organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo­methyl-N-iso­propyl-7,8-dimeth­­oxy-1,2-di­hydro-1,3-oxazolo[3,2-a]quinoline-4-carboxamide

aSTC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenina ave., Kharkiv 61001, Ukraine, and bNational University of Pharmacy, 4 Blyukhera ave., Kharkiv 61002, Ukraine
*Correspondence e-mail: sveta@xray.isc.kharkov.com

(Received 10 April 2008; accepted 6 May 2008; online 10 May 2008)

In the title compound, C18H21BrN2O5, conjugation between the π-donating N—C—O fragment and the π-withdrawing carbonyl group results in considerable redistribution of the electron density within the dihydropyridinol ring. This effect is also promoted by the formation of an intra­molecular N—H⋯O hydrogen bond. The five-membered heterocycle is disordered over two envelope conformations in a 0.35:0.65 ratio.

Related literature

For related literature, see: Ukrainets et al. (2007a[Ukrainets, I. V., Bereznyakova, L. V., Turov, A. V. & Shihkina, S. V. (2007a). Khim. Geterotsikl. Soedin. pp. 1034-1042.],b[Ukrainets, I. V., Sidorenko, L. V., Gorokhova, O. V., Shishkina, S. V. & Turov, A. V. (2007b). Khim. Geterotsikl. Soedin. pp. 736-749.]); Bürgi & Dunitz (1994[Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767-784. Weinheim: VCH.]); Hutcheon & James (1977[Hutcheon, W. L. B. & James, M. N. G. (1977). Acta Cryst. B33, 2228-2232.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21BrN2O5

  • Mr = 425.28

  • Triclinic, [P \overline 1]

  • a = 8.736 (2) Å

  • b = 9.968 (2) Å

  • c = 10.588 (3) Å

  • α = 86.90 (2)°

  • β = 80.90 (2)°

  • γ = 80.04 (2)°

  • V = 896.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.33 mm−1

  • T = 100 (2) K

  • 0.60 × 0.40 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur3 diffractometer

  • Absorption correction: analytical (Alcock, 1970[Alcock, N. W. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, p. 271. Copenhagen: Munksgaard.]) Tmin = 0.287, Tmax = 0.793

  • 6292 measured reflections

  • 3105 independent reflections

  • 2701 reflections with I > 2σ(I)

  • Rint = 0.089

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.171

  • S = 1.05

  • 3105 reflections

  • 258 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.76 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3 0.88 1.91 2.634 (5) 138
C10A—H10A⋯O3i 1.00 2.23 3.042 137
C12A—H12A⋯O2ii 0.99 2.33 3.289 164
C12A—H12B⋯O4iii 0.99 2.41 3.173 134
C12B—H12D⋯O2ii 0.99 2.30 3.253 162
C17—H17A⋯O5iv 0.98 2.41 3.380 172
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) x, y-1, z; (iv) -x+1, -y+2, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP (Siemens, 1998[Siemens (1998). XP. Siemens Analytical X-ray Division Inc., Karlsruhe, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-Bromomethyl-5-oxo-1,2-dihydro-5H-oxazolo[3,2-a]quinoline-4- carboxylic acids are labile compounds. Therefore, their amidation are not always successful (Ukrainets et al., 2007a; Ukrainets et al., 2007b). However the heterocyclization of the previously synthesized NR-amides of 1-allyl-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylic acids was straightforward into the NR-amides of oxazolo-quinoline-4-carboxylic acids (I) (Scheme 1). In the present paper, we report the crystal structure of the title compound, (I). The benzpyridone fragment and the O1, C11, O5, O4, O3, C13, O2, N2 atoms are cooplanar whithin 0.02 Å. The C7—O3 (1.263 (5) Å) and C8—C9 (1.386 (6) Å) bonds are elongated comparing to the values in the literature (1.210 Å and 1.326 Å; Burgi & Dunitz, 1994) whereas the C9—O1 (1.336 (5) Å) and N1—C9 (1.333 (6) Å) bonds are shorter than their mean values retrieved from the quoted references (1.354 Å and 1.336 Å). Such redistribution of the electron density can be explained by the conjugation interactions between the N1—C9—O1 π-donating fragment and the C7—O3 π-acceptor carbonyl group. Similar effect was observed earlier in related structure (Hucheon & James, 1977). The formation of the N2—H2N···O3 intramolecular hydrogen bond (Table 1) also promotes the elongation of the carbonyl bond. The five-membered heterocycle ring is disodered over two envelope conformations (A and B) with population A:B 35:65%. The deviation of the C10 atom from the mean plane of the remaining atoms of the ring is -0.41 Å in the conformer A and 0.35 Å in B. The bromomethyl substituent in both conformers is in a pseudo-equatorial orientation (the C9—O1—C10—C12 torsion angle is 145.1 (7) %A in A and -138.1 (5) %A in B). The bromine atom is not disordered and it is located in ap-position relatively to the O1—C10 bond in both conformers [the O1—C10—C12—Br1 torsion angle is -179.9 (6) %A (A) and 178.5 (3) %A (B)]. The methoxy groups at the C3 and C4 atoms are almost coplanar to the plane of the aromatic ring (the C18—O5—C3—C2 and C17—O4—C4—C5 torsion angles are 4.2 (6) %A and -6.2 (6) %A, respectively). The isopropyl group has ap-conformation relatively to the C8—C13 bond and it is turned away from the C13—N2 bond (the C14—N2—C13—C8 and C13—N2—C14—H14a torsion angles are 174.7 (4) %A and -40%A, respectively). In the crystal the molecules of the title compound form the three-dimensional network via intermolecular hydrogen bonds (Table 1). The shortened intermolecular contacts H14a···Br1i (i = -x,-y,1 - z) 3.13 Å (van der Waals sum 3.23 Å), H18c···C7ii (ii = 1 - x,1 - y,1 - z) 2.70 Å (2.87 Å), Br1···Br1iii (iii = 1 - x,-y,-z) 3.42 Å (3.94 Å) were observed in the crystal. Stacking interaction between parallel aromatic rings is observed [the shortest C3···C1ii (1 - x,1 - y,1 - z) distance is 3.45 Å].

Related literature top

For related literature, see: Ukrainets et al. (2007a,b); Bürgi & Dunitz (1994); Hutcheon & James (1977).

Experimental top

To a stirred solution of the 1-allyl-4-hydroxy-6,7-dimethoxy-2-oxo- 1,2-dihydroquinoline-3-carboxylic acid isopropylamide (3.46 g, 10.0 mmol) in acetic acid (70 ml) was added bromine (0.52 ml, 10.0 mmol) (the solution turned to be colourless). The mixture was diluted with water. The precipitate formed was filtered off, washed with cold water and dried. Yield 3.95 g (93%). m.p. 542–544 K.

Refinement top

All hydrogen atoms were calculated geometrically and included in the refinement in the riding motion approximation with Uiso constrained to be 1.5 times Ueq of the carrier atom for the methyl groups and 1.2 times Ueq of the carrier atom for the other atoms. During refinement the O-Csp3 and Csp3-Csp3 bonds in the disordered fragment were constrained to 1.44 (1) Å and 1.54 (1) Å, respectively.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP (Siemens, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with atomic numbering. All atoms are shown with displacement ellipsoids drawn at the 50% probability level. More predominant orientation (65%) of the disodered fragment of the oxazol ring is shown.
[Figure 2] Fig. 2. The formation of the title compound.
2-Bromomethyl-N-isopropyl-7,8-dimethoxy-1,2-dihydro-1,3- oxazolo[3,2-a]quinoline-4-carboxamide top
Crystal data top
C18H21BrN2O5Z = 2
Mr = 425.28F(000) = 436
Triclinic, P1Dx = 1.576 Mg m3
a = 8.736 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.968 (2) ÅCell parameters from 2385 reflections
c = 10.588 (3) Åθ = 4–32°
α = 86.90 (2)°µ = 2.33 mm1
β = 80.90 (2)°T = 100 K
γ = 80.04 (2)°Plate, colourless
V = 896.4 (4) Å30.60 × 0.40 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur3
diffractometer
3105 independent reflections
Radiation source: Enhance (Mo) X-ray Source2701 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
Detector resolution: 16.1827 pixels mm-1θmax = 25.0°, θmin = 3.3°
ω scansh = 1010
Absorption correction: analytical
(Alcock, 1970)
k = 1111
Tmin = 0.287, Tmax = 0.793l = 1212
6292 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0978P)2 + 1.3451P]
where P = (Fo2 + 2Fc2)/3
3105 reflections(Δ/σ)max < 0.001
258 parametersΔρmax = 1.76 e Å3
6 restraintsΔρmin = 0.88 e Å3
Crystal data top
C18H21BrN2O5γ = 80.04 (2)°
Mr = 425.28V = 896.4 (4) Å3
Triclinic, P1Z = 2
a = 8.736 (2) ÅMo Kα radiation
b = 9.968 (2) ŵ = 2.33 mm1
c = 10.588 (3) ÅT = 100 K
α = 86.90 (2)°0.60 × 0.40 × 0.10 mm
β = 80.90 (2)°
Data collection top
Oxford Diffraction Xcalibur3
diffractometer
3105 independent reflections
Absorption correction: analytical
(Alcock, 1970)
2701 reflections with I > 2σ(I)
Tmin = 0.287, Tmax = 0.793Rint = 0.089
6292 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0666 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.05Δρmax = 1.76 e Å3
3105 reflectionsΔρmin = 0.88 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.34636 (6)0.06689 (5)0.11180 (4)0.0383 (2)
N10.2519 (5)0.3824 (4)0.4324 (3)0.0265 (8)
N20.0961 (4)0.3493 (4)0.8290 (3)0.0225 (8)
H2A0.08540.43370.84070.027*
O10.1378 (4)0.2004 (3)0.4688 (3)0.0292 (7)
O20.0441 (4)0.1744 (3)0.6927 (3)0.0308 (8)
O30.0389 (4)0.5646 (3)0.7631 (3)0.0298 (7)
O40.3952 (4)0.8815 (3)0.5332 (3)0.0256 (7)
O50.5279 (4)0.7664 (3)0.3238 (3)0.0262 (7)
C10.2878 (5)0.5081 (4)0.4564 (4)0.0222 (9)
C20.3940 (5)0.5707 (4)0.3692 (4)0.0228 (9)
H2B0.44320.52820.29160.027*
C30.4256 (5)0.6961 (4)0.3988 (4)0.0216 (9)
C40.3527 (5)0.7586 (4)0.5161 (4)0.0233 (9)
C50.2488 (5)0.6966 (4)0.5983 (4)0.0243 (9)
H5A0.19870.74000.67530.029*
C60.2142 (5)0.5693 (4)0.5715 (4)0.0226 (9)
C70.1030 (5)0.5046 (5)0.6613 (4)0.0237 (9)
C80.0756 (5)0.3709 (4)0.6301 (4)0.0223 (9)
C90.1530 (5)0.3193 (4)0.5138 (4)0.0239 (9)
C10A0.1932 (13)0.2038 (11)0.3329 (6)0.034 (4)0.352 (14)
H10A0.10490.23610.28320.041*0.352 (14)
C12A0.2721 (17)0.0571 (12)0.2995 (14)0.034 (4)0.352 (14)
H12A0.19580.00670.31980.040*0.352 (14)
H12B0.36140.02690.34710.040*0.352 (14)
C10B0.2633 (7)0.1653 (5)0.3608 (5)0.0207 (18)0.648 (14)
H10B0.35270.09730.38540.025*0.648 (14)
C12B0.1808 (8)0.1107 (7)0.2615 (5)0.0202 (19)0.648 (14)
H12C0.09390.18040.23790.024*0.648 (14)
H12D0.13760.02820.29540.024*0.648 (14)
C110.3126 (5)0.3038 (4)0.3165 (4)0.0264 (10)
H11B0.42170.25590.31700.032*0.352 (14)
H11A0.30700.36140.23760.032*0.352 (14)
H11C0.42810.29600.29440.032*0.648 (14)
H11D0.26230.34390.24250.032*0.648 (14)
C130.0266 (5)0.2875 (4)0.7177 (4)0.0219 (9)
C140.1879 (5)0.2772 (5)0.9286 (4)0.0259 (9)
H14A0.25150.22220.88800.031*
C150.2986 (6)0.3822 (5)1.0142 (5)0.0344 (11)
H15A0.36790.44160.96270.052*
H15B0.23690.43711.05340.052*
H15C0.36210.33531.08130.052*
C160.0800 (7)0.1829 (6)1.0052 (5)0.0425 (13)
H16A0.01010.11640.94850.064*
H16B0.14280.13501.07200.064*
H16C0.01690.23621.04490.064*
C170.3101 (5)0.9556 (4)0.6430 (4)0.0260 (9)
H17A0.34971.04120.64700.039*
H17B0.32480.90050.72100.039*
H17C0.19800.97540.63560.039*
C180.6008 (5)0.7119 (5)0.2022 (4)0.0263 (9)
H18A0.67100.77230.15860.039*
H18B0.51960.70500.14990.039*
H18C0.66150.62130.21510.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0475 (4)0.0419 (4)0.0227 (3)0.0146 (2)0.0145 (2)0.0105 (2)
N10.030 (2)0.033 (2)0.0146 (17)0.0092 (15)0.0090 (15)0.0082 (15)
N20.0215 (18)0.0273 (19)0.0159 (17)0.0045 (14)0.0062 (14)0.0004 (14)
O10.0334 (18)0.0305 (17)0.0208 (16)0.0113 (13)0.0137 (13)0.0070 (13)
O20.0341 (18)0.0302 (17)0.0258 (16)0.0107 (13)0.0104 (14)0.0068 (13)
O30.0322 (17)0.0343 (17)0.0224 (16)0.0134 (13)0.0074 (14)0.0053 (13)
O40.0254 (16)0.0266 (15)0.0233 (16)0.0063 (12)0.0047 (13)0.0056 (13)
O50.0280 (16)0.0304 (16)0.0191 (15)0.0113 (13)0.0077 (13)0.0023 (12)
C10.020 (2)0.027 (2)0.019 (2)0.0027 (16)0.0005 (17)0.0025 (17)
C20.020 (2)0.031 (2)0.0145 (19)0.0028 (16)0.0039 (16)0.0006 (17)
C30.018 (2)0.029 (2)0.016 (2)0.0027 (16)0.0026 (16)0.0019 (17)
C40.020 (2)0.028 (2)0.021 (2)0.0046 (16)0.0007 (17)0.0006 (17)
C50.023 (2)0.027 (2)0.021 (2)0.0021 (16)0.0023 (17)0.0060 (17)
C60.018 (2)0.030 (2)0.018 (2)0.0022 (16)0.0017 (17)0.0033 (17)
C70.021 (2)0.031 (2)0.018 (2)0.0030 (16)0.0004 (17)0.0033 (17)
C80.023 (2)0.031 (2)0.0118 (19)0.0037 (16)0.0018 (17)0.0010 (16)
C90.023 (2)0.028 (2)0.021 (2)0.0063 (17)0.0005 (18)0.0028 (17)
C10A0.029 (9)0.038 (9)0.034 (9)0.010 (7)0.002 (7)0.003 (7)
C12A0.030 (8)0.040 (9)0.031 (8)0.011 (7)0.002 (6)0.017 (6)
C10B0.020 (4)0.020 (4)0.018 (4)0.002 (3)0.003 (3)0.003 (3)
C12B0.016 (4)0.031 (4)0.016 (3)0.013 (3)0.002 (3)0.004 (3)
C110.028 (2)0.032 (2)0.018 (2)0.0109 (18)0.0104 (18)0.0082 (18)
C130.017 (2)0.027 (2)0.019 (2)0.0014 (16)0.0020 (17)0.0020 (17)
C140.025 (2)0.032 (2)0.018 (2)0.0069 (18)0.0061 (18)0.0017 (17)
C150.028 (2)0.040 (3)0.030 (3)0.002 (2)0.009 (2)0.005 (2)
C160.048 (3)0.038 (3)0.031 (3)0.006 (2)0.008 (2)0.006 (2)
C170.025 (2)0.027 (2)0.024 (2)0.0041 (17)0.0018 (18)0.0041 (18)
C180.023 (2)0.035 (2)0.019 (2)0.0080 (18)0.0050 (18)0.0002 (18)
Geometric parameters (Å, º) top
Br1—C12B1.981 (6)C10A—C12A1.539 (5)
Br1—C12A1.99 (1)C10A—C111.547 (5)
N1—C91.334 (6)C10A—H10A1.000
N1—C11.388 (6)C12A—H12A0.990
N1—C111.469 (5)C12A—H12B0.990
N2—C131.363 (5)C10B—C12B1.535 (5)
N2—C141.457 (5)C10B—C111.544 (4)
N2—H2A0.880C10B—H10B1.000
O1—C91.336 (5)C12B—H12C0.990
O1—C10A1.445 (5)C12B—H12D0.990
O1—C10B1.465 (4)C11—H11B0.990
O2—C131.212 (5)C11—H11A0.990
O3—C71.263 (5)C11—H11C0.990
O4—C41.369 (5)C11—H11D0.990
O4—C171.442 (5)C14—C161.511 (7)
O5—C31.361 (5)C14—C151.525 (6)
O5—C181.433 (5)C14—H14A1.000
C1—C61.403 (6)C15—H15A0.980
C1—C21.403 (6)C15—H15B0.980
C2—C31.387 (6)C15—H15C0.980
C2—H2B0.950C16—H16A0.980
C3—C41.426 (6)C16—H16B0.980
C4—C51.360 (6)C16—H16C0.980
C5—C61.408 (6)C17—H17A0.980
C5—H5A0.950C17—H17B0.980
C6—C71.456 (6)C17—H17C0.980
C7—C81.458 (6)C18—H18A0.980
C8—C91.386 (6)C18—H18B0.980
C8—C131.503 (6)C18—H18C0.980
C9—N1—C1122.8 (4)C10B—C12B—H12C110.7
C9—N1—C11111.5 (3)Br1—C12B—H12C110.7
C1—N1—C11125.6 (3)C10B—C12B—H12D110.7
C13—N2—C14120.8 (4)Br1—C12B—H12D110.7
C13—N2—H2A119.6H12C—C12B—H12D108.8
C14—N2—H2A119.6N1—C11—C10B100.3 (3)
C9—O1—C10A107.1 (4)N1—C11—C10A98.6 (4)
C9—O1—C10B108.5 (3)N1—C11—H11B112.0
C4—O4—C17115.8 (3)C10B—C11—H11B85.6
C3—O5—C18118.0 (3)C10A—C11—H11B112.0
N1—C1—C6117.2 (4)N1—C11—H11A112.0
N1—C1—C2121.3 (4)C10B—C11—H11A134.1
C6—C1—C2121.5 (4)C10A—C11—H11A112.0
C3—C2—C1118.6 (4)H11B—C11—H11A109.7
C3—C2—H2B120.7N1—C11—H11C111.7
C1—C2—H2B120.7C10B—C11—H11C111.7
O5—C3—C2124.4 (4)C10A—C11—H11C135.7
O5—C3—C4115.1 (4)H11A—C11—H11C86.1
C2—C3—C4120.4 (4)N1—C11—H11D111.7
C5—C4—O4125.9 (4)C10B—C11—H11D111.7
C5—C4—C3119.9 (4)C10A—C11—H11D86.6
O4—C4—C3114.2 (4)H11B—C11—H11D128.5
C4—C5—C6121.2 (4)H11C—C11—H11D109.5
C4—C5—H5A119.4O2—C13—N2122.8 (4)
C6—C5—H5A119.4O2—C13—C8123.1 (4)
C1—C6—C5118.4 (4)N2—C13—C8114.2 (4)
C1—C6—C7121.4 (4)N2—C14—C16110.1 (4)
C5—C6—C7120.2 (4)N2—C14—C15108.4 (4)
O3—C7—C6118.9 (4)C16—C14—C15110.9 (4)
O3—C7—C8123.4 (4)N2—C14—H14A109.1
C6—C7—C8117.7 (4)C16—C14—H14A109.1
C9—C8—C7116.5 (4)C15—C14—H14A109.1
C9—C8—C13119.8 (4)C14—C15—H15A109.5
C7—C8—C13123.7 (4)C14—C15—H15B109.5
N1—C9—O1111.4 (4)H15A—C15—H15B109.5
N1—C9—C8124.2 (4)C14—C15—H15C109.5
O1—C9—C8124.4 (4)H15A—C15—H15C109.5
O1—C10A—C12A105.8 (8)H15B—C15—H15C109.5
O1—C10A—C11104.2 (4)C14—C16—H16A109.5
C12A—C10A—C11112.4 (9)C14—C16—H16B109.5
O1—C10A—H10A111.4H16A—C16—H16B109.5
C12A—C10A—H10A111.4C14—C16—H16C109.5
C11—C10A—H10A111.4H16A—C16—H16C109.5
C10A—C12A—Br1104.3 (8)H16B—C16—H16C109.5
C10A—C12A—H12A110.9O4—C17—H17A109.5
Br1—C12A—H12A110.9O4—C17—H17B109.5
C10A—C12A—H12B110.9H17A—C17—H17B109.5
Br1—C12A—H12B110.9O4—C17—H17C109.5
H12A—C12A—H12B108.9H17A—C17—H17C109.5
O1—C10B—C12B104.0 (4)H17B—C17—H17C109.5
O1—C10B—C11103.4 (3)O5—C18—H18A109.5
C12B—C10B—C11111.4 (5)O5—C18—H18B109.5
O1—C10B—H10B112.4H18A—C18—H18B109.5
C12B—C10B—H10B112.4O5—C18—H18C109.5
C11—C10B—H10B112.4H18A—C18—H18C109.5
C10B—C12B—Br1105.1 (4)H18B—C18—H18C109.5
C9—N1—C1—C60.5 (7)C1—N1—C9—C80.0 (7)
C11—N1—C1—C6178.1 (4)C11—N1—C9—C8178.8 (4)
C9—N1—C1—C2179.2 (4)C10A—O1—C9—N118.1 (7)
C11—N1—C1—C22.2 (7)C10B—O1—C9—N113.6 (5)
N1—C1—C2—C3179.7 (4)C10A—O1—C9—C8161.7 (7)
C6—C1—C2—C30.1 (7)C10B—O1—C9—C8166.6 (5)
C18—O5—C3—C24.1 (6)C7—C8—C9—N11.7 (7)
C18—O5—C3—C4177.6 (4)C13—C8—C9—N1176.6 (4)
C1—C2—C3—O5178.9 (4)C7—C8—C9—O1178.1 (4)
C1—C2—C3—C40.7 (6)C13—C8—C9—O13.6 (7)
C17—O4—C4—C56.1 (6)C9—O1—C10A—C12A145.3 (7)
C17—O4—C4—C3172.8 (4)C9—O1—C10A—C1126.6 (9)
O5—C3—C4—C5179.8 (4)O1—C10A—C12A—Br1180.0 (6)
C2—C3—C4—C51.4 (7)C11—C10A—C12A—Br166.9 (9)
O5—C3—C4—O41.2 (6)C9—O1—C10B—C12B138.0 (5)
C2—C3—C4—O4179.6 (4)C9—O1—C10B—C1121.5 (5)
O4—C4—C5—C6179.6 (4)O1—C10B—C12B—Br1178.5 (3)
C3—C4—C5—C61.6 (7)C11—C10B—C12B—Br167.7 (5)
N1—C1—C6—C5179.8 (4)C9—N1—C11—C10B13.9 (5)
C2—C1—C6—C50.2 (7)C1—N1—C11—C10B167.4 (5)
N1—C1—C6—C70.9 (6)C9—N1—C11—C10A14.8 (7)
C2—C1—C6—C7179.5 (4)C1—N1—C11—C10A164.0 (6)
C4—C5—C6—C10.9 (7)O1—C10B—C11—N120.3 (5)
C4—C5—C6—C7179.8 (4)C12B—C10B—C11—N1131.5 (5)
C1—C6—C7—O3179.4 (4)O1—C10A—C11—N124.0 (8)
C5—C6—C7—O30.1 (7)C12A—C10A—C11—N1138.1 (8)
C1—C6—C7—C82.6 (6)C14—N2—C13—O24.3 (7)
C5—C6—C7—C8178.2 (4)C14—N2—C13—C8174.8 (4)
O3—C7—C8—C9179.1 (4)C9—C8—C13—O20.9 (7)
C6—C7—C8—C92.9 (6)C7—C8—C13—O2177.3 (4)
O3—C7—C8—C132.6 (7)C9—C8—C13—N2180.0 (4)
C6—C7—C8—C13175.4 (4)C7—C8—C13—N21.7 (6)
C1—N1—C9—O1179.8 (4)C13—N2—C14—C1679.8 (5)
C11—N1—C9—O11.0 (5)C13—N2—C14—C15158.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.881.912.634 (5)138
C10A—H10A···O3i1.002.233.042137
C12A—H12A···O2ii0.992.333.289164
C12A—H12B···O4iii0.992.413.173134
C12B—H12D···O2ii0.992.303.253162
C17—H17A···O5iv0.982.413.380172
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x, y1, z; (iv) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC18H21BrN2O5
Mr425.28
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.736 (2), 9.968 (2), 10.588 (3)
α, β, γ (°)86.90 (2), 80.90 (2), 80.04 (2)
V3)896.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.33
Crystal size (mm)0.60 × 0.40 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur3
diffractometer
Absorption correctionAnalytical
(Alcock, 1970)
Tmin, Tmax0.287, 0.793
No. of measured, independent and
observed [I > 2σ(I)] reflections
6292, 3105, 2701
Rint0.089
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.171, 1.05
No. of reflections3105
No. of parameters258
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.76, 0.88

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXTL (Sheldrick, 2008), XP (Siemens, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.881.912.634 (5)138.4
C10A—H10A···O3i1.002.233.042136.9
C12A—H12A···O2ii0.992.333.289163.5
C12A—H12B···O4iii0.992.413.173133.6
C12B—H12D···O2ii0.992.303.253162.1
C17—H17A···O5iv0.982.413.380171.8
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x, y1, z; (iv) x+1, y+2, z+1.
 

References

First citationAlcock, N. W. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, p. 271. Copenhagen: Munksgaard.  Google Scholar
First citationBürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767–784. Weinheim: VCH.  Google Scholar
First citationHutcheon, W. L. B. & James, M. N. G. (1977). Acta Cryst. B33, 2228–2232.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1998). XP. Siemens Analytical X-ray Division Inc., Karlsruhe, Germany.  Google Scholar
First citationUkrainets, I. V., Bereznyakova, L. V., Turov, A. V. & Shihkina, S. V. (2007a). Khim. Geterotsikl. Soedin. pp. 1034–1042.  Google Scholar
First citationUkrainets, I. V., Sidorenko, L. V., Gorokhova, O. V., Shishkina, S. V. & Turov, A. V. (2007b). Khim. Geterotsikl. Soedin. pp. 736–749.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds