organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis[(2-hydr­­oxy-3-meth­oxy­benzyl­­idene)hydrazono]-1,2-di­phenyl­ethane

aHenan Normal University, College of Chemistry and Environmental Science, Xinxiang 453002, People's Republic of China
*Correspondence e-mail: zhangxyemail@126.com

(Received 17 March 2008; accepted 10 May 2008; online 17 May 2008)

The title compound, C30H26N4O4, was synthesized by the reaction of benzyl dihydrazone and 2-hydr­oxy-3-methoxy­benzaldehyde in ethanol. In the crystal strucutre, the mol­ecule is centrosymmetric. The structure displays two symmetry-related intra­molecular O—H⋯N hydrogen bonds.

Related literature

For related literature, see: Pankaj et al. (2000[Pankaj, K. P., Shubhamoy, C., Michael, G. B. D. & Dipankar, D. (2000). New J. Chem. 24, 931-933.]); Senjuti et al. (2006[Senjuti, D., Shubhamoy, C., Derek, A. T. & Dipankar, D. (2006). CrystEngComm, 8, 670-673.]); Shubhamoy et al. (2003[Shubhamoy, C., Peter, B. I., Michael, G. B. D., Derek, A. T. & Dipankar, D. (2003). New J. Chem. 27, 193-196.]); Boudalis et al. (2004[Boudalis A. K., Clement-Juan, J.-M., Dahan, F. & Tuchagues, J.-P. (2004). Inorg. Chem. 43, 1574-1586.]); Veauthier et al. (2004[Veauthier, J. M., Cho, W.-S., Lynch, V. M. & Sessler, J. L. (2004). Inorg. Chem. 43, 1220-1228.]).

[Scheme 1]

Experimental

Crystal data
  • C30H26N4O4

  • Mr = 506.55

  • Monoclinic, P 21 /c

  • a = 8.3732 (11) Å

  • b = 12.7267 (16) Å

  • c = 12.4229 (16) Å

  • β = 98.188 (2)°

  • V = 1310.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 (2) K

  • 0.36 × 0.19 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.969, Tmax = 0.991

  • 9588 measured reflections

  • 2437 independent reflections

  • 1543 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.117

  • S = 1.01

  • 2437 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 1.91 2.6350 (18) 146

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL .

Supporting information


Comment top

The design of multidentate Schiff-base ligands and their metal complexes are of great interest in the last few years (Boudalis et al., 2004; Veauthier et al., 2224; Pal et al., 2000). The crystal structure determination of the title compound, (I), has been carried out in order to elucidate its molecular conformation. The molecule of the compound, (I), (Fig.1) is centrosymmetric with a centre of inversion in the middle of C9—C9 A bond. The two benzene rings (C10C15 and C10 AC15 A) are parallel. The dihedral angle between the benzene ring (C10C15) and the least-squares best plane (C1C6, C8, N1, O1, O2, r.m.s.= 0.0262 Å) is 74.2°. The bond lengths of C9—C9 A, N2—C9, N2—N1, N1—C8 are 1.474 (3) Å, 1.289 (2) Å, 1.4013 (19) Å, and 1.284 (2) Å, respectively. All the angles and bond lengths are within normal range (Pankaj et al., 2000). The symmetry related intramolecular hydrogen bonds O—H···N are observed (Fig. 1, Table 1).

Related literature top

For related literature, see: Pankaj et al. (2000); Senjuti et al. (2006); Shubhamoy et al. (2003); Boudalis et al. (2004); Veauthier et al. (2004).

Experimental top

All reagents were of AR grade, available commercially and used without further purification. The mixture of benzyl dihydrazone (0.595 g, 2.5 mmol), 2-hydroxy-3-methoxybenzaldehyde (0.76 g, 5 mmol) was heated and refluxed in ethanol (20 ml for 3 h, and then the resulting solution was cooled to room temperature. After filtration, the filtrate was allowed to stand at room temperature. Upon slow evaporation, yellow block crystals suitable for X-ray diffraction analysis were isolated after three days.

Refinement top

The H atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93 or 0.96 Å and O—H = 0.82 Å and Uiso(H) = 1.2Ueq(carrier) or Uiso(H) = 1.5Ueq(methyl carrier).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and the 30% probability displacement ellipsoids for non-H atoms. The symmetry related atoms (A) are generated by symmetry operation: 1 - x, -y, 2 - z.
1,2-Bis[(2-hydroxy-3-methoxybenzylidene)hydrazono]-1,2-diphenylethane top
Crystal data top
C30H26N4O4F(000) = 532
Mr = 506.55Dx = 1.284 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.3732 (11) ÅCell parameters from 1614 reflections
b = 12.7267 (16) Åθ = 2.5–22.5°
c = 12.4229 (16) ŵ = 0.09 mm1
β = 98.188 (2)°T = 291 K
V = 1310.3 (3) Å3Block, yellow
Z = 20.36 × 0.19 × 0.11 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2437 independent reflections
Radiation source: fine-focus sealed tube1543 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.969, Tmax = 0.991k = 1515
9588 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.1624P]
where P = (Fo2 + 2Fc2)/3
2437 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C30H26N4O4V = 1310.3 (3) Å3
Mr = 506.55Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.3732 (11) ŵ = 0.09 mm1
b = 12.7267 (16) ÅT = 291 K
c = 12.4229 (16) Å0.36 × 0.19 × 0.11 mm
β = 98.188 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2437 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1543 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.991Rint = 0.030
9588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.02Δρmax = 0.11 e Å3
2437 reflectionsΔρmin = 0.15 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47861 (17)0.23761 (11)0.56864 (11)0.0720 (4)
O20.30818 (16)0.17749 (10)0.71864 (11)0.0648 (4)
H20.25920.15020.76400.097*
N10.24208 (19)0.03065 (11)0.85518 (12)0.0567 (4)
N20.15856 (19)0.02470 (11)0.92719 (12)0.0578 (4)
C10.4277 (2)0.11223 (14)0.69686 (15)0.0503 (4)
C20.5195 (2)0.14299 (15)0.61656 (15)0.0549 (5)
C30.6395 (2)0.07799 (17)0.59099 (17)0.0661 (6)
H30.69970.09770.53690.079*
C40.6719 (2)0.01642 (16)0.64473 (18)0.0708 (6)
H40.75420.05920.62680.085*
C50.5847 (2)0.04748 (15)0.72363 (17)0.0632 (5)
H50.60820.11080.75970.076*
C60.4592 (2)0.01623 (13)0.75048 (14)0.0497 (4)
C70.5529 (3)0.26528 (19)0.47601 (16)0.0854 (7)
H7A0.66720.27220.49720.128*
H7B0.50940.33080.44680.128*
H7C0.53200.21140.42170.128*
C80.3612 (2)0.02192 (14)0.82838 (15)0.0551 (5)
H80.38510.08710.86050.066*
C90.0459 (2)0.02843 (13)0.96279 (14)0.0499 (4)
C100.0056 (2)0.14018 (13)0.93434 (15)0.0494 (5)
C110.0776 (3)0.16613 (16)0.83395 (17)0.0721 (6)
H110.11140.11330.78420.087*
C120.1110 (3)0.26938 (19)0.8066 (2)0.0839 (7)
H120.16560.28590.73810.101*
C130.0644 (3)0.34772 (17)0.8795 (2)0.0753 (6)
H130.08910.41740.86160.090*
C140.0186 (3)0.32303 (16)0.97909 (19)0.0697 (6)
H140.05140.37631.02860.084*
C150.0545 (2)0.21959 (15)1.00694 (16)0.0600 (5)
H150.11170.20361.07470.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0830 (10)0.0687 (9)0.0680 (9)0.0023 (7)0.0232 (8)0.0159 (7)
O20.0686 (9)0.0565 (8)0.0741 (10)0.0137 (7)0.0271 (7)0.0126 (7)
N10.0599 (10)0.0488 (9)0.0657 (10)0.0003 (8)0.0242 (8)0.0066 (8)
N20.0613 (10)0.0504 (9)0.0656 (10)0.0009 (8)0.0230 (8)0.0070 (8)
C10.0488 (10)0.0489 (10)0.0540 (11)0.0016 (8)0.0104 (8)0.0042 (9)
C20.0572 (12)0.0540 (11)0.0540 (11)0.0104 (9)0.0100 (9)0.0018 (9)
C30.0598 (13)0.0732 (15)0.0701 (14)0.0096 (11)0.0254 (11)0.0097 (11)
C40.0599 (13)0.0699 (15)0.0872 (15)0.0049 (11)0.0260 (12)0.0096 (12)
C50.0603 (13)0.0521 (11)0.0791 (14)0.0048 (9)0.0164 (11)0.0057 (10)
C60.0500 (11)0.0430 (10)0.0576 (11)0.0031 (8)0.0129 (9)0.0038 (8)
C70.115 (2)0.0852 (16)0.0582 (13)0.0224 (14)0.0215 (13)0.0074 (11)
C80.0617 (12)0.0413 (10)0.0632 (12)0.0007 (9)0.0122 (10)0.0006 (8)
C90.0516 (11)0.0463 (10)0.0527 (11)0.0035 (8)0.0108 (9)0.0014 (8)
C100.0461 (10)0.0485 (10)0.0561 (11)0.0019 (8)0.0158 (9)0.0023 (9)
C110.0846 (16)0.0638 (14)0.0646 (14)0.0045 (11)0.0004 (12)0.0023 (11)
C120.0991 (19)0.0722 (15)0.0766 (15)0.0168 (13)0.0001 (13)0.0155 (13)
C130.0737 (15)0.0544 (13)0.0999 (18)0.0071 (11)0.0203 (14)0.0188 (13)
C140.0718 (14)0.0490 (12)0.0898 (16)0.0081 (10)0.0162 (12)0.0057 (11)
C150.0643 (13)0.0524 (12)0.0626 (12)0.0043 (10)0.0063 (10)0.0004 (10)
Geometric parameters (Å, º) top
O1—C21.365 (2)C7—H7A0.9600
O1—C71.428 (2)C7—H7B0.9600
O2—C11.357 (2)C7—H7C0.9600
O2—H20.8200C8—H80.9300
N1—C81.284 (2)C9—C9i1.474 (3)
N1—N21.4013 (19)C9—C101.492 (2)
N2—C91.289 (2)C10—C151.377 (3)
C1—C61.399 (2)C10—C111.379 (3)
C1—C21.399 (2)C11—C121.376 (3)
C2—C31.374 (3)C11—H110.9300
C3—C41.382 (3)C12—C131.366 (3)
C3—H30.9300C12—H120.9300
C4—C51.362 (3)C13—C141.366 (3)
C4—H40.9300C13—H130.9300
C5—C61.404 (2)C14—C151.383 (3)
C5—H50.9300C14—H140.9300
C6—C81.439 (2)C15—H150.9300
C2—O1—C7117.26 (16)H7A—C7—H7C109.5
C1—O2—H2109.5H7B—C7—H7C109.5
C8—N1—N2112.36 (15)N1—C8—C6122.49 (17)
C9—N2—N1114.29 (15)N1—C8—H8118.8
O2—C1—C6122.30 (16)C6—C8—H8118.8
O2—C1—C2117.81 (16)N2—C9—C9i115.5 (2)
C6—C1—C2119.88 (16)N2—C9—C10124.79 (15)
O1—C2—C3125.21 (17)C9i—C9—C10119.7 (2)
O1—C2—C1115.38 (16)C15—C10—C11118.76 (17)
C3—C2—C1119.40 (18)C15—C10—C9120.53 (17)
C2—C3—C4120.76 (19)C11—C10—C9120.69 (17)
C2—C3—H3119.6C12—C11—C10120.7 (2)
C4—C3—H3119.6C12—C11—H11119.6
C5—C4—C3120.76 (19)C10—C11—H11119.6
C5—C4—H4119.6C13—C12—C11120.3 (2)
C3—C4—H4119.6C13—C12—H12119.9
C4—C5—C6119.96 (19)C11—C12—H12119.9
C4—C5—H5120.0C14—C13—C12119.5 (2)
C6—C5—H5120.0C14—C13—H13120.2
C1—C6—C5119.22 (16)C12—C13—H13120.2
C1—C6—C8121.85 (16)C13—C14—C15120.6 (2)
C5—C6—C8118.84 (17)C13—C14—H14119.7
O1—C7—H7A109.5C15—C14—H14119.7
O1—C7—H7B109.5C10—C15—C14120.05 (19)
H7A—C7—H7B109.5C10—C15—H15120.0
O1—C7—H7C109.5C14—C15—H15120.0
C8—N1—N2—C9174.82 (16)N2—N1—C8—C6176.37 (15)
C7—O1—C2—C38.0 (3)C1—C6—C8—N11.7 (3)
C7—O1—C2—C1171.27 (17)C5—C6—C8—N1178.34 (17)
O2—C1—C2—O10.5 (2)N1—N2—C9—C9i178.95 (17)
C6—C1—C2—O1179.61 (16)N1—N2—C9—C101.4 (3)
O2—C1—C2—C3178.83 (16)N2—C9—C10—C15102.7 (2)
C6—C1—C2—C30.3 (3)C9i—C9—C10—C1576.9 (3)
O1—C2—C3—C4179.79 (18)N2—C9—C10—C1175.6 (3)
C1—C2—C3—C40.9 (3)C9i—C9—C10—C11104.8 (2)
C2—C3—C4—C50.5 (3)C15—C10—C11—C120.1 (3)
C3—C4—C5—C60.6 (3)C9—C10—C11—C12178.26 (19)
O2—C1—C6—C5179.88 (17)C10—C11—C12—C131.1 (4)
C2—C1—C6—C50.8 (3)C11—C12—C13—C141.4 (4)
O2—C1—C6—C83.3 (3)C12—C13—C14—C150.6 (3)
C2—C1—C6—C8175.80 (16)C11—C10—C15—C140.7 (3)
C4—C5—C6—C11.3 (3)C9—C10—C15—C14179.01 (17)
C4—C5—C6—C8175.46 (18)C13—C14—C15—C100.4 (3)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.912.6350 (18)146

Experimental details

Crystal data
Chemical formulaC30H26N4O4
Mr506.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)8.3732 (11), 12.7267 (16), 12.4229 (16)
β (°) 98.188 (2)
V3)1310.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.36 × 0.19 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.969, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
9588, 2437, 1543
Rint0.030
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.117, 1.02
No. of reflections2437
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.15

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.912.6350 (18)146.1
 

Acknowledgements

This work was supported by the Education Committee Department of Henan Province (grant No. 2007150027).

References

First citationBoudalis A. K., Clement-Juan, J.-M., Dahan, F. & Tuchagues, J.-P. (2004). Inorg. Chem. 43, 1574–1586.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPankaj, K. P., Shubhamoy, C., Michael, G. B. D. & Dipankar, D. (2000). New J. Chem. 24, 931–933.  Google Scholar
First citationSenjuti, D., Shubhamoy, C., Derek, A. T. & Dipankar, D. (2006). CrystEngComm, 8, 670–673.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShubhamoy, C., Peter, B. I., Michael, G. B. D., Derek, A. T. & Dipankar, D. (2003). New J. Chem. 27, 193–196.  Google Scholar
First citationVeauthier, J. M., Cho, W.-S., Lynch, V. M. & Sessler, J. L. (2004). Inorg. Chem. 43, 1220–1228.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds