009 (15)0.0057 (15)
C180.060 (3)0.066 (2)0.0493 (19)0.0012 (19)0.0042 (17)0.0007 (18)
C190.056 (3)0.090 (3)0.058 (2)0.010 (2)0.0083 (19)0.013 (2)
C200.060 (3)0.112 (4)0.067 (2)0.011 (3)0.010 (2)0.024 (3)
C210.075 (3)0.077 (3)0.061 (2)0.026 (2)0.015 (2)0.013 (2)
C220.065 (2)0.058 (2)0.0454 (16)0.0140 (17)0.0061 (16)0.0068 (16)
C230.110 (4)0.0428 (19)0.0494 (19)0.016 (2)0.026 (2)0.0037 (17)
C240.183 (6)0.037 (2)0.085 (3)0.026 (3)0.045 (4)0.020 (2)
C250.143 (5)0.051 (3)0.177 (6)0.023 (3)0.071 (5)0.035 (3)
C260.073 (3)0.048 (2)0.108 (3)0.0116 (19)0.013 (3)0.010 (2)
C270.058 (3)0.062 (2)0.073 (3)0.0045 (19)0.010 (2)0.016 (2)
C280.087 (4)0.090 (4)0.111 (4)0.003 (3)0.032 (3)0.030 (3)
C290.117 (4)0.123 (5)0.101 (3)0.018 (5)0.058 (3)0.015 (4)
C300.108 (4)0.100 (4)0.082 (3)0.008 (3)0.039 (3)0.001 (3)
C310.075 (3)0.076 (3)0.075 (3)0.005 (2)0.023 (2)0.008 (2)
C320.052 (2)0.059 (2)0.058 (2)0.0048 (17)0.0010 (18)0.0065 (17)
Geometric parameters (Å, º) top
V1—O11.584 (3)C10—H100.9300
V1—O41.922 (3)C11—C121.407 (5)
V1—O31.931 (2)C11—C161.408 (5)
V1—N12.058 (3)C12—C131.358 (7)
V1—N22.059 (3)C12—H120.9300
V2—O21.582 (3)C13—C141.376 (7)
V2—O51.917 (3)C13—H130.9300
V2—O61.926 (2)C14—C151.390 (6)
V2—N32.056 (3)C14—H140.9300
V2—N42.067 (3)C15—C161.401 (5)
N1—C71.275 (4)C15—H150.9300
N1—C81.472 (4)C17—C181.401 (5)
N2—C101.268 (5)C17—C221.418 (5)
N2—C91.480 (5)C18—C191.364 (6)
N3—C231.286 (5)C18—H180.9300
N3—C241.482 (5)C19—C201.381 (7)
N4—C261.258 (5)C19—H190.9300
N4—C251.461 (6)C20—C211.357 (7)
O3—C11.316 (4)C20—H200.9300
O4—C161.311 (4)C21—C221.412 (5)
O5—C171.320 (4)C21—H210.9300
O6—C321.305 (5)C22—C231.434 (6)
C1—C21.406 (5)C23—H230.9300
C1—C61.416 (5)C24—C251.468 (6)
C2—C31.370 (6)C24—H24A0.9700
C2—H20.9300C24—H24B0.9700
C3—C41.388 (6)C25—H25A0.9700
C3—H30.9300C25—H25B0.9700
C4—C51.352 (5)C26—C271.422 (6)
C4—H40.9300C26—H260.9300
C5—C61.396 (5)C27—C321.404 (6)
C5—H50.9300C27—C281.429 (6)
C6—C71.433 (5)C28—C291.341 (8)
C7—H70.9300C28—H280.9300
C8—C91.504 (5)C29—C301.380 (9)
C8—H8A0.9700C29—H290.9300
C8—H8B0.9700C30—C311.355 (6)
C9—H9A0.9700C30—H300.9300
C9—H9B0.9700C31—C321.406 (6)
C10—C111.450 (6)C31—H310.9300
O1—V1—O4111.65 (15)C12—C11—C16119.4 (4)
O1—V1—O3106.38 (13)C12—C11—C10118.7 (4)
O4—V1—O388.68 (10)C16—C11—C10121.9 (3)
O1—V1—N1107.53 (15)C13—C12—C11121.5 (5)
O4—V1—N1140.24 (11)C13—C12—H12119.2
O3—V1—N186.73 (11)C11—C12—H12119.2
O1—V1—N2102.72 (13)C12—C13—C14119.6 (4)
O4—V1—N286.65 (11)C12—C13—H13120.2
O3—V1—N2150.17 (11)C14—C13—H13120.2
N1—V1—N278.34 (12)C13—C14—C15120.7 (4)
O2—V2—O5109.95 (15)C13—C14—H14119.7
O2—V2—O6106.92 (15)C15—C14—H14119.7
O5—V2—O688.01 (11)C14—C15—C16120.8 (4)
O2—V2—N3105.39 (15)C14—C15—H15119.6
O5—V2—N387.24 (12)C16—C15—H15119.6
O6—V2—N3147.00 (12)O4—C16—C15118.5 (3)
O2—V2—N4107.48 (17)O4—C16—C11123.6 (3)
O5—V2—N4142.21 (13)C15—C16—C11117.9 (3)
O6—V2—N486.06 (13)O5—C17—C18119.3 (3)
N3—V2—N478.04 (14)O5—C17—C22123.2 (3)
C7—N1—C8117.5 (3)C18—C17—C22117.5 (3)
C7—N1—V1126.5 (2)C19—C18—C17121.6 (4)
C8—N1—V1115.9 (2)C19—C18—H18119.2
C10—N2—C9120.3 (3)C17—C18—H18119.2
C10—N2—V1129.1 (2)C18—C19—C20121.2 (5)
C9—N2—V1110.6 (2)C18—C19—H19119.4
C23—N3—C24119.9 (4)C20—C19—H19119.4
C23—N3—V2127.4 (3)C21—C20—C19119.1 (4)
C24—N3—V2112.6 (3)C21—C20—H20120.4
C26—N4—C25116.5 (4)C19—C20—H20120.4
C26—N4—V2127.0 (3)C20—C21—C22121.7 (4)
C25—N4—V2116.5 (3)C20—C21—H21119.2
C1—O3—V1130.0 (2)C22—C21—H21119.2
C16—O4—V1132.7 (2)C21—C22—C17118.9 (4)
C17—O5—V2131.0 (2)C21—C22—C23118.9 (4)
C32—O6—V2130.3 (2)C17—C22—C23122.2 (4)
O3—C1—C2119.4 (3)N3—C23—C22125.2 (4)
O3—C1—C6123.9 (3)N3—C23—H23117.4
C2—C1—C6116.6 (3)C22—C23—H23117.4
C3—C2—C1121.4 (4)C25—C24—N3108.9 (4)
C3—C2—H2119.3C25—C24—H24A109.9
C1—C2—H2119.3N3—C24—H24A109.9
C2—C3—C4121.2 (4)C25—C24—H24B109.9
C2—C3—H3119.4N3—C24—H24B109.9
C4—C3—H3119.4H24A—C24—H24B108.3
C5—C4—C3118.8 (4)N4—C25—C24110.1 (4)
C5—C4—H4120.6N4—C25—H25A109.6
C3—C4—H4120.6C24—C25—H25A109.6
C4—C5—C6121.8 (4)N4—C25—H25B109.6
C4—C5—H5119.1C24—C25—H25B109.6
C6—C5—H5119.1H25A—C25—H25B108.2
C5—C6—C1120.2 (3)N4—C26—C27125.5 (4)
C5—C6—C7118.1 (3)N4—C26—H26117.3
C1—C6—C7121.5 (3)C27—C26—H26117.3
N1—C7—C6125.6 (3)C32—C27—C26121.9 (4)
N1—C7—H7117.2C32—C27—C28118.6 (4)
C6—C7—H7117.2C26—C27—C28119.3 (4)
N1—C8—C9108.0 (3)C29—C28—C27120.8 (5)
N1—C8—H8A110.1C29—C28—H28119.6
C9—C8—H8A110.1C27—C28—H28119.6
N1—C8—H8B110.1C28—C29—C30120.8 (5)
C9—C8—H8B110.1C28—C29—H29119.6
H8A—C8—H8B108.4C30—C29—H29119.6
N2—C9—C8106.5 (3)C31—C30—C29120.1 (5)
N2—C9—H9A110.4C31—C30—H30119.9
C8—C9—H9A110.4C29—C30—H30119.9
N2—C9—H9B110.4C30—C31—C32121.8 (5)
C8—C9—H9B110.4C30—C31—H31119.1
H9A—C9—H9B108.6C32—C31—H31119.1
N2—C10—C11124.8 (3)O6—C32—C27124.0 (4)
N2—C10—H10117.6O6—C32—C31118.1 (4)
C11—C10—H10117.6C27—C32—C31117.9 (4)
O1—V1—N1—C783.8 (3)C5—C6—C7—N1179.1 (3)
O4—V1—N1—C7106.3 (3)C1—C6—C7—N16.8 (5)
O3—V1—N1—C722.3 (3)C7—N1—C8—C9158.5 (3)
N2—V1—N1—C7176.4 (3)V1—N1—C8—C921.1 (4)
O1—V1—N1—C895.8 (3)C10—N2—C9—C8129.6 (4)
O4—V1—N1—C874.1 (3)V1—N2—C9—C848.7 (4)
O3—V1—N1—C8158.1 (3)N1—C8—C9—N243.8 (4)
N2—V1—N1—C84.1 (3)C9—N2—C10—C11178.4 (3)
O1—V1—N2—C10105.6 (3)V1—N2—C10—C110.5 (5)
O4—V1—N2—C105.8 (3)N2—C10—C11—C12175.9 (3)
O3—V1—N2—C1087.3 (4)N2—C10—C11—C163.8 (6)
N1—V1—N2—C10148.8 (3)C16—C11—C12—C131.4 (6)
O1—V1—N2—C976.3 (3)C10—C11—C12—C13178.4 (4)
O4—V1—N2—C9172.3 (2)C11—C12—C13—C140.0 (6)
O3—V1—N2—C990.8 (3)C12—C13—C14—C151.8 (6)
N1—V1—N2—C929.3 (2)C13—C14—C15—C162.1 (6)
O2—V2—N3—C2395.3 (4)V1—O4—C16—C15167.7 (2)
O5—V2—N3—C2314.7 (3)V1—O4—C16—C1114.0 (5)
O6—V2—N3—C2396.7 (4)C14—C15—C16—O4179.1 (3)
N4—V2—N3—C23159.6 (4)C14—C15—C16—C110.6 (5)
O2—V2—N3—C2480.4 (3)C12—C11—C16—O4177.2 (3)
O5—V2—N3—C24169.7 (3)C10—C11—C16—O43.0 (5)
O6—V2—N3—C2487.6 (4)C12—C11—C16—C151.1 (5)
N4—V2—N3—C2424.7 (3)C10—C11—C16—C15178.7 (3)
O2—V2—N4—C2685.3 (4)V2—O5—C17—C18161.2 (2)
O5—V2—N4—C26102.8 (4)V2—O5—C17—C2219.7 (5)
O6—V2—N4—C2621.2 (4)O5—C17—C18—C19179.8 (3)
N3—V2—N4—C26172.1 (4)C22—C17—C18—C190.7 (5)
O2—V2—N4—C2598.3 (4)C17—C18—C19—C201.4 (6)
O5—V2—N4—C2573.6 (5)C18—C19—C20—C210.1 (6)
O6—V2—N4—C25155.2 (4)C19—C20—C21—C222.0 (6)
N3—V2—N4—C254.3 (4)C20—C21—C22—C172.7 (5)
O1—V1—O3—C182.7 (3)C20—C21—C22—C23178.1 (4)
O4—V1—O3—C1165.1 (3)O5—C17—C22—C21177.8 (3)
N1—V1—O3—C124.6 (3)C18—C17—C22—C211.3 (5)
N2—V1—O3—C184.2 (3)O5—C17—C22—C231.4 (5)
O1—V1—O4—C1689.2 (3)C18—C17—C22—C23179.5 (3)
O3—V1—O4—C16163.7 (3)C24—N3—C23—C22179.5 (4)
N1—V1—O4—C1680.4 (3)V2—N3—C23—C225.1 (6)
N2—V1—O4—C1613.2 (3)C21—C22—C23—N3175.6 (4)
O2—V2—O5—C1783.2 (3)C17—C22—C23—N35.2 (6)
O6—V2—O5—C17169.5 (3)C23—N3—C24—C25143.1 (5)
N3—V2—O5—C1722.2 (3)V2—N3—C24—C2540.9 (6)
N4—V2—O5—C1788.6 (3)C26—N4—C25—C24166.5 (5)
O2—V2—O6—C3282.8 (3)V2—N4—C25—C2416.8 (7)
O5—V2—O6—C32166.9 (3)N3—C24—C25—N436.1 (7)
N3—V2—O6—C3285.1 (4)C25—N4—C26—C27164.8 (5)
N4—V2—O6—C3224.2 (3)V2—N4—C26—C2711.6 (7)
V1—O3—C1—C2166.4 (2)N4—C26—C27—C325.1 (7)
V1—O3—C1—C616.0 (5)N4—C26—C27—C28179.8 (5)
O3—C1—C2—C3179.7 (4)C32—C27—C28—C290.1 (8)
C6—C1—C2—C31.9 (5)C26—C27—C28—C29174.8 (5)
C1—C2—C3—C41.1 (7)C27—C28—C29—C300.1 (9)
C2—C3—C4—C50.1 (6)C28—C29—C30—C310.3 (10)
C3—C4—C5—C60.0 (6)C29—C30—C31—C320.6 (8)
C4—C5—C6—C10.9 (5)V2—O6—C32—C2717.4 (5)
C4—C5—C6—C7173.3 (3)V2—O6—C32—C31164.6 (3)
O3—C1—C6—C5179.5 (3)C26—C27—C32—O63.1 (6)
C2—C1—C6—C51.8 (5)C28—C27—C32—O6177.8 (4)
O3—C1—C6—C75.5 (5)C26—C27—C32—C31174.9 (4)
C2—C1—C6—C7172.1 (3)C28—C27—C32—C310.1 (6)
C8—N1—C7—C6168.6 (3)C30—C31—C32—O6177.6 (4)
V1—N1—C7—C611.8 (5)C30—C31—C32—C270.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O4i0.972.553.139 (3)119
C14—H14···O3ii0.932.563.364 (3)145
C24—H24B···O1iii0.972.343.178 (3)144
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z; (iii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[V(C16H14N2O2)O]
Mr333.23
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)13.648 (3), 6.8085 (14), 15.952 (3)
β (°) 98.24 (3)
V3)1466.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.32 × 0.21 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.809, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
14358, 6102, 4561
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.109, 1.03
No. of reflections6102
No. of parameters397
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.44
Absolute structureFlack (1983), 2456 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
V1—O11.584 (3)V2—O21.582 (3)
V1—O41.922 (3)V2—O51.917 (3)
V1—O31.931 (2)V2—O61.926 (2)
V1—N12.058 (3)V2—N32.056 (3)
V1—N22.059 (3)V2—N42.067 (3)
O1—V1—O4111.65 (15)O2—V2—O5109.95 (15)
O1—V1—O3106.38 (13)O2—V2—O6106.92 (15)
O4—V1—O388.68 (10)O5—V2—O688.01 (11)
O1—V1—N1107.53 (15)O2—V2—N3105.39 (15)
O4—V1—N1140.24 (11)O5—V2—N387.24 (12)
O3—V1—N186.73 (11)O6—V2—N3147.00 (12)
O1—V1—N2102.72 (13)O2—V2—N4107.48 (17)
O4—V1—N286.65 (11)O5—V2—N4142.21 (13)
O3—V1—N2150.17 (11)O6—V2—N486.06 (13)
N1—V1—N278.34 (12)N3—V2—N478.04 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O4i0.972.553.139 (3)119
C14—H14···O3ii0.932.563.364 (3)145
C24—H24B···O1iii0.972.343.178 (3)144
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z; (iii) x+1, y+1/2, z+1.
 

Acknowledgements

This study was supported in part by the Natural Science Foundation of Heilongjiang Province (grant No. EJG0506–01, B200606 and WC03115) and the Youth Innovation Found­ation of Harbin.

References

First citationButler, A. & Walker, J. V. (1993). Chem. Rev. 93, 1937–1944.  CrossRef CAS Web of Science Google Scholar
First citationDeng, Z. P., Gao, S., Zhao, H. & Huo, L. H. (2007). Chin. J. Inorg. Chem. 23, 173–176.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMartinez, J. S., Carroll, G. L., Tschirret-Guth, R. A., Altenhoff, G., Little, R. D. & Butler, A. (2001). J. Am. Chem. Soc. 123, 3289–3294.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y., James, B. R., Rettig, S. J. & Orvig, C. (1996). Inorg. Chem. 35, 1667–1673.  CSD CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages m775-m776
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds