metal-organic compounds
Dioxidobis(pentane-2,4-dionato-κ2O,O′)(pyridine-4-carbaldehyde oxime-κN1)uranium(VI)
aDepartment of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan, and bResearch Center for Materials with Integrated Properties, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan
*Correspondence e-mail: kitazawa@chem.sci.toho-u.ac.jp
The title compound, [U(C5H7O2)2O2(C6H6N2O)], exhibits a pentagonal–bipyramidal coordination geometry around the UVI atom, involving two bidentate acetylacetonate ions and the pyridine ring of the pyridine-4-carbaldehyde oxime ligand. Hydrogen bonds exist between the OH group of the pyridine-4-carbaldehyde oxime ligand and the two O atoms of the acetylacetonate ions.
Related literature
For related literature, see: Alcock et al. (1984, 1987); Kawasaki et al. (2006); Saeki et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and CrystalMaker (CrystalMaker, 2007); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808012889/im2063sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808012889/im2063Isup2.hkl
To 10 ml of a methanolic solution containing 1 mmol UO2(NO3)2.6H2O was added 3.0 mmol of acetylacetone and 3.0 mmol of pyridine-4-carbaldehyde oxime oximepyridine in 5 ml of methanol. After the solvent evaporated slowly at room temperature for a few days, orange crystals of the title complex were obtained.
All H atoms were placed at calculated positions (O—H = 0.82 Å, C(CH)—H = 0.93 Å or C(CH3)—H = 0.96 Å) and allowed to ride on the parent atom [Uiso(H) = 1.2Ueq(CH) or Uiso(H) = 1.5Ueq(CH3, O)].
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and CrystalMaker (CrystalMaker, 2007); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[U(C5H7O2)2O2(C6H6N2O)] | Z = 2 |
Mr = 590.37 | F(000) = 556 |
Triclinic, P1 | Dx = 1.983 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1969 (6) Å | Cell parameters from 5400 reflections |
b = 11.2632 (9) Å | θ = 2.3–28.3° |
c = 11.7448 (9) Å | µ = 8.25 mm−1 |
α = 71.016 (1)° | T = 291 K |
β = 75.660 (2)° | Block, orange |
γ = 80.137 (2)° | 0.20 × 0.18 × 0.15 mm |
V = 988.51 (13) Å3 |
Bruker SMART CCD area-detector diffractometer | 4832 independent reflections |
Radiation source: fine-focus sealed tube | 4538 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.013 |
Detector resolution: 8.366 pixels mm-1 | θmax = 28.3°, θmin = 1.9° |
ϕ and ω scans | h = −10→9 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −14→15 |
Tmin = 0.289, Tmax = 0.371 | l = −15→15 |
7404 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.048 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.018P)2 + 0.4544P] where P = (Fo2 + 2Fc2)/3 |
4832 reflections | (Δ/σ)max = 0.016 |
240 parameters | Δρmax = 0.63 e Å−3 |
0 restraints | Δρmin = −0.71 e Å−3 |
[U(C5H7O2)2O2(C6H6N2O)] | γ = 80.137 (2)° |
Mr = 590.37 | V = 988.51 (13) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.1969 (6) Å | Mo Kα radiation |
b = 11.2632 (9) Å | µ = 8.25 mm−1 |
c = 11.7448 (9) Å | T = 291 K |
α = 71.016 (1)° | 0.20 × 0.18 × 0.15 mm |
β = 75.660 (2)° |
Bruker SMART CCD area-detector diffractometer | 4832 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 4538 reflections with I > 2σ(I) |
Tmin = 0.289, Tmax = 0.371 | Rint = 0.013 |
7404 measured reflections |
R[F2 > 2σ(F2)] = 0.019 | 0 restraints |
wR(F2) = 0.048 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.63 e Å−3 |
4832 reflections | Δρmin = −0.71 e Å−3 |
240 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
U1 | 0.097943 (12) | 0.796870 (9) | 0.824753 (9) | 0.03536 (4) | |
O1 | −0.0310 (3) | 0.9423 (2) | 0.7952 (2) | 0.0525 (6) | |
O2 | 0.2248 (3) | 0.6515 (2) | 0.8605 (2) | 0.0503 (5) | |
O3 | 0.3515 (3) | 0.8856 (2) | 0.7061 (2) | 0.0499 (5) | |
O4 | 0.2204 (3) | 0.8617 (2) | 0.9494 (2) | 0.0490 (5) | |
O5 | 0.1115 (3) | 0.7877 (3) | 0.6262 (2) | 0.0601 (7) | |
O6 | −0.1153 (3) | 0.6784 (3) | 0.8304 (2) | 0.0579 (6) | |
O7 | −0.5265 (4) | 0.6725 (3) | 1.5844 (2) | 0.0731 (8) | |
H7 | −0.5787 | 0.7280 | 1.6141 | 0.110* | |
N1 | −0.0878 (3) | 0.7423 (2) | 1.0457 (2) | 0.0420 (5) | |
N2 | −0.4406 (4) | 0.7272 (3) | 1.4648 (3) | 0.0593 (8) | |
C1 | 0.4046 (6) | 0.8379 (5) | 1.0811 (4) | 0.0735 (12) | |
H1A | 0.3173 | 0.8863 | 1.1233 | 0.110* | |
H1B | 0.5126 | 0.8648 | 1.0740 | 0.110* | |
H1C | 0.4033 | 0.7501 | 1.1266 | 0.110* | |
C2 | 0.3743 (4) | 0.8576 (3) | 0.9552 (3) | 0.0470 (7) | |
C3 | 0.5049 (4) | 0.8757 (4) | 0.8536 (3) | 0.0531 (8) | |
H3 | 0.6133 | 0.8728 | 0.8664 | 0.064* | |
C4 | 0.4875 (4) | 0.8978 (3) | 0.7336 (3) | 0.0442 (7) | |
C5 | 0.6322 (5) | 0.9391 (4) | 0.6284 (4) | 0.0598 (9) | |
H5A | 0.6415 | 0.8938 | 0.5701 | 0.090* | |
H5B | 0.7351 | 0.9220 | 0.6584 | 0.090* | |
H5C | 0.6127 | 1.0279 | 0.5890 | 0.090* | |
C6 | −0.2910 (7) | 0.5394 (5) | 0.8211 (5) | 0.0811 (14) | |
H6A | −0.2656 | 0.4802 | 0.8959 | 0.122* | |
H6B | −0.2988 | 0.4946 | 0.7660 | 0.122* | |
H6C | −0.3968 | 0.5882 | 0.8394 | 0.122* | |
C7 | −0.1524 (5) | 0.6261 (3) | 0.7615 (4) | 0.0546 (9) | |
C8 | −0.0769 (6) | 0.6479 (4) | 0.6384 (4) | 0.0612 (10) | |
H8 | −0.1122 | 0.6050 | 0.5946 | 0.073* | |
C9 | 0.0470 (5) | 0.7286 (4) | 0.5752 (3) | 0.0551 (8) | |
C10 | 0.1107 (7) | 0.7529 (6) | 0.4392 (4) | 0.0844 (14) | |
H10A | 0.0741 | 0.8381 | 0.3971 | 0.127* | |
H10B | 0.0667 | 0.6955 | 0.4119 | 0.127* | |
H10C | 0.2321 | 0.7406 | 0.4216 | 0.127* | |
C11 | −0.1242 (4) | 0.8257 (3) | 1.1105 (3) | 0.0454 (7) | |
H11 | −0.0868 | 0.9054 | 1.0725 | 0.054* | |
C12 | −0.2131 (4) | 0.7997 (3) | 1.2294 (3) | 0.0450 (7) | |
H12 | −0.2366 | 0.8607 | 1.2704 | 0.054* | |
C13 | −0.2680 (4) | 0.6800 (3) | 1.2880 (3) | 0.0422 (6) | |
C14 | −0.2309 (5) | 0.5944 (3) | 1.2224 (3) | 0.0499 (8) | |
H14 | −0.2650 | 0.5136 | 1.2590 | 0.060* | |
C15 | −0.1426 (4) | 0.6286 (3) | 1.1019 (3) | 0.0477 (7) | |
H15 | −0.1205 | 0.5699 | 1.0582 | 0.057* | |
C16 | −0.3646 (4) | 0.6443 (3) | 1.4146 (3) | 0.0499 (7) | |
H16 | −0.3700 | 0.5594 | 1.4585 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
U1 | 0.03482 (6) | 0.03467 (6) | 0.03998 (6) | −0.00562 (4) | −0.00817 (4) | −0.01417 (4) |
O1 | 0.0479 (13) | 0.0446 (13) | 0.0623 (14) | 0.0015 (10) | −0.0158 (11) | −0.0122 (11) |
O2 | 0.0508 (13) | 0.0390 (11) | 0.0602 (14) | 0.0021 (10) | −0.0093 (11) | −0.0185 (10) |
O3 | 0.0451 (12) | 0.0615 (14) | 0.0453 (12) | −0.0194 (11) | −0.0089 (10) | −0.0120 (10) |
O4 | 0.0425 (12) | 0.0625 (14) | 0.0517 (13) | −0.0112 (10) | −0.0082 (10) | −0.0279 (11) |
O5 | 0.0639 (15) | 0.0816 (19) | 0.0458 (13) | −0.0301 (14) | −0.0099 (11) | −0.0229 (12) |
O6 | 0.0551 (14) | 0.0736 (17) | 0.0558 (14) | −0.0292 (13) | −0.0066 (11) | −0.0255 (12) |
O7 | 0.081 (2) | 0.081 (2) | 0.0483 (14) | −0.0147 (16) | 0.0146 (13) | −0.0240 (14) |
N1 | 0.0463 (14) | 0.0372 (12) | 0.0438 (13) | −0.0086 (11) | −0.0025 (11) | −0.0166 (10) |
N2 | 0.0593 (18) | 0.068 (2) | 0.0463 (15) | −0.0052 (15) | 0.0015 (13) | −0.0211 (14) |
C1 | 0.076 (3) | 0.098 (3) | 0.061 (2) | −0.014 (2) | −0.027 (2) | −0.030 (2) |
C2 | 0.0491 (18) | 0.0439 (16) | 0.0576 (19) | −0.0041 (14) | −0.0196 (15) | −0.0219 (14) |
C3 | 0.0380 (16) | 0.065 (2) | 0.063 (2) | −0.0031 (15) | −0.0154 (15) | −0.0240 (17) |
C4 | 0.0367 (15) | 0.0370 (15) | 0.0599 (19) | −0.0051 (12) | −0.0083 (13) | −0.0162 (13) |
C5 | 0.0427 (18) | 0.066 (2) | 0.068 (2) | −0.0156 (16) | −0.0021 (16) | −0.0179 (19) |
C6 | 0.088 (3) | 0.074 (3) | 0.092 (3) | −0.043 (3) | −0.037 (3) | −0.009 (2) |
C7 | 0.056 (2) | 0.0462 (18) | 0.070 (2) | −0.0095 (15) | −0.0324 (18) | −0.0129 (16) |
C8 | 0.081 (3) | 0.060 (2) | 0.059 (2) | −0.015 (2) | −0.035 (2) | −0.0203 (18) |
C9 | 0.064 (2) | 0.062 (2) | 0.0488 (18) | −0.0043 (17) | −0.0251 (17) | −0.0193 (16) |
C10 | 0.101 (4) | 0.113 (4) | 0.052 (2) | −0.022 (3) | −0.027 (2) | −0.028 (2) |
C11 | 0.0494 (17) | 0.0335 (14) | 0.0522 (17) | −0.0071 (13) | −0.0011 (14) | −0.0168 (13) |
C12 | 0.0470 (17) | 0.0408 (16) | 0.0516 (17) | −0.0059 (13) | −0.0046 (13) | −0.0230 (13) |
C13 | 0.0398 (15) | 0.0447 (16) | 0.0443 (15) | −0.0046 (12) | −0.0067 (12) | −0.0174 (13) |
C14 | 0.061 (2) | 0.0338 (15) | 0.0496 (17) | −0.0106 (14) | −0.0003 (15) | −0.0110 (13) |
C15 | 0.062 (2) | 0.0337 (15) | 0.0469 (16) | −0.0083 (14) | 0.0011 (14) | −0.0185 (13) |
C16 | 0.0557 (19) | 0.0467 (17) | 0.0467 (17) | −0.0092 (15) | −0.0036 (14) | −0.0162 (14) |
U1—O1 | 1.772 (2) | C5—H5A | 0.9600 |
U1—O2 | 1.768 (2) | C5—H5B | 0.9600 |
U1—O3 | 2.374 (2) | C5—H5C | 0.9600 |
U1—O4 | 2.314 (2) | C6—C7 | 1.509 (5) |
U1—O5 | 2.342 (2) | C6—H6A | 0.9600 |
U1—O6 | 2.350 (2) | C6—H6B | 0.9600 |
U1—N1 | 2.599 (3) | C6—H6C | 0.9600 |
O3—C4 | 1.275 (4) | C7—C8 | 1.383 (6) |
O4—C2 | 1.272 (4) | C8—C9 | 1.382 (6) |
O5—C9 | 1.272 (4) | C8—H8 | 0.9300 |
O6—C7 | 1.260 (4) | C9—C10 | 1.500 (6) |
O7—N2 | 1.394 (4) | C10—H10A | 0.9600 |
O7—H7 | 0.8200 | C10—H10B | 0.9600 |
N1—C15 | 1.334 (4) | C10—H10C | 0.9600 |
N1—C11 | 1.345 (4) | C11—C12 | 1.367 (4) |
N2—C16 | 1.259 (5) | C11—H11 | 0.9300 |
C1—C2 | 1.499 (5) | C12—C13 | 1.394 (4) |
C1—H1A | 0.9600 | C12—H12 | 0.9300 |
C1—H1B | 0.9600 | C13—C14 | 1.372 (4) |
C1—H1C | 0.9600 | C13—C16 | 1.462 (4) |
C2—C3 | 1.377 (5) | C14—C15 | 1.382 (5) |
C3—C4 | 1.389 (5) | C14—H14 | 0.9300 |
C3—H3 | 0.9300 | C15—H15 | 0.9300 |
C4—C5 | 1.497 (5) | C16—H16 | 0.9300 |
O1—U1—O2 | 177.73 (10) | C4—C5—H5A | 109.5 |
O1—U1—O3 | 94.67 (10) | C4—C5—H5B | 109.5 |
O1—U1—O4 | 89.96 (10) | H5A—C5—H5B | 109.5 |
O1—U1—O5 | 90.77 (11) | C4—C5—H5C | 109.5 |
O1—U1—O6 | 93.99 (11) | H5A—C5—H5C | 109.5 |
O1—U1—N1 | 86.40 (10) | H5B—C5—H5C | 109.5 |
O2—U1—O3 | 86.31 (10) | C7—C6—H6A | 109.5 |
O2—U1—O4 | 88.42 (10) | C7—C6—H6B | 109.5 |
O2—U1—O5 | 91.46 (11) | H6A—C6—H6B | 109.5 |
O2—U1—O6 | 86.34 (11) | C7—C6—H6C | 109.5 |
O2—U1—N1 | 91.57 (10) | H6A—C6—H6C | 109.5 |
O3—U1—O4 | 71.32 (8) | H6B—C6—H6C | 109.5 |
O3—U1—O5 | 75.30 (8) | O6—C7—C8 | 123.4 (3) |
O3—U1—O6 | 145.01 (9) | O6—C7—C6 | 115.5 (4) |
O3—U1—N1 | 142.48 (8) | C8—C7—C6 | 121.1 (3) |
O4—U1—O5 | 146.56 (8) | C9—C8—C7 | 125.1 (3) |
O4—U1—O6 | 142.51 (8) | C9—C8—H8 | 117.4 |
O4—U1—N1 | 71.18 (8) | C7—C8—H8 | 117.4 |
O5—U1—O6 | 70.74 (8) | O5—C9—C8 | 123.3 (3) |
O5—U1—N1 | 142.22 (8) | O5—C9—C10 | 116.0 (4) |
O6—U1—N1 | 71.89 (8) | C8—C9—C10 | 120.6 (3) |
C4—O3—U1 | 133.1 (2) | C9—C10—H10A | 109.5 |
C2—O4—U1 | 131.5 (2) | C9—C10—H10B | 109.5 |
C9—O5—U1 | 138.1 (2) | H10A—C10—H10B | 109.5 |
C7—O6—U1 | 137.8 (2) | C9—C10—H10C | 109.5 |
N2—O7—H7 | 109.5 | H10A—C10—H10C | 109.5 |
C15—N1—C11 | 117.3 (3) | H10B—C10—H10C | 109.5 |
C15—N1—U1 | 121.6 (2) | N1—C11—C12 | 123.6 (3) |
C11—N1—U1 | 121.0 (2) | N1—C11—H11 | 118.2 |
C16—N2—O7 | 111.2 (3) | C12—C11—H11 | 118.2 |
C2—C1—H1A | 109.5 | C11—C12—C13 | 118.7 (3) |
C2—C1—H1B | 109.5 | C11—C12—H12 | 120.6 |
H1A—C1—H1B | 109.5 | C13—C12—H12 | 120.6 |
C2—C1—H1C | 109.5 | C14—C13—C12 | 118.0 (3) |
H1A—C1—H1C | 109.5 | C14—C13—C16 | 119.6 (3) |
H1B—C1—H1C | 109.5 | C12—C13—C16 | 122.4 (3) |
O4—C2—C3 | 123.3 (3) | C13—C14—C15 | 119.8 (3) |
O4—C2—C1 | 115.3 (3) | C13—C14—H14 | 120.1 |
C3—C2—C1 | 121.3 (3) | C15—C14—H14 | 120.1 |
C2—C3—C4 | 125.1 (3) | N1—C15—C14 | 122.6 (3) |
C2—C3—H3 | 117.5 | N1—C15—H15 | 118.7 |
C4—C3—H3 | 117.5 | C14—C15—H15 | 118.7 |
O3—C4—C3 | 123.4 (3) | N2—C16—C13 | 120.8 (3) |
O3—C4—C5 | 116.4 (3) | N2—C16—H16 | 119.6 |
C3—C4—C5 | 120.2 (3) | C13—C16—H16 | 119.6 |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7···O5i | 0.82 | 2.49 | 3.018 (4) | 123 |
O7—H7···O3i | 0.82 | 2.29 | 3.083 (4) | 163 |
Symmetry code: (i) x−1, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | [U(C5H7O2)2O2(C6H6N2O)] |
Mr | 590.37 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 291 |
a, b, c (Å) | 8.1969 (6), 11.2632 (9), 11.7448 (9) |
α, β, γ (°) | 71.016 (1), 75.660 (2), 80.137 (2) |
V (Å3) | 988.51 (13) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 8.25 |
Crystal size (mm) | 0.20 × 0.18 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.289, 0.371 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7404, 4832, 4538 |
Rint | 0.013 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.019, 0.048, 1.09 |
No. of reflections | 4832 |
No. of parameters | 240 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.63, −0.71 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and CrystalMaker (CrystalMaker, 2007), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7···O5i | 0.82 | 2.49 | 3.018 (4) | 122.8 |
O7—H7···O3i | 0.82 | 2.29 | 3.083 (4) | 163.3 |
Symmetry code: (i) x−1, y, z+1. |
References
Alcock, N. W., Flanders, D. J. & Brown, D. (1984). J. Chem. Soc. Dalton Trans. pp. 679–681. CSD CrossRef Web of Science Google Scholar
Alcock, N. W., Flanders, D. J., Pennington, M. & Brown, D. (1987). Acta Cryst. C43, 1476–1480. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
CrystalMaker (2007). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England. Google Scholar
Kawasaki, T., Kitazawa, T., Nishimura, T., Nakada, M. & Saeki, M. (2006). Hyperfine Interact. 166, 417–423. Web of Science CrossRef Google Scholar
Saeki, M., Nakada, M., Kawasaki, T., Nishimura, T., Kitazawa, T. & Takeda, M. (2006). J. Radioanal. Nucl. Chem. 270, 379–384. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Actinoide chemistry is highly related to the reprocessing of nuclear fuels and treatment of actinoide wastes in the backend chemistry of today's operating nuclear power plants. The fundamental investigation of the bonding and structure of uranium complexes provides important information in the field of backend chemistry. Structural properties of [AnO2(acac)2(py)] complexes (An = U, Np) (Alcock et al., 1984; Alcock et al., 1987; Kawasaki et al., 2006) were reported. [AnO2(acac)2(py)] complexes exhibit pentagonal-bipyramidal geometry around the AnVI ion which are coordinated by two oxo ligands, four oxygen atoms from the acac ions and one nitrogen atom from the pyridine molecule. Recently, 237Np Mößbauer spectra of the [NpO2(acac)2(py)] (Kawasaki et al., 2006; Saeki et al., 2006) were reported. We report herein the synthesis and crystal structure of the new uranyl(VI) acetylacetonate complex [UO2(acac)2(4-aldpy)], (I), (4-aldpy = pyridine-4-carbaldehyde oxime).
In the title complex, [UO2(acac)2(4-aldpy)] (I), the uranyl(VI) moiety is constructed from U1, O1 and O2. The O1—U1—O2 angle of the uranyl(VI) ion is 177.7 (1) °. U1 exhibits a pentagonal-bipyramidal coordination geometry. The two O atoms from the uranyl(VI) ion occupy the U1 axial positions whereas four O atoms from the two chelating acac ions and one N atom from the 4-aldpy are situated in the equatorial plane (Fig. 1). The deviations of the four O atoms (O3, O4, O5 and O6) of the acac and one N1 atom of the 4-aldpy from the equatorial plane (O3, O4, O5, O6 and N1) are within 0.13 Å. The dihedral angle between the pyridine ring of the 4-aldpy ligand and the equatorial plane of the uranyl(VI) ion in I is 44.5 (1)°. The U1—Oacac distances are longer than the U1—Ouranyl distances and are shorter than the U1—N1 distance which measures to 2.599 (3) Å. This bond length is similar to the U—N distance [2.602 (3) Å] in [UO2(acac)2(py)] (Kawasaki et al.). However, [UO2(acac)2(py)] crystallized in the non-centrosymmetric space group, Fdd2, whereas I crystallized in the centrosymmetric space group P1. The differences in the crystal structures are obviously caused by the additional aldoxime substituent in I acting as an efficient hydrogen bond donor site. The O7 atom of the OH group of the 4-aldpy is connected with O3 and O5 atoms of the acac by intermolecular hydrogen bonds. This results in a 1-D chain aggregate of I along the [1, 0, - 1] direction (Fig. 2).