metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(di­ethyl­enetri­amine)cadmium(II) diiodide

aCollege of Life Sciences, Shenzhen University, Shenzhen 518060, People's Republic of China, and bKey Laboratory of Pesticides and Chemical Biology, Department of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
*Correspondence e-mail: wl_928@mail.ccnu.edu.cn

(Received 18 December 2007; accepted 25 March 2008; online 3 May 2008)

In the title compound, [Cd(dien)2]I2, where dien = diethyl­enetriamine (C4H13N3), the CdII ion is in a distorted octa­hedral coordination environment. In the crystal structure, inter­molecular N—H⋯I hydrogen bonds link cations and anions into a three-dimensional network.

Related literature

For related literature, see: Hynes et al. (1996[Hynes, R. C., Willis, C. J. & Vittal, J. J. (1996). Acta Cryst. C52, 1879-1881.]); Biagini & Cannas (1970[Biagini, S. & Cannas, M. (1970). J. Chem. Soc. A, pp. 2398-2408.]); Xiang et al. (2006[Xiang, J., He, J., Yin, Y. & Li, D. (2006). Inorg. Chem. Commun. 9, 326-328.]); Hines et al. (2006[Hines, C. C., Reichert, W. M., Griffin, S. T., Bond, A. H., Snowwhite, P. E. & Rogers, R. D. (2006). J. Mol. Struct. 796, 76-85.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C4H13N3)2]I2

  • Mr = 572.55

  • Monoclinic, P 21 /c

  • a = 9.8842 (9) Å

  • b = 15.1947 (11) Å

  • c = 12.4209 (9) Å

  • β = 100.204 (6)°

  • V = 1836.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.55 mm−1

  • T = 292 (2) K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.102, Tmax = 0.177 (expected range = 0.232–0.403)

  • 10779 measured reflections

  • 3991 independent reflections

  • 3214 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.057

  • S = 1.08

  • 3991 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N5 2.352 (3)
Cd1—N1 2.357 (3)
Cd1—N2 2.365 (3)
Cd1—N3 2.366 (3)
Cd1—N6 2.380 (3)
Cd1—N4 2.381 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3C⋯I2i 0.90 2.77 3.673 (3) 176
N6—H6C⋯I2i 0.90 2.82 3.709 (3) 168
N3—H3D⋯I1ii 0.90 2.87 3.759 (3) 168
N4—H4D⋯I1ii 0.90 3.02 3.873 (3) 159
N5—H5⋯I1iii 0.91 2.87 3.778 (3) 174
N1—H1D⋯I2 0.90 2.85 3.685 (3) 155
N2—H2⋯I1 0.91 2.98 3.869 (3) 167
N4—H4C⋯I1 0.90 2.96 3.789 (3) 153
N6—H6D⋯I2 0.90 2.86 3.751 (3) 169
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x, -y, -z+1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The goal of our research has been to determine the capability of a number of linear multidentate ligands to induce extended structures in cadmium compounds. Previously, some ligands containing diethylenetriamine and their metal coordination compounds have been studied (Hines et al.,2006; Biagini & Cannas, 1970; Hynes, et al., 1996; Xiang, et al., 2006).

In the molecular structure, the CdII ion is coordinated by six N atoms from two diethylene triamine ligands, forming a distorted octahedral coordination geometry (Fig. 1). In the crystal structure, intermolecular N–H···I hydrogen bonds link the cations and anions into a three-dimensional network (Fig.2).

Related literature top

For related literature, see: Hynes et al. (1996); Biagini & Cannas (1970); Xiang et al. (2006); Hines et al. (2006).

Experimental top

Diethylenetriamine (0.21 g, 2.0 mmol) in 10 ml water was added slowly to a CdAc2.2H2O (0.27 g, 1.0 mmol) solution in 10 ml water and KI (0.33 g, 2.0 mmol) solution in 10 ml water. The mixture was stirred for 1 h. After filtration, the colourless solution was allowed to stand at room temperature. Colourless block-shaped crystals suitable for X-ray analysis were obtained in several days in 50% yield.

Refinement top

H atoms were placed in calculated positions with C—H = 0.97 Å, N—H = 0.90Å (NH2) N—H = 0.91Å (NH) and Uiso=1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing 50% probability displacement ellipsoids and H atoms as small spheres.
[Figure 2] Fig. 2. Part of the crystal structure showing hydrogen bonds as dashed lines.
(I) top
Crystal data top
[Cd(C4H13N3)2]I2F(000) = 1080
Mr = 572.55Dx = 2.071 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1123 reflections
a = 9.8842 (9) Åθ = 2.4–26.8°
b = 15.1947 (11) ŵ = 4.55 mm1
c = 12.4209 (9) ÅT = 292 K
β = 100.204 (6)°Block, colorless
V = 1836.0 (3) Å30.30 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3991 independent reflections
Radiation source: fine focus sealed Siemens Mo tube3214 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
0.3° wide ω exposures scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 126
Tmin = 0.102, Tmax = 0.177k = 1919
10779 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0279P)2]
where P = (Fo2 + 2Fc2)/3
3991 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Cd(C4H13N3)2]I2V = 1836.0 (3) Å3
Mr = 572.55Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8842 (9) ŵ = 4.55 mm1
b = 15.1947 (11) ÅT = 292 K
c = 12.4209 (9) Å0.30 × 0.30 × 0.20 mm
β = 100.204 (6)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3991 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3214 reflections with I > 2σ(I)
Tmin = 0.102, Tmax = 0.177Rint = 0.021
10779 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.08Δρmax = 0.73 e Å3
3991 reflectionsΔρmin = 0.64 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.22542 (2)0.082844 (14)0.762034 (17)0.04124 (7)
C10.4649 (5)0.1808 (3)0.6705 (4)0.0826 (13)
H1A0.54850.21540.68640.099*
H1B0.41670.19720.59840.099*
C20.5008 (4)0.0855 (3)0.6713 (4)0.0794 (13)
H2A0.55770.07420.61670.095*
H2B0.55300.06970.74230.095*
C30.3956 (5)0.0636 (3)0.6679 (4)0.0875 (14)
H3A0.45290.07340.73880.105*
H3B0.44140.08920.61240.105*
C40.2589 (5)0.1067 (3)0.6646 (4)0.0842 (14)
H4A0.20220.09750.59330.101*
H4B0.27160.16960.67560.101*
C50.0645 (4)0.1671 (3)0.6612 (4)0.0790 (12)
H5A0.15500.16240.61620.095*
H5B0.03140.22670.65500.095*
C60.0731 (4)0.1480 (3)0.7764 (4)0.0792 (12)
H6A0.13670.18870.80120.095*
H6B0.10800.08880.78200.095*
C70.0734 (5)0.1198 (4)0.9566 (3)0.0876 (14)
H7A0.03900.05980.95250.105*
H7B0.01790.15440.99800.105*
C80.2183 (5)0.1208 (3)1.0127 (3)0.0856 (14)
H8A0.25120.18101.01880.103*
H8B0.22420.09751.08610.103*
I10.18377 (3)0.107898 (16)0.365025 (19)0.05948 (8)
I20.65646 (3)0.170576 (15)0.988829 (18)0.05505 (8)
N10.3786 (3)0.20013 (19)0.7513 (2)0.0624 (8)
H1C0.33070.24980.73240.075*
H1D0.43180.20870.81710.075*
N20.3770 (3)0.0320 (2)0.6482 (2)0.0651 (8)
H20.33680.04050.57720.078*
N30.1905 (3)0.07111 (17)0.7482 (2)0.0589 (8)
H3C0.22370.09670.81280.071*
H3D0.09980.08270.73160.071*
N40.0290 (3)0.1048 (2)0.6231 (2)0.0615 (8)
H4C0.05540.12570.56230.074*
H4D0.01430.05310.60650.074*
N50.0621 (3)0.1560 (2)0.8462 (2)0.0604 (8)
H50.08480.21410.85200.073*
N60.3059 (3)0.06852 (19)0.9535 (2)0.0606 (8)
H6C0.30360.01160.97310.073*
H6D0.39340.08740.97020.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03847 (13)0.04408 (13)0.04229 (12)0.00397 (10)0.01021 (10)0.00010 (9)
C10.070 (3)0.110 (4)0.072 (3)0.022 (3)0.024 (2)0.021 (2)
C20.048 (2)0.121 (4)0.074 (3)0.001 (2)0.025 (2)0.007 (3)
C30.075 (3)0.082 (3)0.108 (4)0.028 (3)0.022 (3)0.031 (3)
C40.101 (4)0.066 (3)0.081 (3)0.015 (3)0.003 (3)0.024 (2)
C50.057 (2)0.077 (3)0.098 (3)0.023 (2)0.001 (2)0.009 (2)
C60.048 (2)0.099 (3)0.094 (3)0.017 (2)0.022 (2)0.014 (3)
C70.091 (4)0.119 (4)0.063 (2)0.002 (3)0.039 (3)0.011 (2)
C80.117 (4)0.097 (3)0.044 (2)0.010 (3)0.018 (2)0.015 (2)
I10.05661 (15)0.05952 (15)0.06234 (15)0.00248 (11)0.01062 (12)0.00141 (11)
I20.05468 (15)0.05668 (14)0.05193 (13)0.00187 (11)0.00440 (11)0.00483 (9)
N10.0556 (18)0.0579 (17)0.0728 (19)0.0036 (15)0.0085 (16)0.0135 (15)
N20.0564 (19)0.087 (2)0.0537 (16)0.0093 (18)0.0138 (15)0.0073 (16)
N30.067 (2)0.0489 (16)0.0553 (16)0.0018 (15)0.0044 (15)0.0007 (13)
N40.0578 (18)0.074 (2)0.0518 (16)0.0084 (16)0.0064 (15)0.0092 (14)
N50.064 (2)0.0563 (17)0.0658 (18)0.0051 (15)0.0250 (17)0.0098 (14)
N60.074 (2)0.0551 (17)0.0481 (15)0.0121 (15)0.0012 (15)0.0081 (13)
Geometric parameters (Å, º) top
Cd1—N52.352 (3)C5—H5A0.9700
Cd1—N12.357 (3)C5—H5B0.9700
Cd1—N22.365 (3)C6—N51.463 (5)
Cd1—N32.366 (3)C6—H6A0.9700
Cd1—N62.380 (3)C6—H6B0.9700
Cd1—N42.381 (3)C7—N51.464 (5)
C1—N11.457 (5)C7—C81.478 (6)
C1—C21.490 (6)C7—H7A0.9700
C1—H1A0.9700C7—H7B0.9700
C1—H1B0.9700C8—N61.465 (5)
C2—N21.455 (5)C8—H8A0.9700
C2—H2A0.9700C8—H8B0.9700
C2—H2B0.9700I2—N13.685 (3)
C3—N21.478 (5)N1—H1C0.9000
C3—C41.497 (6)N1—H1D0.9000
C3—H3A0.9700N2—H20.9100
C3—H3B0.9700N3—H3C0.9000
C4—N31.441 (5)N3—H3D0.9000
C4—H4A0.9700N4—H4C0.9000
C4—H4B0.9700N4—H4D0.9000
C5—N41.460 (5)N5—H50.9100
C5—C61.478 (6)N6—H6C0.9000
C5—I14.854 (4)N6—H6D0.9000
N5—Cd1—N199.56 (11)H6A—C6—H6B108.1
N5—Cd1—N2167.86 (11)N5—C7—C8110.1 (4)
N1—Cd1—N274.45 (11)N5—C7—H7A109.6
N5—Cd1—N3113.37 (11)C8—C7—H7A109.6
N1—Cd1—N3146.11 (11)N5—C7—H7B109.6
N2—Cd1—N374.54 (11)C8—C7—H7B109.6
N5—Cd1—N674.53 (10)H7A—C7—H7B108.2
N1—Cd1—N691.23 (10)N6—C8—C7111.5 (3)
N2—Cd1—N6115.63 (11)N6—C8—H8A109.3
N3—Cd1—N690.05 (10)C7—C8—H8A109.3
N5—Cd1—N473.76 (10)N6—C8—H8B109.3
N1—Cd1—N4107.61 (11)C7—C8—H8B109.3
N2—Cd1—N497.70 (11)H8A—C8—H8B108.0
N3—Cd1—N489.76 (10)C1—N1—Cd1110.3 (2)
N6—Cd1—N4145.29 (10)C1—N1—I294.7 (2)
N1—C1—C2111.0 (3)Cd1—N1—I2104.93 (9)
N1—C1—H1A109.4C1—N1—H1C109.6
C2—C1—H1A109.4Cd1—N1—H1C109.6
N1—C1—H1B109.4I2—N1—H1C126.4
C2—C1—H1B109.4C1—N1—H1D109.6
H1A—C1—H1B108.0Cd1—N1—H1D109.6
N2—C2—C1110.6 (3)H1C—N1—H1D108.1
N2—C2—H2A109.5C2—N2—C3116.1 (3)
C1—C2—H2A109.5C2—N2—Cd1107.4 (2)
N2—C2—H2B109.5C3—N2—Cd1107.2 (2)
C1—C2—H2B109.5C2—N2—H2108.6
H2A—C2—H2B108.1C3—N2—H2108.6
N2—C3—C4109.9 (4)Cd1—N2—H2108.6
N2—C3—H3A109.7C4—N3—Cd1110.0 (2)
C4—C3—H3A109.7C4—N3—H3C109.7
N2—C3—H3B109.7Cd1—N3—H3C109.7
C4—C3—H3B109.7C4—N3—H3D109.7
H3A—C3—H3B108.2Cd1—N3—H3D109.7
N3—C4—C3110.6 (3)H3C—N3—H3D108.2
N3—C4—H4A109.5C5—N4—Cd1109.7 (2)
C3—C4—H4A109.5C5—N4—H4C109.7
N3—C4—H4B109.5Cd1—N4—H4C109.7
C3—C4—H4B109.5C5—N4—H4D109.7
H4A—C4—H4B108.1Cd1—N4—H4D109.7
N4—C5—C6109.5 (3)H4C—N4—H4D108.2
C6—C5—I1145.2 (2)C6—N5—C7115.7 (3)
N4—C5—H5A109.8C6—N5—Cd1108.9 (2)
C6—C5—H5A109.8C7—N5—Cd1107.1 (3)
I1—C5—H5A95.1C6—N5—H5108.3
N4—C5—H5B109.8C7—N5—H5108.3
C6—C5—H5B109.8Cd1—N5—H5108.3
I1—C5—H5B83.7C8—N6—Cd1109.2 (2)
H5A—C5—H5B108.2C8—N6—H6C109.8
N5—C6—C5110.7 (3)Cd1—N6—H6C109.8
N5—C6—H6A109.5C8—N6—H6D109.8
C5—C6—H6A109.5Cd1—N6—H6D109.8
N5—C6—H6B109.5H6C—N6—H6D108.3
C5—C6—H6B109.5
N1—C1—C2—N258.9 (5)N5—Cd1—N3—C4159.6 (3)
N2—C3—C4—N360.7 (5)N1—Cd1—N3—C435.0 (3)
N4—C5—C6—N560.3 (5)N2—Cd1—N3—C410.6 (3)
I1—C5—C6—N547.9 (7)N6—Cd1—N3—C4127.3 (3)
N5—C7—C8—N659.8 (5)N4—Cd1—N3—C487.5 (3)
C2—C1—N1—Cd136.4 (4)C6—C5—N4—Cd141.6 (4)
C2—C1—N1—I271.5 (3)I1—C5—N4—Cd1126.6 (3)
N5—Cd1—N1—C1161.1 (3)N5—Cd1—N4—C513.1 (2)
N2—Cd1—N1—C18.0 (3)N1—Cd1—N4—C582.0 (3)
N3—Cd1—N1—C132.4 (3)N2—Cd1—N4—C5158.1 (3)
N6—Cd1—N1—C1124.3 (3)N3—Cd1—N4—C5127.6 (3)
N4—Cd1—N1—C185.3 (3)N6—Cd1—N4—C537.8 (3)
N5—Cd1—N1—I297.95 (10)C5—C6—N5—C7166.7 (4)
N2—Cd1—N1—I292.87 (11)C5—C6—N5—Cd146.1 (4)
N3—Cd1—N1—I268.49 (19)C8—C7—N5—C6172.1 (4)
N6—Cd1—N1—I223.43 (10)C8—C7—N5—Cd150.5 (4)
N4—Cd1—N1—I2173.83 (9)N1—Cd1—N5—C6122.7 (3)
C1—C2—N2—C3168.3 (3)N2—Cd1—N5—C663.4 (6)
C1—C2—N2—Cd148.4 (4)N3—Cd1—N5—C665.5 (3)
C4—C3—N2—C2167.6 (3)N6—Cd1—N5—C6148.7 (3)
C4—C3—N2—Cd147.6 (4)N4—Cd1—N5—C617.0 (3)
N5—Cd1—N2—C282.9 (6)N1—Cd1—N5—C7111.5 (3)
N1—Cd1—N2—C221.2 (3)N2—Cd1—N5—C7170.9 (5)
N3—Cd1—N2—C2145.0 (3)N3—Cd1—N5—C760.3 (3)
N6—Cd1—N2—C262.6 (3)N6—Cd1—N5—C722.9 (3)
N4—Cd1—N2—C2127.4 (3)N4—Cd1—N5—C7142.8 (3)
N5—Cd1—N2—C3151.7 (5)C7—C8—N6—Cd135.5 (4)
N1—Cd1—N2—C3146.6 (3)N5—Cd1—N6—C86.3 (3)
N3—Cd1—N2—C319.6 (3)N1—Cd1—N6—C893.3 (3)
N6—Cd1—N2—C362.9 (3)N2—Cd1—N6—C8166.6 (3)
N4—Cd1—N2—C3107.2 (3)N3—Cd1—N6—C8120.6 (3)
C3—C4—N3—Cd139.8 (4)N4—Cd1—N6—C830.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3C···I2i0.902.773.673 (3)176
N6—H6C···I2i0.902.823.709 (3)168
N3—H3D···I1ii0.902.873.759 (3)168
N4—H4D···I1ii0.903.023.873 (3)159
N5—H5···I1iii0.912.873.778 (3)174
N1—H1D···I20.902.853.685 (3)155
N2—H2···I10.912.983.869 (3)167
N4—H4C···I10.902.963.789 (3)153
N6—H6D···I20.902.863.751 (3)169
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+1; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C4H13N3)2]I2
Mr572.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)9.8842 (9), 15.1947 (11), 12.4209 (9)
β (°) 100.204 (6)
V3)1836.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)4.55
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.102, 0.177
No. of measured, independent and
observed [I > 2σ(I)] reflections
10779, 3991, 3214
Rint0.021
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.057, 1.08
No. of reflections3991
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.64

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Selected bond lengths (Å) top
Cd1—N52.352 (3)Cd1—N32.366 (3)
Cd1—N12.357 (3)Cd1—N62.380 (3)
Cd1—N22.365 (3)Cd1—N42.381 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3C···I2i0.902.773.673 (3)176
N6—H6C···I2i0.902.823.709 (3)168
N3—H3D···I1ii0.902.873.759 (3)168
N4—H4D···I1ii0.903.023.873 (3)159
N5—H5···I1iii0.912.873.778 (3)174
N1—H1D···I20.902.853.685 (3)155
N2—H2···I10.912.983.869 (3)167
N4—H4C···I10.902.963.789 (3)153
N6—H6D···I20.902.863.751 (3)169
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+1; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

This work is supported by the National 863 High Technology Research and Development Program of China (No.2002 A A214011).

References

First citationBiagini, S. & Cannas, M. (1970). J. Chem. Soc. A, pp. 2398–2408.  CrossRef Google Scholar
First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHines, C. C., Reichert, W. M., Griffin, S. T., Bond, A. H., Snowwhite, P. E. & Rogers, R. D. (2006). J. Mol. Struct. 796, 76–85.  Web of Science CSD CrossRef CAS Google Scholar
First citationHynes, R. C., Willis, C. J. & Vittal, J. J. (1996). Acta Cryst. C52, 1879–1881.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiang, J., He, J., Yin, Y. & Li, D. (2006). Inorg. Chem. Commun. 9, 326–328.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds