metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dioxidobis(pentane-2,4-dionato-κ2O,O′)(pyridine-4-carbaldehyde oxime-κN1)uranium(VI)

aDepartment of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan, and bResearch Center for Materials with Integrated Properties, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan
*Correspondence e-mail: kitazawa@chem.sci.toho-u.ac.jp

(Received 31 March 2008; accepted 1 May 2008; online 10 May 2008)

The title compound, [U(C5H7O2)2O2(C6H6N2O)], exhibits a penta­gonal–bipyramidal coordination geometry around the UVI atom, involving two bidentate acetyl­acetonate ions and the pyridine ring of the pyridine-4-carbaldehyde oxime ligand. Hydrogen bonds exist between the OH group of the pyridine-4-carbaldehyde oxime ligand and the two O atoms of the acetyl­acetonate ions.

Related literature

For related literature, see: Alcock et al. (1984[Alcock, N. W., Flanders, D. J. & Brown, D. (1984). J. Chem. Soc. Dalton Trans. pp. 679-681.], 1987[Alcock, N. W., Flanders, D. J., Pennington, M. & Brown, D. (1987). Acta Cryst. C43, 1476-1480.]); Kawasaki et al. (2006[Kawasaki, T., Kitazawa, T., Nishimura, T., Nakada, M. & Saeki, M. (2006). Hyperfine Interact. 166, 417-423.]); Saeki et al. (2006[Saeki, M., Nakada, M., Kawasaki, T., Nishimura, T., Kitazawa, T. & Takeda, M. (2006). J. Radioanal. Nucl. Chem. 270, 379-384.]).

[Scheme 1]

Experimental

Crystal data
  • [U(C5H7O2)2O2(C6H6N2O)]

  • Mr = 590.37

  • Triclinic, [P \overline 1]

  • a = 8.1969 (6) Å

  • b = 11.2632 (9) Å

  • c = 11.7448 (9) Å

  • α = 71.016 (1)°

  • β = 75.660 (2)°

  • γ = 80.137 (2)°

  • V = 988.51 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.25 mm−1

  • T = 291 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.289, Tmax = 0.371 (expected range = 0.226–0.290)

  • 7404 measured reflections

  • 4832 independent reflections

  • 4538 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.048

  • S = 1.09

  • 4832 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯O5i 0.82 2.49 3.018 (4) 123
O7—H7⋯O3i 0.82 2.29 3.083 (4) 163
Symmetry code: (i) x-1, y, z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and CrystalMaker (CrystalMaker, 2007[CrystalMaker (2007). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Actinoide chemistry is highly related to the reprocessing of nuclear fuels and treatment of actinoide wastes in the backend chemistry of today's operating nuclear power plants. The fundamental investigation of the bonding and structure of uranium complexes provides important information in the field of backend chemistry. Structural properties of [AnO2(acac)2(py)] complexes (An = U, Np) (Alcock et al., 1984; Alcock et al., 1987; Kawasaki et al., 2006) were reported. [AnO2(acac)2(py)] complexes exhibit pentagonal-bipyramidal geometry around the AnVI ion which are coordinated by two oxo ligands, four oxygen atoms from the acac ions and one nitrogen atom from the pyridine molecule. Recently, 237Np Mößbauer spectra of the [NpO2(acac)2(py)] (Kawasaki et al., 2006; Saeki et al., 2006) were reported. We report herein the synthesis and crystal structure of the new uranyl(VI) acetylacetonate complex [UO2(acac)2(4-aldpy)], (I), (4-aldpy = pyridine-4-carbaldehyde oxime).

In the title complex, [UO2(acac)2(4-aldpy)] (I), the uranyl(VI) moiety is constructed from U1, O1 and O2. The O1—U1—O2 angle of the uranyl(VI) ion is 177.7 (1) °. U1 exhibits a pentagonal-bipyramidal coordination geometry. The two O atoms from the uranyl(VI) ion occupy the U1 axial positions whereas four O atoms from the two chelating acac ions and one N atom from the 4-aldpy are situated in the equatorial plane (Fig. 1). The deviations of the four O atoms (O3, O4, O5 and O6) of the acac and one N1 atom of the 4-aldpy from the equatorial plane (O3, O4, O5, O6 and N1) are within 0.13 Å. The dihedral angle between the pyridine ring of the 4-aldpy ligand and the equatorial plane of the uranyl(VI) ion in I is 44.5 (1)°. The U1—Oacac distances are longer than the U1—Ouranyl distances and are shorter than the U1—N1 distance which measures to 2.599 (3) Å. This bond length is similar to the U—N distance [2.602 (3) Å] in [UO2(acac)2(py)] (Kawasaki et al.). However, [UO2(acac)2(py)] crystallized in the non-centrosymmetric space group, Fdd2, whereas I crystallized in the centrosymmetric space group P1. The differences in the crystal structures are obviously caused by the additional aldoxime substituent in I acting as an efficient hydrogen bond donor site. The O7 atom of the OH group of the 4-aldpy is connected with O3 and O5 atoms of the acac by intermolecular hydrogen bonds. This results in a 1-D chain aggregate of I along the [1, 0, - 1] direction (Fig. 2).

Related literature top

For related literature, see: Alcock et al. (1984, 1987); Kawasaki et al. (2006); Saeki et al. (2006).

Experimental top

To 10 ml of a methanolic solution containing 1 mmol UO2(NO3)2.6H2O was added 3.0 mmol of acetylacetone and 3.0 mmol of pyridine-4-carbaldehyde oxime oximepyridine in 5 ml of methanol. After the solvent evaporated slowly at room temperature for a few days, orange crystals of the title complex were obtained.

Refinement top

All H atoms were placed at calculated positions (O—H = 0.82 Å, C(CH)—H = 0.93 Å or C(CH3)—H = 0.96 Å) and allowed to ride on the parent atom [Uiso(H) = 1.2Ueq(CH) or Uiso(H) = 1.5Ueq(CH3, O)].

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and CrystalMaker (CrystalMaker, 2007); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of [UO2(acac)2(4-aldpy)] (I) showing the atomic notations; displacement ellipsoids are depicted at the 50% probability level; H atoms are omitted for clarity.
[Figure 2] Fig. 2. Strcuture of the 1-D chain aggregate of I. Dashed lines indicate intermolecular OH···Oacac hydrogen bonds between neighboring molecules; H atoms are omitted for clarity.
Dioxidobis(pentane-2,4-dionato-κ2O,O')(pyridine-4-carbaldehyde oxime-κN1)uranium(VI) top
Crystal data top
[U(C5H7O2)2O2(C6H6N2O)]Z = 2
Mr = 590.37F(000) = 556
Triclinic, P1Dx = 1.983 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1969 (6) ÅCell parameters from 5400 reflections
b = 11.2632 (9) Åθ = 2.3–28.3°
c = 11.7448 (9) ŵ = 8.25 mm1
α = 71.016 (1)°T = 291 K
β = 75.660 (2)°Block, orange
γ = 80.137 (2)°0.20 × 0.18 × 0.15 mm
V = 988.51 (13) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4832 independent reflections
Radiation source: fine-focus sealed tube4538 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Detector resolution: 8.366 pixels mm-1θmax = 28.3°, θmin = 1.9°
ϕ and ω scansh = 109
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1415
Tmin = 0.289, Tmax = 0.371l = 1515
7404 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.018P)2 + 0.4544P]
where P = (Fo2 + 2Fc2)/3
4832 reflections(Δ/σ)max = 0.016
240 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
[U(C5H7O2)2O2(C6H6N2O)]γ = 80.137 (2)°
Mr = 590.37V = 988.51 (13) Å3
Triclinic, P1Z = 2
a = 8.1969 (6) ÅMo Kα radiation
b = 11.2632 (9) ŵ = 8.25 mm1
c = 11.7448 (9) ÅT = 291 K
α = 71.016 (1)°0.20 × 0.18 × 0.15 mm
β = 75.660 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4832 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4538 reflections with I > 2σ(I)
Tmin = 0.289, Tmax = 0.371Rint = 0.013
7404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.048H-atom parameters constrained
S = 1.09Δρmax = 0.63 e Å3
4832 reflectionsΔρmin = 0.71 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.097943 (12)0.796870 (9)0.824753 (9)0.03536 (4)
O10.0310 (3)0.9423 (2)0.7952 (2)0.0525 (6)
O20.2248 (3)0.6515 (2)0.8605 (2)0.0503 (5)
O30.3515 (3)0.8856 (2)0.7061 (2)0.0499 (5)
O40.2204 (3)0.8617 (2)0.9494 (2)0.0490 (5)
O50.1115 (3)0.7877 (3)0.6262 (2)0.0601 (7)
O60.1153 (3)0.6784 (3)0.8304 (2)0.0579 (6)
O70.5265 (4)0.6725 (3)1.5844 (2)0.0731 (8)
H70.57870.72801.61410.110*
N10.0878 (3)0.7423 (2)1.0457 (2)0.0420 (5)
N20.4406 (4)0.7272 (3)1.4648 (3)0.0593 (8)
C10.4046 (6)0.8379 (5)1.0811 (4)0.0735 (12)
H1A0.31730.88631.12330.110*
H1B0.51260.86481.07400.110*
H1C0.40330.75011.12660.110*
C20.3743 (4)0.8576 (3)0.9552 (3)0.0470 (7)
C30.5049 (4)0.8757 (4)0.8536 (3)0.0531 (8)
H30.61330.87280.86640.064*
C40.4875 (4)0.8978 (3)0.7336 (3)0.0442 (7)
C50.6322 (5)0.9391 (4)0.6284 (4)0.0598 (9)
H5A0.64150.89380.57010.090*
H5B0.73510.92200.65840.090*
H5C0.61271.02790.58900.090*
C60.2910 (7)0.5394 (5)0.8211 (5)0.0811 (14)
H6A0.26560.48020.89590.122*
H6B0.29880.49460.76600.122*
H6C0.39680.58820.83940.122*
C70.1524 (5)0.6261 (3)0.7615 (4)0.0546 (9)
C80.0769 (6)0.6479 (4)0.6384 (4)0.0612 (10)
H80.11220.60500.59460.073*
C90.0470 (5)0.7286 (4)0.5752 (3)0.0551 (8)
C100.1107 (7)0.7529 (6)0.4392 (4)0.0844 (14)
H10A0.07410.83810.39710.127*
H10B0.06670.69550.41190.127*
H10C0.23210.74060.42160.127*
C110.1242 (4)0.8257 (3)1.1105 (3)0.0454 (7)
H110.08680.90541.07250.054*
C120.2131 (4)0.7997 (3)1.2294 (3)0.0450 (7)
H120.23660.86071.27040.054*
C130.2680 (4)0.6800 (3)1.2880 (3)0.0422 (6)
C140.2309 (5)0.5944 (3)1.2224 (3)0.0499 (8)
H140.26500.51361.25900.060*
C150.1426 (4)0.6286 (3)1.1019 (3)0.0477 (7)
H150.12050.56991.05820.057*
C160.3646 (4)0.6443 (3)1.4146 (3)0.0499 (7)
H160.37000.55941.45850.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.03482 (6)0.03467 (6)0.03998 (6)0.00562 (4)0.00817 (4)0.01417 (4)
O10.0479 (13)0.0446 (13)0.0623 (14)0.0015 (10)0.0158 (11)0.0122 (11)
O20.0508 (13)0.0390 (11)0.0602 (14)0.0021 (10)0.0093 (11)0.0185 (10)
O30.0451 (12)0.0615 (14)0.0453 (12)0.0194 (11)0.0089 (10)0.0120 (10)
O40.0425 (12)0.0625 (14)0.0517 (13)0.0112 (10)0.0082 (10)0.0279 (11)
O50.0639 (15)0.0816 (19)0.0458 (13)0.0301 (14)0.0099 (11)0.0229 (12)
O60.0551 (14)0.0736 (17)0.0558 (14)0.0292 (13)0.0066 (11)0.0255 (12)
O70.081 (2)0.081 (2)0.0483 (14)0.0147 (16)0.0146 (13)0.0240 (14)
N10.0463 (14)0.0372 (12)0.0438 (13)0.0086 (11)0.0025 (11)0.0166 (10)
N20.0593 (18)0.068 (2)0.0463 (15)0.0052 (15)0.0015 (13)0.0211 (14)
C10.076 (3)0.098 (3)0.061 (2)0.014 (2)0.027 (2)0.030 (2)
C20.0491 (18)0.0439 (16)0.0576 (19)0.0041 (14)0.0196 (15)0.0219 (14)
C30.0380 (16)0.065 (2)0.063 (2)0.0031 (15)0.0154 (15)0.0240 (17)
C40.0367 (15)0.0370 (15)0.0599 (19)0.0051 (12)0.0083 (13)0.0162 (13)
C50.0427 (18)0.066 (2)0.068 (2)0.0156 (16)0.0021 (16)0.0179 (19)
C60.088 (3)0.074 (3)0.092 (3)0.043 (3)0.037 (3)0.009 (2)
C70.056 (2)0.0462 (18)0.070 (2)0.0095 (15)0.0324 (18)0.0129 (16)
C80.081 (3)0.060 (2)0.059 (2)0.015 (2)0.035 (2)0.0203 (18)
C90.064 (2)0.062 (2)0.0488 (18)0.0043 (17)0.0251 (17)0.0193 (16)
C100.101 (4)0.113 (4)0.052 (2)0.022 (3)0.027 (2)0.028 (2)
C110.0494 (17)0.0335 (14)0.0522 (17)0.0071 (13)0.0011 (14)0.0168 (13)
C120.0470 (17)0.0408 (16)0.0516 (17)0.0059 (13)0.0046 (13)0.0230 (13)
C130.0398 (15)0.0447 (16)0.0443 (15)0.0046 (12)0.0067 (12)0.0174 (13)
C140.061 (2)0.0338 (15)0.0496 (17)0.0106 (14)0.0003 (15)0.0110 (13)
C150.062 (2)0.0337 (15)0.0469 (16)0.0083 (14)0.0011 (14)0.0185 (13)
C160.0557 (19)0.0467 (17)0.0467 (17)0.0092 (15)0.0036 (14)0.0162 (14)
Geometric parameters (Å, º) top
U1—O11.772 (2)C5—H5A0.9600
U1—O21.768 (2)C5—H5B0.9600
U1—O32.374 (2)C5—H5C0.9600
U1—O42.314 (2)C6—C71.509 (5)
U1—O52.342 (2)C6—H6A0.9600
U1—O62.350 (2)C6—H6B0.9600
U1—N12.599 (3)C6—H6C0.9600
O3—C41.275 (4)C7—C81.383 (6)
O4—C21.272 (4)C8—C91.382 (6)
O5—C91.272 (4)C8—H80.9300
O6—C71.260 (4)C9—C101.500 (6)
O7—N21.394 (4)C10—H10A0.9600
O7—H70.8200C10—H10B0.9600
N1—C151.334 (4)C10—H10C0.9600
N1—C111.345 (4)C11—C121.367 (4)
N2—C161.259 (5)C11—H110.9300
C1—C21.499 (5)C12—C131.394 (4)
C1—H1A0.9600C12—H120.9300
C1—H1B0.9600C13—C141.372 (4)
C1—H1C0.9600C13—C161.462 (4)
C2—C31.377 (5)C14—C151.382 (5)
C3—C41.389 (5)C14—H140.9300
C3—H30.9300C15—H150.9300
C4—C51.497 (5)C16—H160.9300
O1—U1—O2177.73 (10)C4—C5—H5A109.5
O1—U1—O394.67 (10)C4—C5—H5B109.5
O1—U1—O489.96 (10)H5A—C5—H5B109.5
O1—U1—O590.77 (11)C4—C5—H5C109.5
O1—U1—O693.99 (11)H5A—C5—H5C109.5
O1—U1—N186.40 (10)H5B—C5—H5C109.5
O2—U1—O386.31 (10)C7—C6—H6A109.5
O2—U1—O488.42 (10)C7—C6—H6B109.5
O2—U1—O591.46 (11)H6A—C6—H6B109.5
O2—U1—O686.34 (11)C7—C6—H6C109.5
O2—U1—N191.57 (10)H6A—C6—H6C109.5
O3—U1—O471.32 (8)H6B—C6—H6C109.5
O3—U1—O575.30 (8)O6—C7—C8123.4 (3)
O3—U1—O6145.01 (9)O6—C7—C6115.5 (4)
O3—U1—N1142.48 (8)C8—C7—C6121.1 (3)
O4—U1—O5146.56 (8)C9—C8—C7125.1 (3)
O4—U1—O6142.51 (8)C9—C8—H8117.4
O4—U1—N171.18 (8)C7—C8—H8117.4
O5—U1—O670.74 (8)O5—C9—C8123.3 (3)
O5—U1—N1142.22 (8)O5—C9—C10116.0 (4)
O6—U1—N171.89 (8)C8—C9—C10120.6 (3)
C4—O3—U1133.1 (2)C9—C10—H10A109.5
C2—O4—U1131.5 (2)C9—C10—H10B109.5
C9—O5—U1138.1 (2)H10A—C10—H10B109.5
C7—O6—U1137.8 (2)C9—C10—H10C109.5
N2—O7—H7109.5H10A—C10—H10C109.5
C15—N1—C11117.3 (3)H10B—C10—H10C109.5
C15—N1—U1121.6 (2)N1—C11—C12123.6 (3)
C11—N1—U1121.0 (2)N1—C11—H11118.2
C16—N2—O7111.2 (3)C12—C11—H11118.2
C2—C1—H1A109.5C11—C12—C13118.7 (3)
C2—C1—H1B109.5C11—C12—H12120.6
H1A—C1—H1B109.5C13—C12—H12120.6
C2—C1—H1C109.5C14—C13—C12118.0 (3)
H1A—C1—H1C109.5C14—C13—C16119.6 (3)
H1B—C1—H1C109.5C12—C13—C16122.4 (3)
O4—C2—C3123.3 (3)C13—C14—C15119.8 (3)
O4—C2—C1115.3 (3)C13—C14—H14120.1
C3—C2—C1121.3 (3)C15—C14—H14120.1
C2—C3—C4125.1 (3)N1—C15—C14122.6 (3)
C2—C3—H3117.5N1—C15—H15118.7
C4—C3—H3117.5C14—C15—H15118.7
O3—C4—C3123.4 (3)N2—C16—C13120.8 (3)
O3—C4—C5116.4 (3)N2—C16—H16119.6
C3—C4—C5120.2 (3)C13—C16—H16119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O5i0.822.493.018 (4)123
O7—H7···O3i0.822.293.083 (4)163
Symmetry code: (i) x1, y, z+1.

Experimental details

Crystal data
Chemical formula[U(C5H7O2)2O2(C6H6N2O)]
Mr590.37
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.1969 (6), 11.2632 (9), 11.7448 (9)
α, β, γ (°)71.016 (1), 75.660 (2), 80.137 (2)
V3)988.51 (13)
Z2
Radiation typeMo Kα
µ (mm1)8.25
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.289, 0.371
No. of measured, independent and
observed [I > 2σ(I)] reflections
7404, 4832, 4538
Rint0.013
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.048, 1.09
No. of reflections4832
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.71

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and CrystalMaker (CrystalMaker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O5i0.822.493.018 (4)122.8
O7—H7···O3i0.822.293.083 (4)163.3
Symmetry code: (i) x1, y, z+1.
 

References

First citationAlcock, N. W., Flanders, D. J. & Brown, D. (1984). J. Chem. Soc. Dalton Trans. pp. 679–681.  CSD CrossRef Web of Science Google Scholar
First citationAlcock, N. W., Flanders, D. J., Pennington, M. & Brown, D. (1987). Acta Cryst. C43, 1476–1480.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrystalMaker (2007). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationKawasaki, T., Kitazawa, T., Nishimura, T., Nakada, M. & Saeki, M. (2006). Hyperfine Interact. 166, 417–423.  Web of Science CrossRef Google Scholar
First citationSaeki, M., Nakada, M., Kawasaki, T., Nishimura, T., Kitazawa, T. & Takeda, M. (2006). J. Radioanal. Nucl. Chem. 270, 379–384.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds