metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­[3-(2-hy­droxy­ethyl)-2-methyl-4-oxopyrido[1,2-a]pyrimidin-9-olato-κ2N1,O9]manganese(II)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China, and bCollege of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 17 April 2008; accepted 8 May 2008; online 10 May 2008)

The title compound, [Mn(C11H11N2O3)2(H2O)2], consists of discrete mononuclear complex mol­ecules. The MnII atom is located on an inversion center and coordinated by two N atoms and two O atoms, each pair in a trans mode, from two 3-(2-hydroxy­ethyl)-2-methyl-4-oxopyrido[1,2-a]pyrimidin-9-olate ligands and by two water mol­ecules. The coordination geometry around the MnII atom is slightly distorted octa­hedral. Mol­ecules are linked by O—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For related literature, see: Bayot et al. (2006[Bayot, D., Degand, M., Tinant, B. & Devillers, M. (2006). Inorg. Chem. Commun. 359, 1390-1394.]); Chen et al. (2007[Chen, K., Zhang, Y.-L., Feng, M.-Q. & Liu, C.-H. (2007). Acta Cryst. E63, m2033.]); Wu et al. (2006[Wu, H., Dong, X.-W., Liu, H.-Y. & Ma, J.-F. (2006). Acta Cryst. E62, m281-m282.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C11H11N2O3)2(H2O)2]

  • Mr = 529.41

  • Monoclinic, P 21 /n

  • a = 5.2656 (11) Å

  • b = 14.620 (3) Å

  • c = 14.715 (3) Å

  • β = 97.35 (3)°

  • V = 1123.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 293 (2) K

  • 0.15 × 0.12 × 0.06 mm

Data collection
  • Rigaku Scxmini 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.904, Tmax = 0.965

  • 9361 measured reflections

  • 1971 independent reflections

  • 1553 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.108

  • S = 1.04

  • 1971 reflections

  • 172 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O1 2.143 (2)
Mn1—O1W 2.166 (2)
Mn1—N1 2.368 (2)
O1i—Mn1—O1W 92.31 (9)
O1—Mn1—O1W 87.69 (9)
O1i—Mn1—N1 106.56 (8)
O1—Mn1—N1 73.44 (8)
O1Wi—Mn1—N1 92.98 (9)
O1W—Mn1—N1 87.02 (9)
Symmetry code: (i) -x, -y+2, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O3ii 0.83 (4) 1.94 (5) 2.761 (4) 171 (4)
O1W—H1WA⋯O1iii 0.81 (5) 1.87 (5) 2.680 (3) 177 (5)
O3—H3B⋯O2iv 0.80 (3) 1.98 (4) 2.772 (4) 168 (4)
Symmetry codes: (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) x+1, y, z; (iv) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past decade, much attention has been paid to the design and synthesis of self-assembling systems with organic ligands containing N and O donors (Bayot et al., 2006; Chen et al., 2007). Quinolin-8-ol is such a ligand and the crystal structure of a complex containing it has been reported (Wu et al., 2006). We report here the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the MnII atom is located on a crystallographic inversion center and adopts a distorted octahedral coordination geometry. The coordination environment is defined by two N atoms and two O atoms from two ligands in the equatorial plane and by two water molecules in the axial positions (Table 1). Intermolecular O—H···O hydrogen bonds involving the hydroxyl groups and water molecules as donors connect the molecules into a three-dimensional network (Table 2; Fig. 2).

Related literature top

For related literature, see: Bayot et al. (2006); Chen et al. (2007); Wu et al. (2006).

Experimental top

Manganese carbonate (0.028 g, 0.1 mmol) was added with constant stirring to a ethanol solution (10 ml) containing 3-(2-hydroxyethyl)-2-methyl-9-hydroxylpyrido[1,2-a]pyrimidin-4-one (0.022 g, 0.1 mmol). The mixture was then filtered off. After a few days, brown single crystals in the form of rectangular blocks deposited. They were separated off, washed with cold ethanol and dried in air at room temperature.

Refinement top

H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.97 (CH2) and 0.96 Å (CH3) and Uiso(H) = 1.2(or 1.5 for methyl)Ueq(C). H atoms of hydroxyl group and water molecule were located in a difference Fourier map and refined isotropically, with a restraint of O—H = 0.82 (1) Å for the hydroxyl group.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) -x, -y + 2, -z + 1.]
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines. H atoms have been omitted for clarity.
Diaquabis[3-(2-hydroxyethyl)-2-methyl-4-oxopyrido[1,2-a]pyrimidin- 9-olato-κ2N1,O9]manganese(II) top
Crystal data top
[Mn(C11H11N2O3)2(H2O)2]F(000) = 550
Mr = 529.41Dx = 1.565 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4792 reflections
a = 5.2656 (11) Åθ = 3.1–25.0°
b = 14.620 (3) ŵ = 0.65 mm1
c = 14.715 (3) ÅT = 293 K
β = 97.35 (3)°Block, brown
V = 1123.5 (4) Å30.15 × 0.12 × 0.06 mm
Z = 2
Data collection top
Rigaku Scxmini 1K CCD area-detector
diffractometer
1971 independent reflections
Radiation source: fine-focus sealed tube1553 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 3.1°
thin–slice ω scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1717
Tmin = 0.904, Tmax = 0.965l = 1717
9361 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0407P)2 + 1.0124P]
where P = (Fo2 + 2Fc2)/3
1971 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.27 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
[Mn(C11H11N2O3)2(H2O)2]V = 1123.5 (4) Å3
Mr = 529.41Z = 2
Monoclinic, P21/nMo Kα radiation
a = 5.2656 (11) ŵ = 0.65 mm1
b = 14.620 (3) ÅT = 293 K
c = 14.715 (3) Å0.15 × 0.12 × 0.06 mm
β = 97.35 (3)°
Data collection top
Rigaku Scxmini 1K CCD area-detector
diffractometer
1971 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1553 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.965Rint = 0.063
9361 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.27 e Å3
1971 reflectionsΔρmin = 0.25 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00001.00000.50000.0287 (2)
N20.0870 (5)0.71347 (17)0.40610 (17)0.0305 (6)
C80.2483 (6)0.7863 (2)0.5424 (2)0.0299 (7)
C70.2868 (6)0.6962 (2)0.5179 (2)0.0331 (7)
C10.1042 (6)0.8032 (2)0.4332 (2)0.0276 (7)
C60.1200 (6)0.6554 (2)0.4466 (2)0.0349 (8)
C20.3130 (6)0.8590 (2)0.3894 (2)0.0304 (7)
C30.4831 (6)0.8190 (2)0.3220 (2)0.0358 (8)
H3A0.61640.85340.29180.043*
C100.4954 (6)0.6367 (2)0.5655 (2)0.0374 (8)
H10A0.63670.67480.59200.045*
H10B0.55830.59620.52120.045*
C40.4570 (7)0.7271 (2)0.2988 (2)0.0415 (8)
H4A0.57630.70110.25410.050*
C90.4222 (6)0.8307 (2)0.6180 (2)0.0391 (8)
H9A0.36790.89260.62570.059*
H9B0.59420.83060.60290.059*
H9C0.41620.79750.67390.059*
C110.3977 (7)0.5808 (2)0.6400 (2)0.0424 (9)
H11A0.32160.62160.68100.051*
H11B0.26450.53990.61240.051*
N10.0601 (4)0.83949 (17)0.49945 (17)0.0287 (6)
C50.2638 (6)0.6753 (2)0.3393 (2)0.0385 (8)
H5A0.24930.61430.32260.046*
O1W0.1917 (5)1.00410 (18)0.37828 (18)0.0403 (6)
O20.1298 (5)0.57713 (15)0.41699 (17)0.0468 (6)
O10.3258 (4)0.94368 (14)0.41643 (15)0.0343 (5)
O30.5924 (5)0.52796 (17)0.69223 (16)0.0471 (6)
H1WB0.144 (7)0.995 (3)0.323 (3)0.048 (11)*
H1WA0.339 (9)0.986 (3)0.388 (3)0.077 (16)*
H3B0.653 (8)0.495 (2)0.657 (2)0.070 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0246 (3)0.0276 (4)0.0328 (4)0.0007 (3)0.0004 (3)0.0054 (3)
N20.0335 (14)0.0257 (14)0.0325 (15)0.0011 (11)0.0045 (12)0.0006 (11)
C80.0295 (16)0.0291 (17)0.0313 (17)0.0005 (14)0.0046 (13)0.0042 (13)
C70.0350 (18)0.0299 (18)0.0349 (18)0.0028 (14)0.0063 (14)0.0035 (14)
C10.0286 (16)0.0254 (16)0.0301 (16)0.0011 (13)0.0085 (13)0.0006 (13)
C60.0389 (18)0.0293 (18)0.0374 (18)0.0045 (14)0.0083 (15)0.0032 (14)
C20.0264 (16)0.0314 (17)0.0340 (18)0.0011 (13)0.0059 (13)0.0006 (14)
C30.0325 (17)0.0357 (18)0.0368 (19)0.0002 (14)0.0045 (14)0.0035 (14)
C100.0375 (18)0.0300 (18)0.044 (2)0.0045 (15)0.0041 (15)0.0037 (15)
C40.041 (2)0.042 (2)0.039 (2)0.0059 (16)0.0030 (16)0.0081 (16)
C90.0379 (19)0.0322 (18)0.044 (2)0.0029 (15)0.0067 (15)0.0009 (15)
C110.043 (2)0.040 (2)0.043 (2)0.0061 (16)0.0035 (16)0.0033 (16)
N10.0252 (14)0.0262 (14)0.0332 (14)0.0008 (10)0.0016 (12)0.0000 (11)
C50.045 (2)0.0322 (18)0.0376 (19)0.0078 (16)0.0025 (16)0.0091 (15)
O1W0.0290 (13)0.0563 (16)0.0350 (14)0.0032 (13)0.0015 (10)0.0080 (13)
O20.0568 (16)0.0277 (13)0.0552 (16)0.0052 (11)0.0045 (12)0.0095 (11)
O10.0263 (11)0.0286 (12)0.0456 (13)0.0031 (9)0.0047 (10)0.0063 (10)
O30.0625 (17)0.0437 (15)0.0330 (14)0.0158 (13)0.0024 (12)0.0027 (11)
Geometric parameters (Å, º) top
Mn1—O1i2.143 (2)C2—C31.378 (4)
Mn1—O12.143 (2)C3—C41.398 (5)
Mn1—O1Wi2.166 (2)C3—H3A0.9300
Mn1—O1W2.166 (2)C10—C111.510 (5)
Mn1—N1i2.368 (2)C10—H10A0.9700
Mn1—N12.368 (2)C10—H10B0.9700
N2—C11.378 (4)C4—C51.346 (5)
N2—C51.382 (4)C4—H4A0.9300
N2—C61.448 (4)C9—H9A0.9600
C8—N11.351 (4)C9—H9B0.9600
C8—C71.387 (4)C9—H9C0.9600
C8—C91.495 (4)C11—O31.425 (4)
C7—C61.411 (5)C11—H11A0.9700
C7—C101.502 (4)C11—H11B0.9700
C1—N11.328 (4)C5—H5A0.9300
C1—C21.453 (4)O1W—H1WB0.81 (4)
C6—O21.228 (4)O1W—H1WA0.82 (5)
C2—O11.304 (4)O3—H3B0.80 (3)
O1i—Mn1—O1180.0C2—C3—H3A119.7
O1i—Mn1—O1Wi87.69 (9)C4—C3—H3A119.7
O1—Mn1—O1Wi92.31 (9)C7—C10—C11110.8 (3)
O1i—Mn1—O1W92.31 (9)C7—C10—H10A109.5
O1—Mn1—O1W87.69 (9)C11—C10—H10A109.5
O1Wi—Mn1—O1W180.000 (1)C7—C10—H10B109.5
O1i—Mn1—N1106.56 (8)C11—C10—H10B109.5
O1—Mn1—N173.44 (8)H10A—C10—H10B108.1
O1Wi—Mn1—N192.98 (9)C5—C4—C3121.7 (3)
O1W—Mn1—N187.02 (9)C5—C4—H4A119.2
O1i—Mn1—N1i73.44 (8)C3—C4—H4A119.2
O1—Mn1—N1i106.56 (8)C8—C9—H9A109.5
O1Wi—Mn1—N1i87.02 (9)C8—C9—H9B109.5
O1W—Mn1—N1i92.98 (9)H9A—C9—H9B109.5
N1—Mn1—N1i180.000 (1)C8—C9—H9C109.5
C1—N2—C5121.9 (3)H9A—C9—H9C109.5
C1—N2—C6120.8 (3)H9B—C9—H9C109.5
C5—N2—C6117.3 (3)O3—C11—C10113.4 (3)
N1—C8—C7123.1 (3)O3—C11—H11A108.9
N1—C8—C9116.2 (3)C10—C11—H11A108.9
C7—C8—C9120.7 (3)O3—C11—H11B108.9
C8—C7—C6119.8 (3)C10—C11—H11B108.9
C8—C7—C10123.4 (3)H11A—C11—H11B107.7
C6—C7—C10116.8 (3)C1—N1—C8118.9 (3)
N1—C1—N2122.2 (3)C1—N1—Mn1108.89 (18)
N1—C1—C2119.1 (3)C8—N1—Mn1131.21 (19)
N2—C1—C2118.7 (3)C4—C5—N2119.3 (3)
O2—C6—C7127.4 (3)C4—C5—H5A120.3
O2—C6—N2117.6 (3)N2—C5—H5A120.3
C7—C6—N2115.0 (3)Mn1—O1W—H1WB134 (3)
O1—C2—C3124.6 (3)Mn1—O1W—H1WA113 (3)
O1—C2—C1117.6 (3)H1WB—O1W—H1WA106 (4)
C3—C2—C1117.8 (3)C2—O1—Mn1118.08 (18)
C2—C3—C4120.6 (3)C11—O3—H3B107 (3)
N1—C8—C7—C62.0 (5)C7—C10—C11—O3175.6 (3)
C9—C8—C7—C6179.8 (3)N2—C1—N1—C80.9 (4)
N1—C8—C7—C10179.9 (3)C2—C1—N1—C8177.5 (3)
C9—C8—C7—C101.8 (5)N2—C1—N1—Mn1168.9 (2)
C5—N2—C1—N1177.7 (3)C2—C1—N1—Mn112.6 (3)
C6—N2—C1—N12.6 (4)C7—C8—N1—C13.3 (4)
C5—N2—C1—C20.7 (4)C9—C8—N1—C1178.4 (3)
C6—N2—C1—C2179.0 (3)C7—C8—N1—Mn1163.9 (2)
C8—C7—C6—O2179.6 (3)C9—C8—N1—Mn114.4 (4)
C10—C7—C6—O22.3 (5)O1i—Mn1—N1—C1166.19 (19)
C8—C7—C6—N21.4 (4)O1—Mn1—N1—C113.81 (19)
C10—C7—C6—N2176.6 (3)O1Wi—Mn1—N1—C1105.3 (2)
C1—N2—C6—O2177.3 (3)O1i—Mn1—N1—C82.0 (3)
C5—N2—C6—O22.4 (4)O1—Mn1—N1—C8178.0 (3)
C1—N2—C6—C73.6 (4)O1Wi—Mn1—N1—C886.5 (3)
C5—N2—C6—C7176.7 (3)O1W—Mn1—N1—C893.5 (3)
N1—C1—C2—O11.3 (4)C3—C4—C5—N20.4 (5)
N2—C1—C2—O1179.8 (3)C1—N2—C5—C40.7 (5)
N1—C1—C2—C3178.9 (3)C6—N2—C5—C4179.0 (3)
N2—C1—C2—C30.4 (4)C3—C2—O1—Mn1166.9 (2)
O1—C2—C3—C4178.8 (3)C1—C2—O1—Mn112.9 (3)
C1—C2—C3—C41.4 (5)O1Wi—Mn1—O1—C2106.8 (2)
C8—C7—C10—C1194.0 (4)O1W—Mn1—O1—C273.2 (2)
C6—C7—C10—C1184.0 (4)N1—Mn1—O1—C214.4 (2)
C2—C3—C4—C51.5 (5)N1i—Mn1—O1—C2165.6 (2)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O3ii0.83 (4)1.94 (5)2.761 (4)171 (4)
O1W—H1WA···O1iii0.81 (5)1.87 (5)2.680 (3)177 (5)
O3—H3B···O2iv0.80 (3)1.98 (4)2.772 (4)168 (4)
Symmetry codes: (ii) x1/2, y+3/2, z1/2; (iii) x+1, y, z; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C11H11N2O3)2(H2O)2]
Mr529.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)5.2656 (11), 14.620 (3), 14.715 (3)
β (°) 97.35 (3)
V3)1123.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.15 × 0.12 × 0.06
Data collection
DiffractometerRigaku Scxmini 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.904, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
9361, 1971, 1553
Rint0.063
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.108, 1.05
No. of reflections1971
No. of parameters172
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.25

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Mn1—O12.143 (2)Mn1—N12.368 (2)
Mn1—O1W2.166 (2)
O1i—Mn1—O1W92.31 (9)O1—Mn1—N173.44 (8)
O1—Mn1—O1W87.69 (9)O1Wi—Mn1—N192.98 (9)
O1i—Mn1—N1106.56 (8)O1W—Mn1—N187.02 (9)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O3ii0.83 (4)1.94 (5)2.761 (4)171 (4)
O1W—H1WA···O1iii0.81 (5)1.87 (5)2.680 (3)177 (5)
O3—H3B···O2iv0.80 (3)1.98 (4)2.772 (4)168 (4)
Symmetry codes: (ii) x1/2, y+3/2, z1/2; (iii) x+1, y, z; (iv) x+1, y+1, z+1.
 

References

First citationBayot, D., Degand, M., Tinant, B. & Devillers, M. (2006). Inorg. Chem. Commun. 359, 1390–1394.  CAS Google Scholar
First citationChen, K., Zhang, Y.-L., Feng, M.-Q. & Liu, C.-H. (2007). Acta Cryst. E63, m2033.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H., Dong, X.-W., Liu, H.-Y. & Ma, J.-F. (2006). Acta Cryst. E62, m281–m282.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds