organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­amino­phenazine tetra­hydrate

aInstitute of Marine Materials and Engineering, Shanghai Maritime University, Shanghai 200135, People's Republic of China
*Correspondence e-mail: lxf_shmtu@yahoo.com.cn

(Received 2 March 2008; accepted 7 April 2008; online 7 May 2008)

The title compound, C12H10N4·4H2O, was obtained from a room-temperature solution of o-phenyl­enediamine and copper acetate. In the crystal structure, there are significant ππ stacking inter­actions, with a centroid–centroid separation of 3.575 (2) Å. In addition, inter­molecular O—H⋯O, N—H⋯O, N—H⋯N and O—H⋯N hydrogen bonds link 2,3-diamino­phenazine mol­ecules and water mol­ecules, forming a three-dimensional framework.

Related literature

For related literature, see: Brownstein & Enright (1995[Brownstein, S. K. & Enright, G. D. (1995). Acta Cryst. C51, 1579-1581.]); Doyle et al. (2001[Doyle, R. P., Kruger, P. E., Mackie, P. R. & Nieuwenhuyzen, M. (2001). Acta Cryst. C57, 104-105.]); Chłopek et al. (2005[Chłopek, K., Bill, E., Weyhermüller, T. & Wieghardt, K. (2005). Inorg. Chem. 44, 7087-7098.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N4·4H2O

  • Mr = 282.30

  • Orthorhombic, P c a 21

  • a = 16.7593 (18) Å

  • b = 18.1200 (19) Å

  • c = 4.7834 (5) Å

  • V = 1452.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.37 × 0.32 × 0.23 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.965, Tmax = 0.977

  • 7735 measured reflections

  • 1608 independent reflections

  • 1432 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.140

  • S = 1.14

  • 1608 reflections

  • 225 parameters

  • 17 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯O2Wi 0.895 (10) 2.218 (12) 3.105 (5) 171 (3)
N4—H4C⋯N4ii 0.90 (3) 2.58 (3) 3.198 (3) 126 (3)
N3—H3B⋯O1Wiii 0.906 (10) 2.165 (16) 3.048 (6) 165 (4)
N3—H3C⋯N3ii 0.895 (11) 2.33 (2) 3.122 (4) 147 (3)
O4W—H4WA⋯O4Wiv 0.855 (19) 2.017 (19) 2.871 (3) 176 (4)
O4W—H4WB⋯N2 0.867 (17) 1.924 (19) 2.787 (3) 173 (4)
O3W—H3WB⋯N1 0.872 (19) 1.96 (3) 2.801 (3) 161 (6)
O2W—H2WA⋯O4Wv 0.84 (2) 2.01 (2) 2.843 (4) 178 (5)
O1W—H1WA⋯O1Wvi 0.84 (6) 2.15 (6) 2.860 (7) 142 (6)
O2W—H2WB⋯O2Wvii 0.87 (4) 1.97 (4) 2.812 (5) 161 (3)
O1W—H1WB⋯O3W 0.85 (3) 2.09 (3) 2.882 (6) 155 (5)
Symmetry codes: (i) x, y, z-1; (ii) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (iii) [-x+1, -y+1, z-{\script{1\over 2}}]; (iv) [-x+1, -y, z-{\script{1\over 2}}]; (v) [-x+1, -y, z+{\script{1\over 2}}]; (vi) [-x+{\script{3\over 2}}, y, z+{\script{1\over 2}}]; (vii) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The crystal structures of phenazinediamine (Doyle, et al., 2001) and examples of its derivatives (Brownstein, et al., 1995; Krzysztof, et al., 2005) have been published. As part of our studies of these types of compounds we report here the crystal structure of the title compound (I) which was synthesized at room temperature using o-Phenylenediamine and copper acetate.

In compound (I), the asymmetric unit contains a 2,3-Diamino-phenazine molecule and four water molecules (Fig. 1). In the crystal structure, 2,3-Diamino-phenazine molecules related by unit cell translations along the c axis form moderately strong π···π stacking interactions (Cg1···.Cg2(x, y, -1 + z) and Cg1···Cg3(x, y, 1 + z) = 3.575 (2) Å, where Cg1, Cg2 and Cg3 are the centroids defined by ring atoms N1/N2/C1/C6/C9/C10, C1—C6 and C7—C12, respectively). In addition, water molecules and 2,3-Diamino-phenazine molecules are linked by O—H···N, O—H···O, N—H···N and H—H···O hydrogen bonds to form a three-dimensional network (Table 1 & Fig.2).

Related literature top

For related literature, see: Brownstein & Enright (1995); Doyle et al. (2001); Krzysztof et al. (2005).

Experimental top

A mixture of o-Phenylenediamine(0.5 mmol, 0.054 g), Cu(CH3COO)2 (0.5 mmol,0.099 g), NaOH (1 mmol, 0.04 g), and water (10 ml) was placed in a 20 ml vial, stirring in air for 1 h. It was then sealed for 1 week and the resulting black block-shaped single crystals were collected. Yield: 67%. C&H analysis for C12H18N4O4 (found/calc): C, 51.03(51.06), H, 6.39(6.43).

Refinement top

In the absence of significant anomalous dispersion effects the Friedel pairs were merged. The H atoms were placed in calculated positions in the riding-model approximation (C—H 0.93 Å, N—H 0.90 Å), with their temperature factors were set to 1.2 times those of the equivalent isotropic temperature factors of the parent atoms. The water H atoms were located in difference Fourier maps and refined isotropically with distance restrains of O—H = 0.85 (2) and H···H = 1.39 (1) Å.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I).
[Figure 2] Fig. 2. Part of the crystal structure viewed along the c-axis. Dashed lines are drawn between the donor and acceptor atoms of the hydrogen bonds but H atoms are not showm.
2,3-Diaminophenazine tetrahydrate top
Crystal data top
C12H10N4·4H2OF(000) = 600
Mr = 282.30Dx = 1.291 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 3569 reflections
a = 16.7593 (18) Åθ = 2.7–24.3°
b = 18.1200 (19) ŵ = 0.10 mm1
c = 4.7834 (5) ÅT = 293 K
V = 1452.6 (3) Å3Block, black
Z = 40.37 × 0.32 × 0.23 mm
Data collection top
Bruker SMART APEX area-detector
diffractometer
1608 independent reflections
Radiation source: fine-focus sealed tube1432 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 26.0°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2018
Tmin = 0.965, Tmax = 0.977k = 1922
7735 measured reflectionsl = 55
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0963P)2]
where P = (Fo2 + 2Fc2)/3
1608 reflections(Δ/σ)max < 0.001
225 parametersΔρmax = 0.29 e Å3
17 restraintsΔρmin = 0.12 e Å3
Crystal data top
C12H10N4·4H2OV = 1452.6 (3) Å3
Mr = 282.30Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 16.7593 (18) ŵ = 0.10 mm1
b = 18.1200 (19) ÅT = 293 K
c = 4.7834 (5) Å0.37 × 0.32 × 0.23 mm
Data collection top
Bruker SMART APEX area-detector
diffractometer
1608 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1432 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.977Rint = 0.022
7735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04817 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.29 e Å3
1608 reflectionsΔρmin = 0.12 e Å3
225 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.51508 (13)0.31719 (12)0.3965 (5)0.0417 (6)
N20.51933 (12)0.16406 (12)0.2821 (6)0.0410 (5)
C100.46946 (14)0.20894 (15)0.1460 (6)0.0393 (6)
C110.41763 (15)0.18021 (16)0.0623 (7)0.0443 (7)
H11A0.41840.12990.10080.053*
C10.56542 (15)0.27142 (16)0.5338 (6)0.0418 (7)
C120.36660 (15)0.22488 (17)0.2076 (6)0.0445 (7)
C80.41408 (16)0.33188 (16)0.0507 (7)0.0456 (7)
H8A0.41230.38230.08730.055*
C90.46739 (15)0.28738 (15)0.2042 (6)0.0394 (6)
N40.31334 (15)0.19700 (17)0.3960 (7)0.0603 (8)
H4B0.3134 (18)0.1476 (6)0.403 (10)0.072*
H4C0.2916 (19)0.2287 (16)0.520 (7)0.072*
N30.30987 (17)0.34664 (19)0.2858 (6)0.0630 (8)
H3B0.315 (2)0.3961 (7)0.263 (12)0.076*
H3C0.2912 (19)0.333 (2)0.454 (4)0.076*
C50.62032 (15)0.14891 (17)0.6301 (7)0.0498 (7)
H5A0.62220.09850.59420.060*
C60.56701 (14)0.19474 (15)0.4760 (6)0.0401 (6)
C20.61674 (16)0.30014 (19)0.7428 (7)0.0512 (8)
H2A0.61630.35040.78280.061*
C70.36499 (15)0.30342 (16)0.1501 (6)0.0446 (7)
C40.66820 (16)0.1785 (2)0.8286 (7)0.0561 (8)
H4A0.70250.14800.92890.067*
C30.66680 (18)0.25428 (18)0.8851 (7)0.0576 (9)
H3A0.70040.27361.02130.069*
O4W0.54392 (14)0.01642 (12)0.1437 (6)0.0592 (6)
O3W0.53446 (19)0.47020 (15)0.4439 (8)0.0798 (8)
O2W0.29410 (18)0.02670 (19)0.5763 (7)0.0818 (8)
O1W0.7032 (3)0.4897 (3)0.3542 (10)0.1042 (11)
H4WB0.541 (2)0.0631 (11)0.182 (8)0.088 (14)*
H3WB0.535 (3)0.4238 (14)0.396 (16)0.16 (3)*
H4WA0.516 (2)0.0085 (18)0.004 (7)0.070 (12)*
H3WA0.4832 (14)0.481 (2)0.455 (16)0.14 (2)*
H2WA0.3416 (11)0.014 (2)0.601 (11)0.102 (16)*
H1WA0.723 (3)0.469 (4)0.495 (12)0.22 (4)*
H2WB0.266 (2)0.016 (2)0.724 (8)0.093 (16)*
H1WB0.6547 (14)0.478 (2)0.330 (13)0.11 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0396 (11)0.0510 (12)0.0344 (13)0.0021 (9)0.0026 (10)0.0015 (11)
N20.0359 (11)0.0526 (12)0.0346 (12)0.0009 (9)0.0026 (11)0.0002 (11)
C100.0319 (12)0.0550 (14)0.0311 (14)0.0024 (10)0.0056 (12)0.0001 (12)
C110.0373 (13)0.0571 (15)0.0386 (15)0.0018 (12)0.0006 (13)0.0059 (13)
C10.0337 (13)0.0606 (16)0.0309 (15)0.0032 (11)0.0033 (11)0.0012 (12)
C120.0302 (13)0.0741 (18)0.0293 (14)0.0081 (12)0.0057 (11)0.0011 (14)
C80.0444 (14)0.0551 (14)0.0375 (16)0.0061 (12)0.0035 (13)0.0010 (13)
C90.0361 (12)0.0509 (14)0.0313 (16)0.0018 (11)0.0035 (11)0.0008 (12)
N40.0465 (14)0.092 (2)0.0428 (16)0.0086 (13)0.0108 (13)0.0011 (17)
N30.0539 (15)0.089 (2)0.0463 (17)0.0191 (14)0.0071 (14)0.0025 (15)
C50.0394 (13)0.0697 (17)0.0401 (17)0.0079 (12)0.0028 (13)0.0071 (16)
C60.0303 (12)0.0586 (15)0.0315 (15)0.0004 (10)0.0021 (12)0.0022 (13)
C20.0423 (15)0.0733 (18)0.0379 (17)0.0112 (13)0.0007 (13)0.0048 (16)
C70.0357 (13)0.0699 (18)0.0282 (15)0.0063 (12)0.0034 (12)0.0024 (13)
C40.0358 (14)0.090 (2)0.0421 (18)0.0057 (15)0.0020 (13)0.0131 (17)
C30.0379 (15)0.098 (3)0.0366 (16)0.0096 (15)0.0058 (14)0.0019 (17)
O4W0.0671 (14)0.0536 (12)0.0569 (15)0.0009 (10)0.0081 (13)0.0014 (12)
O3W0.103 (2)0.0588 (14)0.078 (2)0.0099 (13)0.003 (2)0.0042 (14)
O2W0.0642 (17)0.118 (2)0.0636 (18)0.0089 (16)0.0007 (16)0.0027 (17)
O1W0.097 (2)0.123 (3)0.092 (3)0.006 (2)0.007 (2)0.011 (2)
Geometric parameters (Å, º) top
N1—C91.333 (3)N3—H3B0.906 (10)
N1—C11.353 (3)N3—H3C0.895 (11)
N2—C101.335 (3)C5—C41.353 (5)
N2—C61.345 (4)C5—C61.425 (4)
C10—C111.421 (4)C5—H5A0.9300
C10—C91.449 (4)C2—C31.363 (4)
C11—C121.367 (4)C2—H2A0.9300
C11—H11A0.9300C4—C31.400 (4)
C1—C61.417 (4)C4—H4A0.9300
C1—C21.417 (4)C3—H3A0.9300
C12—N41.366 (4)O4W—H4WB0.867 (17)
C12—C71.450 (4)O4W—H4WA0.855 (19)
C8—C71.366 (4)O3W—H3WB0.872 (19)
C8—C91.410 (4)O3W—H3WA0.883 (19)
C8—H8A0.9300O2W—H2WA0.837 (19)
N4—H4B0.895 (10)O2W—H2WB0.87 (4)
N4—H4C0.90 (3)O1W—H1WA0.84 (6)
N3—C71.374 (4)O1W—H1WB0.849 (18)
C9—N1—C1117.4 (2)C7—N3—H3C120 (3)
C10—N2—C6117.2 (2)H3B—N3—H3C114 (4)
N2—C10—C11120.1 (2)C4—C5—C6120.3 (3)
N2—C10—C9121.2 (2)C4—C5—H5A119.9
C11—C10—C9118.7 (2)C6—C5—H5A119.9
C12—C11—C10121.5 (3)N2—C6—C1121.9 (2)
C12—C11—H11A119.3N2—C6—C5119.2 (3)
C10—C11—H11A119.3C1—C6—C5118.8 (2)
N1—C1—C6121.2 (2)C3—C2—C1120.1 (3)
N1—C1—C2119.7 (3)C3—C2—H2A119.9
C6—C1—C2119.1 (3)C1—C2—H2A119.9
N4—C12—C11121.7 (3)C8—C7—N3121.5 (3)
N4—C12—C7118.4 (3)C8—C7—C12119.5 (3)
C11—C12—C7119.8 (3)N3—C7—C12118.9 (3)
C7—C8—C9122.2 (3)C5—C4—C3120.9 (3)
C7—C8—H8A118.9C5—C4—H4A119.6
C9—C8—H8A118.9C3—C4—H4A119.6
N1—C9—C8120.5 (3)C2—C3—C4120.8 (3)
N1—C9—C10121.1 (2)C2—C3—H3A119.6
C8—C9—C10118.4 (2)C4—C3—H3A119.6
C12—N4—H4B113 (3)H4WB—O4W—H4WA108 (2)
C12—N4—H4C118 (2)H3WB—O3W—H3WA105 (2)
H4B—N4—H4C128 (4)H2WA—O2W—H2WB109 (2)
C7—N3—H3B117 (3)H1WA—O1W—H1WB112 (3)
C6—N2—C10—C11179.8 (2)N1—C1—C6—N20.5 (4)
C6—N2—C10—C90.4 (4)C2—C1—C6—N2179.4 (3)
N2—C10—C11—C12179.2 (2)N1—C1—C6—C5179.0 (3)
C9—C10—C11—C120.2 (4)C2—C1—C6—C50.0 (4)
C9—N1—C1—C60.3 (4)C4—C5—C6—N2179.2 (3)
C9—N1—C1—C2179.2 (2)C4—C5—C6—C10.2 (4)
C10—C11—C12—N4176.0 (3)N1—C1—C2—C3179.0 (3)
C10—C11—C12—C70.2 (4)C6—C1—C2—C30.0 (4)
C1—N1—C9—C8179.3 (2)C9—C8—C7—N3175.9 (3)
C1—N1—C9—C100.2 (4)C9—C8—C7—C120.6 (4)
C7—C8—C9—N1179.2 (2)N4—C12—C7—C8175.8 (3)
C7—C8—C9—C100.2 (4)C11—C12—C7—C80.6 (4)
N2—C10—C9—N10.3 (3)N4—C12—C7—N30.4 (4)
C11—C10—C9—N1179.6 (3)C11—C12—C7—N3176.0 (3)
N2—C10—C9—C8179.2 (3)C6—C5—C4—C30.5 (4)
C11—C10—C9—C80.2 (3)C1—C2—C3—C40.3 (5)
C10—N2—C6—C10.5 (4)C5—C4—C3—C20.5 (5)
C10—N2—C6—C5179.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O2Wi0.90 (1)2.22 (1)3.105 (5)171 (3)
N4—H4C···N4ii0.90 (3)2.58 (3)3.198 (3)126 (3)
N3—H3B···O1Wiii0.91 (1)2.17 (2)3.048 (6)165 (4)
N3—H3C···N3ii0.90 (1)2.33 (2)3.122 (4)147 (3)
O4W—H4WA···O4Wiv0.86 (2)2.02 (2)2.871 (3)176 (4)
O4W—H4WB···N20.87 (2)1.92 (2)2.787 (3)173 (4)
O3W—H3WB···N10.87 (2)1.96 (3)2.801 (3)161 (6)
O2W—H2WA···O4Wv0.84 (2)2.01 (2)2.843 (4)178 (5)
O1W—H1WA···O1Wvi0.84 (6)2.15 (6)2.860 (7)142 (6)
O2W—H2WB···O2Wvii0.87 (4)1.97 (4)2.812 (5)161 (3)
O1W—H1WB···O3W0.85 (3)2.09 (3)2.882 (6)155 (5)
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y, z1/2; (iii) x+1, y+1, z1/2; (iv) x+1, y, z1/2; (v) x+1, y, z+1/2; (vi) x+3/2, y, z+1/2; (vii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H10N4·4H2O
Mr282.30
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)16.7593 (18), 18.1200 (19), 4.7834 (5)
V3)1452.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.37 × 0.32 × 0.23
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.965, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
7735, 1608, 1432
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.140, 1.14
No. of reflections1608
No. of parameters225
No. of restraints17
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.12

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O2Wi0.895 (10)2.218 (12)3.105 (5)171 (3)
N4—H4C···N4ii0.90 (3)2.58 (3)3.198 (3)126 (3)
N3—H3B···O1Wiii0.906 (10)2.165 (16)3.048 (6)165 (4)
N3—H3C···N3ii0.895 (11)2.33 (2)3.122 (4)147 (3)
O4W—H4WA···O4Wiv0.855 (19)2.017 (19)2.871 (3)176 (4)
O4W—H4WB···N20.867 (17)1.924 (19)2.787 (3)173 (4)
O3W—H3WB···N10.872 (19)1.96 (3)2.801 (3)161 (6)
O2W—H2WA···O4Wv0.84 (2)2.01 (2)2.843 (4)178 (5)
O1W—H1WA···O1Wvi0.84 (6)2.15 (6)2.860 (7)142 (6)
O2W—H2WB···O2Wvii0.87 (4)1.97 (4)2.812 (5)161 (3)
O1W—H1WB···O3W0.85 (3)2.09 (3)2.882 (6)155 (5)
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y, z1/2; (iii) x+1, y+1, z1/2; (iv) x+1, y, z1/2; (v) x+1, y, z+1/2; (vi) x+3/2, y, z+1/2; (vii) x+1/2, y, z+1/2.
 

Acknowledgements

The authors thank the Program for Liaoning Excellent Talents in Universities for supporting this work (RC-05-11).

References

First citationBrownstein, S. K. & Enright, G. D. (1995). Acta Cryst. C51, 1579–1581.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChłopek, K., Bill, E., Weyhermüller, T. & Wieghardt, K. (2005). Inorg. Chem. 44, 7087–7098.  Web of Science PubMed Google Scholar
First citationDoyle, R. P., Kruger, P. E., Mackie, P. R. & Nieuwenhuyzen, M. (2001). Acta Cryst. C57, 104–105.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds