organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-amino-4-butanamido-5-methyl­benzoate

aDepartment of Applied Chemistry, College of Sciences, Nanjing University of Technolgy, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China, and bBioengineering Department, Xuzhou Higher Vocational College of Bioengineering, Mine West Road, Xuzhou 221006, People's Republic of China
*Correspondence e-mail: yaocheng@njut.edu.cn

(Received 15 March 2008; accepted 6 May 2008; online 14 May 2008)

The title compound, C13H18N2O3, is an inter­mediate in the synthesis of compounds with medicinial applications. The crystal structure is stabilized by inter­molecular N—H⋯O, C—H⋯N and C—H⋯O hydrogen bonds.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1-19.]). For related literature, see: Engeli et al. (2000[Engeli, S., Negrel, R. & Sharma, A. M. (2000). Hypertension 35, 1270-1277.]); Goossens et al. (2003[Goossens, G. H., Blaak, E. E. & Baak, M. A. (2003). Obes. Rev. 4, 43-55.]); Kintscher et al. (2004[Kintscher, U., Lyon, C. J. & Law, R. E. (2004). Front. Biosci. 9, 359-369.]); Kurtz & Pravenec (2004[Kurtz, T. W. & Pravenec, M. (2004). J. Hypertens. 22, 2253-2261.]); Ries et al. (1993[Ries, U. J., Mihm, G. & Narr, B. (1993). J. Med. Chem. 36, 4040-4051.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18N2O3

  • Mr = 250.29

  • Monoclinic, P 21 /c

  • a = 10.547 (2) Å

  • b = 16.258 (3) Å

  • c = 8.430 (2) Å

  • β = 111.69 (3)°

  • V = 1343.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.965, Tmax = 0.991

  • 2579 measured reflections

  • 2404 independent reflections

  • 1511 reflections with I > 2σ(I)

  • Rint = 0.028

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.174

  • S = 1.02

  • 2404 reflections

  • 158 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.60 3.141 (4) 122
N2—H2A⋯O2ii 0.86 2.33 3.077 (4) 145
N2—H2B⋯N1 0.86 2.46 2.780 (4) 103
N2—H2B⋯O1i 0.86 2.36 3.089 (4) 142
C11—H11A⋯N1 0.96 2.45 2.901 (5) 108
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

3-Amino-4-butyrylamino-5-methyl-benzoic acid methyl ester is important as an intermediate in the synthesis of telmisartan, an angiotensin II receptor blocker, and in the development of obesity and related metabolic disorders in diet-induced obese mice (Ries et al., 1993). Telmisartan can be used as a therapeutic tool for metabolic syndrome, including visceral obesity (Engeli et al., 2000; Kintscher et al., 2004; Goossens et al., 2003; Kurtz et al., 2004). As part of our studies in this area, we report herein the synthesis and crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), bond lengths and angles are within normal ranges (Allen et al., 1987). The aromatic ring (C3—C8) is, of course, planar.

The crystal structure is stabilized by intermolecular N—H···O, C—H···N and C—H···O hydrogen bonds (Table 1, Fig. 2).

Related literature top

For bond-length data, see: Allen et al. (1987). For related literature, see: Engeli et al. (2000); Goossens et al. (2003); Kintscher et al. (2004); Kurtz & Pravenec (2004); Ries et al. (1993).

Experimental top

4-Amino-3-methyl-benzoic acid methyl ester (8.25 g 50 mmol) was acylated with butyryl chloride (5.3 ml 50 mmol) in chlorobenzene at 373 K. The resulting amide was reacted with fuming nitric acid in sulfuric acid (60%) at 273 K. The resulting 4-(butyrylamino)-3-methyl -5-nitrobenzoic acid methyl ester was reduced with hydrogen (5 bar) and palladium (10% on charcoal) in methanol. Then palladium was filtered by suction. The produce separates as a colourless flocculent solid.

Crystals of (I) suitable for X-ray diffraction were obstained by slow evaporation of an ethanolic solution.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.93, 0.98 and 0.96 Å for aromatic, methene and methyl H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXS97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
Methyl 3-amino-4-butanamido-5-methylbenzoate top
Crystal data top
C13H18N2O3F(000) = 536
Mr = 250.29Dx = 1.238 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.547 (2) Åθ = 10–13°
b = 16.258 (3) ŵ = 0.09 mm1
c = 8.430 (2) ÅT = 293 K
β = 111.69 (3)°Block, colourless
V = 1343.2 (5) Å30.40 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1511 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 25.2°, θmin = 2.1°
ω/2θ scansh = 1211
Absorption correction: ψ scan
(North et al., 1968)
k = 019
Tmin = 0.965, Tmax = 0.991l = 010
2579 measured reflections3 standard reflections every 200 reflections
2404 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.05P)2 + 1.5P]
where P = (Fo2 + 2Fc2)/3
2404 reflections(Δ/σ)max = 0.002
158 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C13H18N2O3V = 1343.2 (5) Å3
Mr = 250.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.547 (2) ŵ = 0.09 mm1
b = 16.258 (3) ÅT = 293 K
c = 8.430 (2) Å0.40 × 0.20 × 0.10 mm
β = 111.69 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1511 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.028
Tmin = 0.965, Tmax = 0.9913 standard reflections every 200 reflections
2579 measured reflections intensity decay: none
2404 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.02Δρmax = 0.50 e Å3
2404 reflectionsΔρmin = 0.40 e Å3
158 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7939 (3)0.28652 (17)0.4910 (3)0.0609 (8)
H1A0.78890.28930.38700.073*
O10.9151 (2)0.31431 (18)0.7622 (3)0.0722 (8)
C11.2201 (4)0.4441 (3)0.6344 (6)0.1018 (16)
H1B1.28260.47340.73050.153*
H1C1.17910.48180.54180.153*
H1D1.26850.40230.59940.153*
O20.3477 (2)0.05447 (17)0.6104 (4)0.0760 (8)
N20.7806 (3)0.11598 (19)0.5029 (4)0.0669 (8)
H2A0.77780.06320.50850.080*
H2B0.84690.13950.48450.080*
C21.1113 (4)0.4052 (3)0.6834 (5)0.084
H2C1.15550.37150.78360.100*
H2D1.06300.44870.71630.100*
O30.2717 (2)0.17791 (16)0.6464 (3)0.0690 (7)
C31.0098 (4)0.3540 (2)0.5540 (4)0.0620 (9)
H3A1.05700.30980.52130.074*
H3B0.96450.38720.45330.074*
C40.9036 (3)0.31730 (19)0.6119 (4)0.0483 (8)
C50.6835 (3)0.2489 (2)0.5237 (4)0.0522 (8)
C60.5855 (3)0.2967 (2)0.5521 (4)0.0543 (8)
C70.4796 (3)0.2576 (2)0.5839 (4)0.0537 (8)
H7A0.41410.28880.60610.064*
C80.4715 (3)0.1723 (2)0.5825 (3)0.0479 (8)
C90.5702 (3)0.1258 (2)0.5536 (4)0.0511 (8)
H9A0.56440.06870.55410.061*
C100.6789 (3)0.1628 (2)0.5235 (4)0.0515 (8)
C110.5897 (4)0.3891 (2)0.5480 (5)0.0723 (11)
H11A0.67660.40660.54780.108*
H11B0.57680.41090.64680.108*
H11C0.51850.40880.44670.108*
C120.3588 (3)0.1281 (2)0.6125 (4)0.0540 (8)
C130.1601 (4)0.1399 (3)0.6781 (5)0.0876 (13)
H13A0.10500.18170.70130.131*
H13B0.19530.10380.77460.131*
H13C0.10560.10900.57940.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0727 (19)0.078 (2)0.0357 (14)0.0270 (16)0.0244 (14)0.0037 (14)
O10.0547 (14)0.120 (2)0.0446 (13)0.0178 (14)0.0212 (11)0.0041 (13)
C10.088 (3)0.127 (4)0.099 (3)0.049 (3)0.044 (3)0.021 (3)
O20.0629 (16)0.0679 (18)0.106 (2)0.0081 (13)0.0415 (15)0.0052 (15)
N20.0536 (17)0.074 (2)0.082 (2)0.0098 (15)0.0355 (16)0.0048 (17)
C20.0840.0840.0840.0000.0310.000
O30.0547 (14)0.0824 (18)0.0749 (17)0.0004 (13)0.0296 (13)0.0048 (13)
C30.063 (2)0.072 (2)0.059 (2)0.0144 (19)0.0328 (18)0.0081 (18)
C40.0546 (19)0.0550 (19)0.0413 (17)0.0012 (16)0.0248 (15)0.0036 (15)
C50.056 (2)0.069 (2)0.0284 (15)0.0165 (17)0.0127 (14)0.0038 (15)
C60.060 (2)0.060 (2)0.0363 (16)0.0098 (17)0.0099 (15)0.0002 (15)
C70.0500 (19)0.061 (2)0.0455 (18)0.0014 (16)0.0124 (15)0.0019 (16)
C80.0437 (17)0.061 (2)0.0325 (15)0.0059 (15)0.0059 (13)0.0010 (14)
C90.0435 (18)0.0570 (19)0.0483 (18)0.0042 (15)0.0118 (15)0.0038 (15)
C100.0456 (18)0.066 (2)0.0382 (16)0.0081 (16)0.0102 (14)0.0020 (15)
C110.082 (3)0.067 (2)0.066 (2)0.010 (2)0.025 (2)0.0051 (19)
C120.0473 (19)0.069 (2)0.0418 (17)0.0004 (18)0.0121 (15)0.0052 (17)
C130.063 (2)0.123 (4)0.093 (3)0.004 (2)0.048 (2)0.020 (3)
Geometric parameters (Å, º) top
N1—C41.325 (4)C3—H3A0.9700
N1—C51.430 (4)C3—H3B0.9700
N1—H1A0.8600C5—C61.384 (5)
O1—C41.229 (3)C5—C101.400 (5)
C1—C21.496 (5)C6—C71.394 (4)
C1—H1B0.9600C6—C111.503 (5)
C1—H1C0.9600C7—C81.391 (4)
C1—H1D0.9600C7—H7A0.9300
O2—C121.202 (4)C8—C91.379 (4)
N2—C101.378 (4)C8—C121.488 (4)
N2—H2A0.8600C9—C101.399 (4)
N2—H2B0.8600C9—H9A0.9300
C2—C31.472 (5)C11—H11A0.9600
C2—H2C0.9700C11—H11B0.9600
C2—H2D0.9700C11—H11C0.9600
O3—C121.333 (4)C13—H13A0.9600
O3—C131.439 (4)C13—H13B0.9600
C3—C41.500 (4)C13—H13C0.9600
C4—N1—C5123.7 (2)C5—C6—C7118.6 (3)
C4—N1—H1A118.1C5—C6—C11121.8 (3)
C5—N1—H1A118.1C7—C6—C11119.5 (3)
C2—C1—H1B109.5C8—C7—C6120.3 (3)
C2—C1—H1C109.5C8—C7—H7A119.8
H1B—C1—H1C109.5C6—C7—H7A119.8
C2—C1—H1D109.5C9—C8—C7120.0 (3)
H1B—C1—H1D109.5C9—C8—C12117.9 (3)
H1C—C1—H1D109.5C7—C8—C12122.1 (3)
C10—N2—H2A120.0C8—C9—C10121.3 (3)
C10—N2—H2B120.0C8—C9—H9A119.4
H2A—N2—H2B120.0C10—C9—H9A119.4
C3—C2—C1117.2 (3)N2—C10—C9120.9 (3)
C3—C2—H2C108.0N2—C10—C5121.7 (3)
C1—C2—H2C108.0C9—C10—C5117.4 (3)
C3—C2—H2D108.0C6—C11—H11A109.5
C1—C2—H2D108.0C6—C11—H11B109.5
H2C—C2—H2D107.2H11A—C11—H11B109.5
C12—O3—C13117.1 (3)C6—C11—H11C109.5
C2—C3—C4114.2 (3)H11A—C11—H11C109.5
C2—C3—H3A108.7H11B—C11—H11C109.5
C4—C3—H3A108.7O2—C12—O3122.5 (3)
C2—C3—H3B108.7O2—C12—C8123.9 (3)
C4—C3—H3B108.7O3—C12—C8113.6 (3)
H3A—C3—H3B107.6O3—C13—H13A109.5
O1—C4—N1120.2 (3)O3—C13—H13B109.5
O1—C4—C3123.4 (3)H13A—C13—H13B109.5
N1—C4—C3116.4 (3)O3—C13—H13C109.5
C6—C5—C10122.3 (3)H13A—C13—H13C109.5
C6—C5—N1120.4 (3)H13B—C13—H13C109.5
C10—C5—N1117.2 (3)
C1—C2—C3—C4179.7 (4)C7—C8—C9—C100.7 (4)
C5—N1—C4—O10.2 (5)C12—C8—C9—C10179.7 (3)
C5—N1—C4—C3179.6 (3)C8—C9—C10—N2176.8 (3)
C2—C3—C4—O115.3 (5)C8—C9—C10—C50.0 (4)
C2—C3—C4—N1165.4 (3)C6—C5—C10—N2176.9 (3)
C4—N1—C5—C679.5 (4)N1—C5—C10—N23.8 (4)
C4—N1—C5—C10101.3 (4)C6—C5—C10—C90.1 (5)
C10—C5—C6—C70.9 (5)N1—C5—C10—C9179.3 (2)
N1—C5—C6—C7179.9 (3)C13—O3—C12—O21.1 (5)
C10—C5—C6—C11178.5 (3)C13—O3—C12—C8179.6 (3)
N1—C5—C6—C110.7 (5)C9—C8—C12—O21.2 (5)
C5—C6—C7—C81.6 (5)C7—C8—C12—O2179.2 (3)
C11—C6—C7—C8177.8 (3)C9—C8—C12—O3177.3 (3)
C6—C7—C8—C91.6 (5)C7—C8—C12—O32.4 (4)
C6—C7—C8—C12178.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.603.141 (4)122
N2—H2A···O2ii0.862.333.077 (4)145
N2—H2B···N10.862.462.780 (4)103
N2—H2B···O1i0.862.363.089 (4)142
C11—H11A···N10.962.452.901 (5)108
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H18N2O3
Mr250.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.547 (2), 16.258 (3), 8.430 (2)
β (°) 111.69 (3)
V3)1343.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.965, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
2579, 2404, 1511
Rint0.028
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.174, 1.02
No. of reflections2404
No. of parameters158
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.40

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.86002.60003.141 (4)122.00
N2—H2A···O2ii0.86002.33003.077 (4)145.00
N2—H2B···N10.86002.46002.780 (4)103.00
N2—H2B···O1i0.86002.36003.089 (4)142.00
C11—H11A···N10.96002.45002.901 (5)108.00
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for supporting the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1–19.  CrossRef Web of Science Google Scholar
First citationEngeli, S., Negrel, R. & Sharma, A. M. (2000). Hypertension 35, 1270–1277.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGoossens, G. H., Blaak, E. E. & Baak, M. A. (2003). Obes. Rev. 4, 43–55.  CrossRef PubMed CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKintscher, U., Lyon, C. J. & Law, R. E. (2004). Front. Biosci. 9, 359–369.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKurtz, T. W. & Pravenec, M. (2004). J. Hypertens. 22, 2253–2261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRies, U. J., Mihm, G. & Narr, B. (1993). J. Med. Chem. 36, 4040–4051.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds