metal-organic compounds
Chlorido(pyridine-2-carbaldehyde oximato-κ2N,N′)(pyridine-2-carbaldehyde oxime-κ2N,N′)copper(II)
aSchool of Chemistry and Chemical Engineering, Anqing Teachers College, Anqing 246011, People's Republic of China
*Correspondence e-mail: wudayu_nju@yahoo.com.cn
In the title compound, [Cu(C6H5N2O)Cl(C6H6N2O)], the Cu atom is coordinated by one neutral and one deprotonated pyridine-2-carboxaldehyde oxime (pco) ligand, resulting in the formation of two five-membered CuN2C2 rings. Together with the additional coordinating chloride anion, the of copper is best described as a distorted square-pyramid, the distortion parameter being 0.288. The two organic ligands are linked by an intramolecular O—H⋯O hydrogen bond.
Related literature
For related literature, see: Addison et al. (1984); Afrati et al. (2005); Korpi et al. (2005); Pearse et al. (1989); Stamatatos et al. (2006).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808014748/im2064sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808014748/im2064Isup2.hkl
A methanolic solution (15 ml) containing pco (0.1 mmol, 0.012 g) was added to an methanolic solution (10 ml) containing CuCl2 × 2 H2O (0.1 mmol, 0.017 g). After stirring for 2 h, the solution was filtered. Dark green needle-like crystals suitable for single-crystal X-ray diffraction were obtained by evaporating the resulting filtrate in air for several days (yield 65.6% based on the ligand).
H atoms were placed geometrically and allowed to ride during
with C—H = 0.93–0.96 Å and O—H = 0.82 Å with Uiso(H) = 1.2 or 1.5Ueq(C or O).Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids were drawn at the 50% probability level. |
[Cu(C6H5N2O)Cl(C6H6N2O)] | F(000) = 1384 |
Mr = 342.24 | Dx = 1.730 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 2343 reflections |
a = 16.686 (2) Å | θ = 2.4–26.6° |
b = 12.064 (2) Å | µ = 1.87 mm−1 |
c = 13.805 (1) Å | T = 293 K |
β = 109.02 (1)° | Block, dark green |
V = 2627.3 (5) Å3 | 0.22 × 0.18 × 0.15 mm |
Z = 8 |
Bruker SMART CCD area-detector diffractometer | 2318 independent reflections |
Radiation source: fine-focus sealed tube | 1788 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.1° |
Absorption correction: multi-scan (SHELXTL; Sheldrick, 2008) | h = −14→19 |
Tmin = 0.488, Tmax = 0.594 | k = −14→13 |
6487 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.065P)2 + 1.2P] where P = (Fo2 + 2Fc2)/3 |
2318 reflections | (Δ/σ)max = 0.001 |
181 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
[Cu(C6H5N2O)Cl(C6H6N2O)] | V = 2627.3 (5) Å3 |
Mr = 342.24 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 16.686 (2) Å | µ = 1.87 mm−1 |
b = 12.064 (2) Å | T = 293 K |
c = 13.805 (1) Å | 0.22 × 0.18 × 0.15 mm |
β = 109.02 (1)° |
Bruker SMART CCD area-detector diffractometer | 2318 independent reflections |
Absorption correction: multi-scan (SHELXTL; Sheldrick, 2008) | 1788 reflections with I > 2σ(I) |
Tmin = 0.488, Tmax = 0.594 | Rint = 0.034 |
6487 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.40 e Å−3 |
2318 reflections | Δρmin = −0.39 e Å−3 |
181 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.45583 (2) | 0.75857 (3) | 0.08754 (3) | 0.03490 (18) | |
Cl1 | 0.39133 (6) | 0.74459 (6) | −0.09737 (7) | 0.0452 (3) | |
N2 | 0.39301 (17) | 0.8985 (2) | 0.1014 (2) | 0.0365 (6) | |
N3 | 0.53622 (18) | 0.6345 (2) | 0.0978 (2) | 0.0432 (7) | |
N4 | 0.39418 (17) | 0.6311 (2) | 0.1352 (2) | 0.0386 (7) | |
O2 | 0.60997 (16) | 0.6484 (2) | 0.0801 (2) | 0.0594 (7) | |
C1 | 0.3107 (2) | 0.9115 (3) | 0.0892 (3) | 0.0445 (9) | |
H1A | 0.2761 | 0.8491 | 0.0764 | 0.053* | |
N1 | 0.54953 (17) | 0.8713 (2) | 0.1156 (2) | 0.0431 (7) | |
C11 | 0.4316 (2) | 0.5328 (3) | 0.1314 (3) | 0.0427 (9) | |
C5 | 0.4419 (2) | 0.9892 (3) | 0.1166 (3) | 0.0433 (8) | |
O1 | 0.63020 (15) | 0.8491 (3) | 0.1224 (2) | 0.0666 (8) | |
H1B | 0.6346 | 0.7834 | 0.1100 | 0.100* | |
C2 | 0.2750 (3) | 1.0126 (4) | 0.0946 (3) | 0.0585 (11) | |
H2A | 0.2177 | 1.0187 | 0.0866 | 0.070* | |
C9 | 0.3236 (3) | 0.4362 (4) | 0.1762 (3) | 0.0647 (12) | |
H9A | 0.3002 | 0.3707 | 0.1903 | 0.078* | |
C7 | 0.3232 (2) | 0.6295 (3) | 0.1599 (3) | 0.0457 (9) | |
H7A | 0.2973 | 0.6968 | 0.1638 | 0.055* | |
C12 | 0.5115 (2) | 0.5390 (3) | 0.1109 (3) | 0.0463 (9) | |
H12A | 0.5426 | 0.4760 | 0.1076 | 0.056* | |
C6 | 0.5299 (2) | 0.9703 (3) | 0.1257 (3) | 0.0483 (9) | |
H6A | 0.5692 | 1.0276 | 0.1381 | 0.058* | |
C10 | 0.3975 (3) | 0.4349 (3) | 0.1509 (3) | 0.0579 (11) | |
H10A | 0.4239 | 0.3680 | 0.1471 | 0.069* | |
C8 | 0.2865 (3) | 0.5352 (4) | 0.1798 (3) | 0.0593 (11) | |
H8A | 0.2365 | 0.5388 | 0.1957 | 0.071* | |
C4 | 0.4094 (3) | 1.0927 (3) | 0.1215 (3) | 0.0636 (12) | |
H4A | 0.4440 | 1.1550 | 0.1313 | 0.076* | |
C3 | 0.3253 (3) | 1.1034 (3) | 0.1118 (4) | 0.0718 (13) | |
H3A | 0.3029 | 1.1729 | 0.1171 | 0.086* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0277 (3) | 0.0340 (3) | 0.0441 (3) | 0.00547 (15) | 0.0132 (2) | −0.00158 (17) |
Cl1 | 0.0482 (6) | 0.0432 (5) | 0.0407 (5) | 0.0035 (4) | 0.0094 (4) | −0.0023 (4) |
N2 | 0.0355 (16) | 0.0317 (15) | 0.0418 (16) | 0.0041 (12) | 0.0118 (13) | −0.0026 (12) |
N3 | 0.0398 (17) | 0.0480 (19) | 0.0432 (17) | 0.0156 (14) | 0.0152 (14) | 0.0003 (14) |
N4 | 0.0385 (16) | 0.0366 (16) | 0.0392 (16) | 0.0031 (12) | 0.0107 (13) | 0.0023 (12) |
O2 | 0.0440 (16) | 0.0712 (19) | 0.0731 (19) | 0.0207 (14) | 0.0327 (14) | 0.0047 (15) |
C1 | 0.040 (2) | 0.044 (2) | 0.049 (2) | 0.0096 (16) | 0.0142 (17) | 0.0009 (16) |
N1 | 0.0286 (16) | 0.0516 (19) | 0.0505 (18) | −0.0040 (13) | 0.0147 (14) | −0.0005 (14) |
C11 | 0.052 (2) | 0.0372 (19) | 0.032 (2) | 0.0057 (16) | 0.0044 (17) | −0.0001 (15) |
C5 | 0.052 (2) | 0.038 (2) | 0.040 (2) | 0.0022 (16) | 0.0157 (18) | −0.0024 (16) |
O1 | 0.0326 (15) | 0.077 (2) | 0.092 (2) | −0.0025 (13) | 0.0241 (15) | −0.0042 (17) |
C2 | 0.051 (2) | 0.066 (3) | 0.059 (3) | 0.029 (2) | 0.019 (2) | 0.002 (2) |
C9 | 0.069 (3) | 0.058 (3) | 0.058 (3) | −0.024 (2) | 0.009 (2) | 0.009 (2) |
C7 | 0.041 (2) | 0.051 (2) | 0.047 (2) | −0.0006 (17) | 0.0166 (17) | 0.0022 (17) |
C12 | 0.052 (2) | 0.044 (2) | 0.040 (2) | 0.0195 (18) | 0.0113 (18) | −0.0006 (17) |
C6 | 0.045 (2) | 0.045 (2) | 0.056 (2) | −0.0115 (17) | 0.0177 (18) | −0.0050 (18) |
C10 | 0.071 (3) | 0.036 (2) | 0.053 (2) | −0.0020 (19) | 0.002 (2) | 0.0001 (18) |
C8 | 0.052 (3) | 0.067 (3) | 0.057 (3) | −0.014 (2) | 0.016 (2) | 0.006 (2) |
C4 | 0.080 (3) | 0.031 (2) | 0.079 (3) | 0.0027 (19) | 0.025 (3) | −0.0044 (19) |
C3 | 0.088 (4) | 0.044 (3) | 0.084 (3) | 0.033 (2) | 0.029 (3) | −0.004 (2) |
Cu1—N3 | 1.984 (3) | C5—C4 | 1.371 (5) |
Cu1—N1 | 2.012 (3) | C5—C6 | 1.451 (5) |
Cu1—N2 | 2.029 (3) | O1—H1B | 0.8200 |
Cu1—N4 | 2.072 (3) | C2—C3 | 1.352 (6) |
Cu1—Cl1 | 2.4316 (10) | C2—H2A | 0.9300 |
N2—C1 | 1.338 (4) | C9—C8 | 1.354 (6) |
N2—C5 | 1.340 (4) | C9—C10 | 1.385 (6) |
N3—C12 | 1.256 (5) | C9—H9A | 0.9300 |
N3—O2 | 1.341 (3) | C7—C8 | 1.361 (5) |
N4—C7 | 1.335 (4) | C7—H7A | 0.9300 |
N4—C11 | 1.350 (4) | C12—H12A | 0.9300 |
C1—C2 | 1.370 (5) | C6—H6A | 0.9300 |
C1—H1A | 0.9300 | C10—H10A | 0.9300 |
N1—C6 | 1.258 (4) | C8—H8A | 0.9300 |
N1—O1 | 1.345 (3) | C4—C3 | 1.371 (6) |
C11—C10 | 1.375 (5) | C4—H4A | 0.9300 |
C11—C12 | 1.453 (5) | C3—H3A | 0.9300 |
N3—Cu1—N1 | 91.79 (14) | C4—C5—C6 | 123.0 (4) |
N3—Cu1—N2 | 168.29 (12) | N1—O1—H1B | 109.5 |
N1—Cu1—N2 | 79.19 (11) | C3—C2—C1 | 118.4 (4) |
N3—Cu1—N4 | 79.15 (12) | C3—C2—H2A | 120.8 |
N1—Cu1—N4 | 151.07 (12) | C1—C2—H2A | 120.8 |
N2—Cu1—N4 | 105.21 (11) | C8—C9—C10 | 118.3 (4) |
N3—Cu1—Cl1 | 94.60 (9) | C8—C9—H9A | 120.9 |
N1—Cu1—Cl1 | 107.40 (9) | C10—C9—H9A | 120.9 |
N2—Cu1—Cl1 | 95.22 (8) | N4—C7—C8 | 124.0 (4) |
N4—Cu1—Cl1 | 100.71 (8) | N4—C7—H7A | 118.0 |
C1—N2—C5 | 118.1 (3) | C8—C7—H7A | 118.0 |
C1—N2—Cu1 | 128.8 (2) | N3—C12—C11 | 116.1 (3) |
C5—N2—Cu1 | 112.8 (2) | N3—C12—H12A | 121.9 |
C12—N3—O2 | 120.3 (3) | C11—C12—H12A | 121.9 |
C12—N3—Cu1 | 117.1 (2) | N1—C6—C5 | 115.7 (3) |
O2—N3—Cu1 | 122.1 (2) | N1—C6—H6A | 122.2 |
C7—N4—C11 | 117.2 (3) | C5—C6—H6A | 122.2 |
C7—N4—Cu1 | 131.7 (2) | C11—C10—C9 | 119.9 (4) |
C11—N4—Cu1 | 110.9 (2) | C11—C10—H10A | 120.0 |
N2—C1—C2 | 122.9 (4) | C9—C10—H10A | 120.0 |
N2—C1—H1A | 118.5 | C9—C8—C7 | 119.2 (4) |
C2—C1—H1A | 118.5 | C9—C8—H8A | 120.4 |
C6—N1—O1 | 118.2 (3) | C7—C8—H8A | 120.4 |
C6—N1—Cu1 | 116.6 (2) | C5—C4—C3 | 119.3 (4) |
O1—N1—Cu1 | 125.2 (2) | C5—C4—H4A | 120.4 |
N4—C11—C10 | 121.4 (4) | C3—C4—H4A | 120.4 |
N4—C11—C12 | 115.3 (3) | C2—C3—C4 | 119.8 (4) |
C10—C11—C12 | 123.2 (3) | C2—C3—H3A | 120.1 |
N2—C5—C4 | 121.4 (4) | C4—C3—H3A | 120.1 |
N2—C5—C6 | 115.6 (3) |
Experimental details
Crystal data | |
Chemical formula | [Cu(C6H5N2O)Cl(C6H6N2O)] |
Mr | 342.24 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 16.686 (2), 12.064 (2), 13.805 (1) |
β (°) | 109.02 (1) |
V (Å3) | 2627.3 (5) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.87 |
Crystal size (mm) | 0.22 × 0.18 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SHELXTL; Sheldrick, 2008) |
Tmin, Tmax | 0.488, 0.594 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6487, 2318, 1788 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.110, 1.01 |
No. of reflections | 2318 |
No. of parameters | 181 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.40, −0.39 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
DW thanks Anqing Teachers College for financial support.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Afrati, T., Dendrinou-Samara, C., Zaleski, C. M., Kampf, J. W., Pecoraro, V. L. & Kessissoglou, D. P. (2005). Inorg. Chem. Commun. 8, 1173–1176. Web of Science CSD CrossRef CAS Google Scholar
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Korpi, H., Polamo, M., Leskela, M. & Repo, T. (2005). Inorg. Chem. Commun. 8, 1181–1184. Web of Science CSD CrossRef CAS Google Scholar
Pearse, G. A., Raithby, P. R. & Lewis, J. (1989). Polyhedron, 8, 301–304. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stamatatos, T. C., Vlahopoulou, J. C., Sanakis, Y., Raptopoulou, C. P., Psycharis, V., Boudalis, A. K. & Perlepes, S. P. (2006). Inorg. Chem. Commun. 9, 814–818. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridine-2-carbaldehyde oxime ligands usually bind to metals in a bidentate fashion, either chelating one metal center or bridging two metals. Their complexes find application in diverse areas such as functional supramolecular design, magnetic materials and catalysis (Korpi et al., 2005; Pearse et al., 1989; Afrati et al., 2005; Stamatatos et al., 2006). The title compound is a new copper complex from the reaction of CuCl2 with pyridine-2-carbaldehyde oxime (pco). The compound consists of two N,N-chelating ligands and one chloride anion. The two pco ligands are coordinated to copper to form two five-membered CuC2N2 rings. The copper atom adopts a distorted 4 + 1 square-pyramidal coordination mode with the distortion parameter being 0.288 (Addison et al., 1984) and the angles around copper ion ranging from 79.07 (1)° for N3—Cu1—N4 to 168.37 (1)° for N2—Cu1—N3. From the viewpoint of charge balance, it is presumed there exists one deprotonated and one protonated oxime ligand with a strong intramolecular hydrogen bond between the OH group and the negatively charged oxygen of the other ligand (O1···O2 = 2.488 Å) which would also give an explanation for the rather unusal cis-arrangement of the ligands (Scheme 1, Figure 1. ).