metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages m838-m839

Tetra­kis(1,1,1-tri­fluoro­acetyl­acetonato-κ2O,O′)hafnium(IV) toluene disolvate

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: mulleraj.sci@ufs.ac.za

(Received 7 May 2008; accepted 20 May 2008; online 24 May 2008)

In the title compound, [Hf(C5H4F3O2)4]·2C7H8, the HfIV atom, lying on a twofold rotation axis, is coordinated by eight O atoms from four 1,1,1-trifluoro­acetyl­acetonate ligands with an average Hf—O distance of 2.173 (1) Å and O—Hf—O bite angles of 75.69 (5) and 75.54 (5)°. The coordination polyhedron shows a slightly distorted Archimedean square antiprismatic geometry. The asymmetric unit contains a toluene solvent mol­ecule. The crystal structure involves C—H⋯.F hydrogen bonds.

Related literature

For the triclinic polymorph of the title compound, see: Zherikova et al. (2005[Zherikova, K. V., Morozova, N. B., Kuratieva, N. V., Baidina, I. A. & Igumenov, I. K. (2005). Zh. Strukt. Khim. 46, 1081-1088.]). For related literature on hafnium β-diketone complexes, see: Chattoraj et al. (1968[Chattoraj, S. C., Lynch, C. T. & Mazdiyasni, K. S. (1968). Inorg. Chem. 7, 2501-2505.]). For the isomorphous zirconium complex, see: Steyn et al. (2008[Steyn, M., Roodt, A. & Steyl, G. (2008). Acta Cryst. E64, m827.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Hf(C5H4F3O2)4]·2C7H8

  • Mr = 975.09

  • Monoclinic, C 2/c

  • a = 22.4983 (15) Å

  • b = 8.0642 (5) Å

  • c = 22.712 (2) Å

  • β = 118.211 (2)°

  • V = 3631.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.98 mm−1

  • T = 100 (2) K

  • 0.33 × 0.25 × 0.22 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.439, Tmax = 0.560 (expected range = 0.407–0.519)

  • 18332 measured reflections

  • 4518 independent reflections

  • 4256 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.042

  • S = 1.07

  • 4518 reflections

  • 252 parameters

  • H-atom parameters constrained

  • Δρmax = 1.12 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Selected geometric parameters (Å, °)

Hf—O2 2.1527 (13)
Hf—O4 2.1571 (13)
Hf—O1 2.1861 (13)
Hf—O3 2.1933 (13)
O2—Hf—O2i 141.66 (7)
O2—Hf—O4 80.96 (5)
O2i—Hf—O4 111.77 (5)
O4—Hf—O4i 142.02 (7)
O2—Hf—O1i 141.35 (5)
O4—Hf—O1i 72.52 (5)
O2—Hf—O1 75.69 (5)
O4—Hf—O1 76.79 (5)
O1i—Hf—O1 71.28 (7)
O2—Hf—O3i 72.21 (5)
O4—Hf—O3i 141.11 (5)
O1—Hf—O3i 121.11 (5)
O2—Hf—O3 76.82 (5)
O4—Hf—O3 75.54 (5)
O1—Hf—O3 143.48 (5)
O3i—Hf—O3 71.35 (7)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯F2 0.93 2.37 2.712 (2) 102
C8—H8⋯F5 0.93 2.37 2.721 (2) 102

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

This study was done as part of ongoing research in our group to investigate reactions of O,O'- and O,N-bidentate ligands with hafnium(IV) and zirconium(IV). The total separation of zircon ore (ZrSiO4) is important to have materials viable for nuclear applications. Previous work on hafnium(IV) complexes with β-diketone was done to determine their thermal decomposition to yield metal oxides (Chattoraj et al., 1968). Hafnium β-diketonates are also promising precursor materials for producing metal oxide films, providing the possibility to manufacture technologically important coatings (Zherikova et al., 2005).

The title compound crystallizes as the monoclinic polymorph (C2/c, Z = 4) (Fig. 1) with two toluene solvent molecules. The triclinic polymorph earlier reported by Zherikova et al. (2005) contains no solvent molecules and cannot be superimposed with the title compound due to differences in metal coordination modes. An isomorphous zirconium complex has been reported by Steyn et al. (2008). The HfIV atom in the title compound is situated on a twofold rotation axis, with four β-diketonate ligands, 1,1,1-trifluoroacetylacetonate (tfaa), coordinating to the HfIV atom adopting an Archimedean antiprism coordination geometry (Fig. 2). The Hf—O bond lengths vary from 2.1527 (13) Å to 2.1933 (13) Å, with the average Hf—O distance being 2.173 (1) Å. The O—Hf—O bite angles are 75.69 (5)° and 75.54 (5)° (Table 1). This average bond distance is somewhat larger than the average of 2.156 Å obtained from the Cambridge Structural Database (Allen, 2002) (data extracted from 19 hits, yielding 45 observations ranging from 2.039 to 2.248 Å). Pairs of toluene molecules are π-stacked (interplanar distance = 3.65 (1) Å, centroid–centroid distance = 4.92 (1) Å) in channels formed by the metal complex moieties parallel to the b-axis (Fig. 3). The preferred CF3-group conformation is probably due to weak C—H···F interactions (Table 2).

Related literature top

For the triclinic polymorph of the title compound, see: Zherikova et al. (2005). For related literature on hafnium β-diketone complexes, see: Chattoraj et al. (1968). For the isomorphous zirconium complex, see: Steyn et al. (2008). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Chemicals were purchased from Sigma and Aldrich and used as received except for toluene, which was dried by passage over alumina. Syntheses were performed using modified Schlenk conditions. The ligand salt (Natfaa) was prepared by adding Htfaa (6.05 ml, 50 mmol) dropwise to NaOH (2.02 g, 50 mmol) over a period of 3 minutes. The resulting solids were washed with toluene and dried in vacuo. Natfaa (0.459 g, 2.6 mmol) was added to a suspension of HfCl4 (0.207 g, 0.65 mmol) in toluene (10 ml). Dissolution gave a slightly yellow solution after 10 min. After refluxing for ca 20 h the crude product was filtered and washed with toluene. The filtrate was slowly recrystallized at 253 K at near quantitative yield. Spectroscopy data: 19F {H} NMR (C6D6; 564.77 MHz): -75.49 p.p.m.; IR (ATR): ν(CO) 1533 cm-1.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 Å (methyl) and with Uiso(H) = 1.2Ueq(C) for aromatic and 1.5Ueq(C) for methyl groups. Torsion angles for methyl H atoms were refined from electron density. The highest residual electron density lies within 1.0 Å from the Hf atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Structure of the title compound. Displacement ellipsoids are drawn at the 30 % probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Slightly distorted Archimedean antiprism coordination polyhedron surrounding Hf atom.
[Figure 3] Fig. 3. Packing diagram of the title compound along the b-axis showing π-stacking of toluene molecule pairs. H atoms have been omitted for clarity.
Tetrakis(1,1,1-trifluoroacetylacetonato-κ2O,O')hafnium(IV) toluene disolvate top
Crystal data top
[Hf(C5H4F3O2)4]·2C7H8F(000) = 1920
Mr = 975.09Dx = 1.784 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6211 reflections
a = 22.4983 (15) Åθ = 2.7–28.3°
b = 8.0642 (5) ŵ = 2.98 mm1
c = 22.712 (2) ÅT = 100 K
β = 118.211 (2)°Block, colourless
V = 3631.2 (5) Å30.33 × 0.25 × 0.22 mm
Z = 4
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
4518 independent reflections
Radiation source: fine-focus sealed tube4256 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.4 pixels mm-1θmax = 28.4°, θmin = 2.0°
ϕ and ω scansh = 3026
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1010
Tmin = 0.439, Tmax = 0.560l = 2930
18332 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0173P)2 + 5.3839P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max = 0.002
S = 1.07Δρmax = 1.12 e Å3
4518 reflectionsΔρmin = 0.91 e Å3
252 parameters
Crystal data top
[Hf(C5H4F3O2)4]·2C7H8V = 3631.2 (5) Å3
Mr = 975.09Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.4983 (15) ŵ = 2.98 mm1
b = 8.0642 (5) ÅT = 100 K
c = 22.712 (2) Å0.33 × 0.25 × 0.22 mm
β = 118.211 (2)°
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
4518 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4256 reflections with I > 2σ(I)
Tmin = 0.439, Tmax = 0.560Rint = 0.023
18332 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.042H-atom parameters constrained
S = 1.07Δρmax = 1.12 e Å3
4518 reflectionsΔρmin = 0.91 e Å3
252 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 20 s/frame. A total of 1897 frames were collected with a frame width of 0.5° covering up to θ = 28.35° with 99.8% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hf0.50.165295 (14)0.750.01071 (4)
O10.51936 (7)0.05501 (17)0.81255 (6)0.0145 (3)
O20.49393 (7)0.25296 (17)0.83653 (6)0.0150 (3)
C10.50749 (11)0.2808 (3)0.87229 (11)0.0220 (4)
H1A0.5080.34480.83690.033*
H1B0.46960.31330.87830.033*
H1C0.54850.29980.91290.033*
C20.50184 (10)0.1008 (3)0.85482 (9)0.0156 (4)
C30.47953 (10)0.0117 (3)0.88823 (10)0.0184 (4)
H30.46440.02840.91720.022*
C40.48009 (10)0.1778 (3)0.87820 (9)0.0154 (4)
C50.46372 (11)0.2975 (3)0.92078 (10)0.0207 (4)
F10.40902 (8)0.3862 (2)0.88355 (7)0.0409 (4)
F20.45382 (8)0.21987 (18)0.96725 (7)0.0343 (3)
F30.51363 (7)0.40485 (17)0.95280 (7)0.0316 (3)
O30.43603 (7)0.38624 (17)0.71276 (7)0.0146 (3)
O40.40009 (6)0.07826 (17)0.72464 (6)0.0136 (3)
C60.36205 (11)0.6104 (3)0.69597 (12)0.0229 (4)
H6A0.40120.67540.70490.034*
H6B0.34340.64750.7240.034*
H6C0.3290.62310.64990.034*
C70.38151 (10)0.4318 (2)0.71005 (9)0.0158 (4)
C80.33652 (10)0.3194 (2)0.71708 (10)0.0175 (4)
H80.29860.35950.71880.021*
C90.34868 (10)0.1536 (2)0.72125 (9)0.0148 (4)
C100.29459 (10)0.0341 (3)0.71829 (11)0.0197 (4)
F40.31970 (6)0.07336 (16)0.76889 (6)0.0261 (3)
F50.24293 (7)0.11096 (17)0.72015 (8)0.0338 (3)
F60.26890 (6)0.05534 (17)0.66195 (6)0.0274 (3)
C110.65622 (14)0.3966 (4)0.96674 (17)0.0550 (9)
H11A0.69430.4270.96080.082*
H11B0.65410.46760.99960.082*
H11C0.61560.40840.92510.082*
C120.66358 (11)0.2194 (3)0.98981 (12)0.0313 (5)
C130.66964 (12)0.1760 (3)1.05128 (12)0.0336 (6)
H130.66810.2581.07930.04*
C140.67800 (13)0.0117 (4)1.07158 (12)0.0376 (6)
H140.6820.01561.11310.045*
C150.68046 (13)0.1112 (4)1.03081 (14)0.0384 (6)
H150.68670.22131.04460.046*
C160.67360 (12)0.0688 (4)0.96942 (14)0.0406 (7)
H160.67470.15090.94120.049*
C170.66513 (12)0.0941 (4)0.94935 (12)0.0372 (6)
H170.66030.12040.90750.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hf0.01298 (6)0.00766 (6)0.01517 (6)00.00966 (4)0
O10.0157 (6)0.0118 (7)0.0192 (6)0.0011 (5)0.0108 (5)0.0027 (5)
O20.0207 (7)0.0117 (7)0.0170 (6)0.0013 (6)0.0126 (6)0.0003 (5)
C10.0315 (12)0.0136 (10)0.0271 (11)0.0000 (9)0.0190 (9)0.0039 (8)
C20.0145 (9)0.0143 (10)0.0175 (9)0.0012 (8)0.0071 (7)0.0020 (8)
C30.0239 (10)0.0171 (10)0.0195 (9)0.0018 (8)0.0148 (8)0.0026 (8)
C40.0160 (9)0.0166 (10)0.0161 (8)0.0014 (8)0.0097 (7)0.0013 (8)
C50.0300 (11)0.0179 (11)0.0211 (10)0.0006 (8)0.0179 (9)0.0009 (8)
F10.0431 (9)0.0495 (10)0.0335 (8)0.0248 (8)0.0209 (7)0.0008 (7)
F20.0647 (10)0.0234 (7)0.0379 (8)0.0053 (7)0.0433 (8)0.0026 (6)
F30.0485 (9)0.0217 (7)0.0361 (7)0.0106 (6)0.0294 (7)0.0127 (6)
O30.0160 (7)0.0110 (7)0.0210 (7)0.0019 (5)0.0122 (6)0.0026 (5)
O40.0136 (6)0.0109 (7)0.0194 (7)0.0020 (5)0.0104 (5)0.0003 (5)
C60.0229 (11)0.0131 (10)0.0375 (12)0.0034 (8)0.0183 (10)0.0040 (9)
C70.0187 (9)0.0124 (10)0.0183 (9)0.0012 (8)0.0104 (8)0.0008 (7)
C80.0164 (9)0.0131 (10)0.0288 (10)0.0017 (8)0.0155 (8)0.0005 (8)
C90.0147 (9)0.0147 (10)0.0186 (9)0.0005 (8)0.0109 (7)0.0002 (8)
C100.0185 (10)0.0143 (10)0.0312 (11)0.0008 (8)0.0158 (9)0.0002 (8)
F40.0291 (7)0.0205 (7)0.0348 (7)0.0030 (5)0.0201 (6)0.0060 (6)
F50.0273 (7)0.0185 (7)0.0731 (10)0.0012 (6)0.0382 (7)0.0005 (7)
F60.0228 (6)0.0246 (7)0.0335 (7)0.0089 (5)0.0122 (6)0.0067 (6)
C110.0259 (14)0.0496 (19)0.067 (2)0.0055 (13)0.0033 (13)0.0194 (16)
C120.0156 (10)0.0374 (14)0.0306 (12)0.0050 (10)0.0024 (9)0.0040 (11)
C130.0294 (12)0.0384 (15)0.0324 (12)0.0058 (11)0.0141 (10)0.0126 (11)
C140.0352 (13)0.0514 (18)0.0272 (12)0.0092 (13)0.0154 (10)0.0039 (12)
C150.0270 (13)0.0302 (14)0.0523 (16)0.0051 (11)0.0141 (12)0.0008 (12)
C160.0235 (12)0.0549 (19)0.0425 (15)0.0074 (12)0.0150 (11)0.0250 (14)
C170.0229 (12)0.065 (2)0.0222 (11)0.0077 (12)0.0094 (10)0.0013 (12)
Geometric parameters (Å, º) top
Hf—O22.1527 (13)C6—H6B0.96
Hf—O2i2.1527 (13)C6—H6C0.96
Hf—O42.1571 (13)C7—C81.423 (3)
Hf—O4i2.1571 (13)C8—C91.359 (3)
Hf—O1i2.1861 (13)C8—H80.93
Hf—O12.1861 (13)C9—C101.529 (3)
Hf—O3i2.1933 (14)C10—F41.333 (2)
Hf—O32.1933 (13)C10—F51.335 (2)
O1—C21.253 (2)C10—F61.339 (2)
O2—C41.280 (2)C11—C121.504 (4)
C1—C21.494 (3)C11—H11A0.96
C1—H1A0.96C11—H11B0.96
C1—H1B0.96C11—H11C0.96
C1—H1C0.96C12—C171.377 (4)
C2—C31.418 (3)C12—C131.382 (4)
C3—C41.359 (3)C13—C141.386 (4)
C3—H30.93C13—H130.93
C4—C51.530 (3)C14—C151.375 (4)
C5—F11.325 (3)C14—H140.93
C5—F31.329 (3)C15—C161.372 (4)
C5—F21.333 (2)C15—H150.93
O3—C71.254 (2)C16—C171.374 (4)
O4—C91.276 (2)C16—H160.93
C6—C71.496 (3)C17—H170.93
C6—H6A0.96
O2—Hf—O2i141.66 (7)F3—C5—C4111.30 (17)
O2—Hf—O480.96 (5)F2—C5—C4112.58 (17)
O2i—Hf—O4111.77 (5)C7—O3—Hf134.87 (13)
O2—Hf—O4i111.77 (5)C9—O4—Hf131.43 (13)
O2i—Hf—O4i80.96 (5)C7—C6—H6A109.5
O4—Hf—O4i142.02 (7)C7—C6—H6B109.5
O2—Hf—O1i141.35 (5)H6A—C6—H6B109.5
O2i—Hf—O1i75.69 (5)C7—C6—H6C109.5
O4—Hf—O1i72.52 (5)H6A—C6—H6C109.5
O4i—Hf—O1i76.79 (5)H6B—C6—H6C109.5
O2—Hf—O175.69 (5)O3—C7—C8122.62 (18)
O2i—Hf—O1141.35 (5)O3—C7—C6118.27 (18)
O4—Hf—O176.79 (5)C8—C7—C6119.06 (18)
O4i—Hf—O172.52 (5)C9—C8—C7120.28 (18)
O1i—Hf—O171.28 (7)C9—C8—H8119.9
O2—Hf—O3i72.21 (5)C7—C8—H8119.9
O2i—Hf—O3i76.82 (5)O4—C9—C8128.26 (18)
O4—Hf—O3i141.11 (5)O4—C9—C10112.50 (17)
O4i—Hf—O3i75.54 (5)C8—C9—C10119.16 (17)
O1i—Hf—O3i143.48 (5)F4—C10—F5107.15 (16)
O1—Hf—O3i121.11 (5)F4—C10—F6106.83 (17)
O2—Hf—O376.82 (5)F5—C10—F6106.94 (17)
O2i—Hf—O372.21 (5)F4—C10—C9111.58 (16)
O4—Hf—O375.54 (5)F5—C10—C9113.11 (17)
O4i—Hf—O3141.11 (5)F6—C10—C9110.90 (16)
O1i—Hf—O3121.11 (5)C12—C11—H11A109.5
O1—Hf—O3143.48 (5)C12—C11—H11B109.5
O3i—Hf—O371.35 (7)H11A—C11—H11B109.5
C2—O1—Hf134.34 (13)C12—C11—H11C109.5
C4—O2—Hf131.45 (13)H11A—C11—H11C109.5
C2—C1—H1A109.5H11B—C11—H11C109.5
C2—C1—H1B109.5C17—C12—C13117.8 (3)
H1A—C1—H1B109.5C17—C12—C11119.9 (3)
C2—C1—H1C109.5C13—C12—C11122.3 (3)
H1A—C1—H1C109.5C12—C13—C14120.7 (2)
H1B—C1—H1C109.5C12—C13—H13119.6
O1—C2—C3122.69 (19)C14—C13—H13119.6
O1—C2—C1118.14 (18)C15—C14—C13120.5 (2)
C3—C2—C1119.12 (18)C15—C14—H14119.8
C4—C3—C2120.47 (18)C13—C14—H14119.8
C4—C3—H3119.8C16—C15—C14118.9 (3)
C2—C3—H3119.8C16—C15—H15120.5
O2—C4—C3127.96 (18)C14—C15—H15120.5
O2—C4—C5112.58 (17)C15—C16—C17120.5 (3)
C3—C4—C5119.46 (17)C15—C16—H16119.8
F1—C5—F3106.71 (18)C17—C16—H16119.8
F1—C5—F2107.83 (17)C16—C17—C12121.6 (2)
F3—C5—F2106.67 (17)C16—C17—H17119.2
F1—C5—C4111.44 (17)C12—C17—H17119.2
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F20.932.372.712 (2)102
C8—H8···F50.932.372.721 (2)102

Experimental details

Crystal data
Chemical formula[Hf(C5H4F3O2)4]·2C7H8
Mr975.09
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)22.4983 (15), 8.0642 (5), 22.712 (2)
β (°) 118.211 (2)
V3)3631.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.98
Crystal size (mm)0.33 × 0.25 × 0.22
Data collection
DiffractometerBruker X8 APEXII 4K KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.439, 0.560
No. of measured, independent and
observed [I > 2σ(I)] reflections
18332, 4518, 4256
Rint0.023
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.042, 1.07
No. of reflections4518
No. of parameters252
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.12, 0.91

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 1999), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Hf—O22.1527 (13)Hf—O12.1861 (13)
Hf—O42.1571 (13)Hf—O32.1933 (13)
O2—Hf—O2i141.66 (7)O1i—Hf—O171.28 (7)
O2—Hf—O480.96 (5)O2—Hf—O3i72.21 (5)
O2i—Hf—O4111.77 (5)O4—Hf—O3i141.11 (5)
O4—Hf—O4i142.02 (7)O1—Hf—O3i121.11 (5)
O2—Hf—O1i141.35 (5)O2—Hf—O376.82 (5)
O4—Hf—O1i72.52 (5)O4—Hf—O375.54 (5)
O2—Hf—O175.69 (5)O1—Hf—O3143.48 (5)
O4—Hf—O176.79 (5)O3i—Hf—O371.35 (7)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F20.932.372.712 (2)102
C8—H8···F50.932.372.721 (2)102
 

Acknowledgements

Financial assistance from the Advanced Metals Initiative (AMI) and the Department of Science and Technology (DST) of South Africa, as well as the New Metals Development Network (NMDN) and the South African Nuclear Energy Corporation Limited (Necsa) is gratefully acknowledged. Dr R. Meijboom is aknowledged for his kind assistance in the use of modified Schlenk techniques.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChattoraj, S. C., Lynch, C. T. & Mazdiyasni, K. S. (1968). Inorg. Chem. 7, 2501–2505.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteyn, M., Roodt, A. & Steyl, G. (2008). Acta Cryst. E64, m827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZherikova, K. V., Morozova, N. B., Kuratieva, N. V., Baidina, I. A. & Igumenov, I. K. (2005). Zh. Strukt. Khim. 46, 1081–1088.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages m838-m839
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds