metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Meth­­oxy-1,10-phenanthroline-κ2N,N′)bis­­(thio­cyanato-κN)zinc(II)

aDepartment of Chemistry and Chemical Engineering, Institute of Materials Chemistry, Binzhou University, Binzhou 256603, People's Republic of China, and bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: honglizhang1968@yahoo.cn

(Received 15 March 2008; accepted 24 April 2008; online 3 May 2008)

In the title complex, [Zn(NCS)2(C13H10N2O)], the ZnII ion is in a distorted tetra­hdral ZnN2Cl2 coordination environment. In the crystal structure, there is a weak ππ stacking inter­action between adjacent 1,10-phenanthroline rings, with a pyridine centroid–centroid distance of 3.6620 (15) Å.

Related literature

For a related structure, see: Zhang et al. (2006[Zhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. (2006). Eur. J. Inorg. Chem. pp. 3407-3412.]). For related literature, see: McMorran & Steel (2002[McMorran, D. A. & Steel, P. J. (2002). Dalton Trans. pp. 3321-3326.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(NCS)2(C13H10N2O)]

  • Mr = 391.76

  • Monoclinic, C 2/c

  • a = 26.360 (5) Å

  • b = 8.5949 (16) Å

  • c = 14.814 (3) Å

  • β = 96.266 (2)°

  • V = 3336.3 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.73 mm−1

  • T = 298 (2) K

  • 0.61 × 0.42 × 0.40 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.418, Tmax = 0.545 (expected range = 0.385–0.501)

  • 9311 measured reflections

  • 3616 independent reflections

  • 2974 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.097

  • S = 1.05

  • 3616 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N3 1.916 (2)
Zn1—N4 1.926 (2)
Zn1—N2 2.0254 (16)
Zn1—N1 2.0636 (19)
N3—Zn1—N4 114.85 (9)
N3—Zn1—N2 116.36 (8)
N4—Zn1—N2 115.23 (9)
N3—Zn1—N1 116.20 (8)
N4—Zn1—N1 108.07 (8)
N2—Zn1—N1 81.62 (7)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of 1,10-phenanthroline play a pivotal role in the area of modern coordination chemistry (e.g. Zhang et al. 2006 and important references cited within), but no structures of complexes with 2-methoxy-1,10-phenanthroline as a ligand have been reported. Herein we report the crystal structure of the title complex (I).

The molecular structure of (I) is shown in Fig. 1. In this mononuclear complex atom Zn1 is in a distorted tetrahedral coordination geometry (Table 1). In the crystal structure, there are weak π-π stacking interactions between symmetry related 1,10-phenanthroline ligands, with the relevant distances being Cg1···Cg1i = 3.6620 (15) Å and a perpendicular distance of 3.563 Å [symmetry code: (i) 1/2-x, 3/2-y, 1-z; Cg1 is the centroid of the N1/C1/C3/C4/C5/C15 ring].

Related literature top

For a related structure, see: Zhang et al. (2006). For related literature, see: McMorran & Steel (2002).

Experimental top

A methanol solution (15ml) of Zn(ClO4).6H2O (0.2951 g, 0.792 mmol) was added into a 10 ml methanol solution containing 2-methoxy-1,10-phenanthroline (0.1666 g, 0.792 mmol), and the mixture was stirred for a few minutes. Then a 10 ml methanol solution of NaSCN (0.1296 g, 1.60 mmol) was added to the above mixture. Yellow single crystals were obtained after the solution had been allowed to stand at room temperature for two weeks.

Refinement top

H atoms were placed in calculated positions (C—H = 0.96 Å for methyl group and C—H = 0.93 Å for other H atoms) and refined as riding with Uiso = 1.5 Ueq(C) for methyl H and Uiso = 1.2 Ueq(C) for other H.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the the atom numbering scheme with thermal ellipsoids drawn at the 30% probability level.
(2-Methoxy-1,10-phenanthroline-κ2N,N')bis(thiocyanato-κN)zinc(II) top
Crystal data top
[Zn(NCS)2(C13H10N2O)]F(000) = 1584
Mr = 391.76Dx = 1.560 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4025 reflections
a = 26.360 (5) Åθ = 2.2–27.6°
b = 8.5949 (16) ŵ = 1.73 mm1
c = 14.814 (3) ÅT = 298 K
β = 96.266 (2)°Bar, yellow
V = 3336.3 (10) Å30.61 × 0.42 × 0.40 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
3616 independent reflections
Radiation source: fine-focus sealed tube2974 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3326
Tmin = 0.418, Tmax = 0.545k = 910
9311 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.2305P]
where P = (Fo2 + 2Fc2)/3
3616 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Zn(NCS)2(C13H10N2O)]V = 3336.3 (10) Å3
Mr = 391.76Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.360 (5) ŵ = 1.73 mm1
b = 8.5949 (16) ÅT = 298 K
c = 14.814 (3) Å0.61 × 0.42 × 0.40 mm
β = 96.266 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3616 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2974 reflections with I > 2σ(I)
Tmin = 0.418, Tmax = 0.545Rint = 0.040
9311 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.06Δρmax = 0.33 e Å3
3616 reflectionsΔρmin = 0.49 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.130923 (10)1.01266 (3)0.392499 (16)0.04081 (11)
S20.07232 (4)1.52220 (8)0.35198 (6)0.0700 (2)
S30.15576 (3)0.73246 (10)0.13159 (4)0.0627 (2)
N10.19776 (7)0.98293 (19)0.47711 (12)0.0374 (4)
N20.10343 (6)0.8750 (2)0.48692 (10)0.0372 (4)
C50.19054 (7)0.8893 (2)0.54870 (12)0.0350 (4)
N30.10454 (8)1.2204 (3)0.38239 (13)0.0557 (5)
O10.02497 (6)0.8745 (2)0.41868 (12)0.0593 (4)
C40.22974 (8)0.8481 (3)0.61569 (13)0.0415 (5)
C80.13985 (8)0.8311 (2)0.55315 (13)0.0363 (4)
C60.21868 (10)0.7477 (3)0.68714 (15)0.0510 (6)
H60.24460.72050.73200.061*
C120.05651 (8)0.8226 (3)0.48815 (15)0.0446 (5)
N40.13885 (8)0.9127 (3)0.27851 (13)0.0580 (5)
C140.14584 (8)0.8383 (3)0.21771 (14)0.0424 (5)
C90.13065 (9)0.7316 (3)0.62413 (15)0.0435 (5)
C20.09073 (8)1.3458 (3)0.37012 (13)0.0422 (5)
C70.17119 (10)0.6909 (3)0.69101 (15)0.0530 (6)
H70.16500.62440.73810.064*
C110.04328 (10)0.7227 (3)0.55773 (17)0.0552 (6)
H110.00990.68780.55800.066*
C30.27856 (9)0.9092 (3)0.60652 (16)0.0517 (6)
H30.30590.88540.64940.062*
C100.07972 (10)0.6789 (3)0.62360 (16)0.0545 (6)
H100.07130.61300.66950.065*
C150.28561 (10)1.0030 (3)0.53490 (19)0.0543 (7)
H150.31771.04350.52860.065*
C10.24425 (9)1.0379 (3)0.47095 (17)0.0471 (5)
H10.24951.10200.42230.057*
C130.02649 (9)0.8142 (4)0.4045 (2)0.0721 (8)
H13A0.02540.70270.40120.108*
H13B0.04330.85480.34870.108*
H13C0.04490.84500.45400.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03960 (18)0.04250 (18)0.04019 (16)0.00072 (11)0.00369 (11)0.00223 (10)
S20.0862 (6)0.0478 (4)0.0775 (5)0.0193 (4)0.0155 (4)0.0028 (3)
S30.0606 (4)0.0723 (5)0.0568 (4)0.0133 (3)0.0135 (3)0.0126 (3)
N10.0323 (10)0.0394 (10)0.0409 (9)0.0019 (7)0.0053 (7)0.0012 (7)
N20.0320 (9)0.0377 (10)0.0427 (9)0.0020 (8)0.0078 (7)0.0029 (7)
C50.0357 (11)0.0319 (10)0.0383 (10)0.0010 (9)0.0080 (8)0.0052 (8)
N30.0631 (14)0.0480 (13)0.0566 (12)0.0108 (11)0.0095 (10)0.0064 (9)
O10.0332 (9)0.0696 (12)0.0735 (11)0.0053 (8)0.0016 (7)0.0038 (9)
C40.0399 (12)0.0424 (12)0.0419 (11)0.0026 (10)0.0027 (9)0.0043 (9)
C80.0378 (11)0.0344 (11)0.0380 (10)0.0001 (9)0.0099 (8)0.0028 (8)
C60.0518 (15)0.0577 (15)0.0419 (12)0.0095 (12)0.0021 (10)0.0045 (10)
C120.0355 (12)0.0456 (13)0.0533 (12)0.0043 (10)0.0072 (9)0.0080 (10)
N40.0637 (14)0.0639 (14)0.0467 (11)0.0039 (12)0.0065 (9)0.0073 (11)
C140.0345 (11)0.0474 (13)0.0448 (12)0.0044 (10)0.0024 (9)0.0073 (10)
C90.0524 (14)0.0397 (12)0.0406 (11)0.0023 (10)0.0145 (9)0.0000 (9)
C20.0395 (12)0.0512 (14)0.0369 (10)0.0001 (11)0.0089 (8)0.0035 (9)
C70.0645 (17)0.0512 (15)0.0451 (12)0.0054 (12)0.0135 (11)0.0098 (11)
C110.0421 (13)0.0618 (16)0.0648 (15)0.0143 (12)0.0205 (11)0.0046 (12)
C30.0390 (12)0.0560 (15)0.0572 (13)0.0013 (11)0.0072 (10)0.0045 (12)
C100.0574 (15)0.0576 (15)0.0522 (13)0.0120 (13)0.0220 (11)0.0036 (11)
C150.0366 (13)0.0585 (17)0.0672 (17)0.0106 (11)0.0034 (12)0.0008 (12)
C10.0373 (13)0.0486 (13)0.0561 (13)0.0088 (11)0.0083 (10)0.0019 (10)
C130.0303 (13)0.086 (2)0.099 (2)0.0058 (14)0.0020 (13)0.0092 (17)
Geometric parameters (Å, º) top
Zn1—N31.916 (2)C6—C71.351 (3)
Zn1—N41.926 (2)C6—H60.9300
Zn1—N22.0254 (16)C12—C111.414 (3)
Zn1—N12.0636 (19)N4—C141.136 (3)
S2—C21.606 (3)C9—C101.416 (3)
S3—C141.611 (2)C9—C71.419 (3)
N1—C11.326 (3)C7—H70.9300
N1—C51.361 (3)C11—C101.346 (4)
N2—C121.319 (3)C11—H110.9300
N2—C81.349 (3)C3—C151.361 (4)
C5—C41.398 (3)C3—H30.9300
C5—C81.435 (3)C10—H100.9300
N3—C21.145 (3)C15—C11.397 (4)
O1—C121.328 (3)C15—H150.9300
O1—C131.446 (3)C1—H10.9300
C4—C31.410 (3)C13—H13A0.9600
C4—C61.421 (3)C13—H13B0.9600
C8—C91.397 (3)C13—H13C0.9600
N3—Zn1—N4114.85 (9)N4—C14—S3179.9 (3)
N3—Zn1—N2116.36 (8)C8—C9—C10115.7 (2)
N4—Zn1—N2115.23 (9)C8—C9—C7119.8 (2)
N3—Zn1—N1116.20 (8)C10—C9—C7124.5 (2)
N4—Zn1—N1108.07 (8)N3—C2—S2178.9 (2)
N2—Zn1—N181.62 (7)C6—C7—C9120.8 (2)
C1—N1—C5118.2 (2)C6—C7—H7119.6
C1—N1—Zn1130.42 (16)C9—C7—H7119.6
C5—N1—Zn1111.33 (14)C10—C11—C12119.0 (2)
C12—N2—C8119.23 (18)C10—C11—H11120.5
C12—N2—Zn1128.04 (15)C12—C11—H11120.5
C8—N2—Zn1112.68 (13)C15—C3—C4119.9 (2)
N1—C5—C4123.20 (19)C15—C3—H3120.0
N1—C5—C8116.87 (18)C4—C3—H3120.0
C4—C5—C8119.93 (18)C11—C10—C9121.0 (2)
C2—N3—Zn1174.4 (2)C11—C10—H10119.5
C12—O1—C13119.4 (2)C9—C10—H10119.5
C5—C4—C3116.7 (2)C3—C15—C1119.5 (2)
C5—C4—C6119.1 (2)C3—C15—H15120.2
C3—C4—C6124.2 (2)C1—C15—H15120.2
N2—C8—C9123.38 (19)N1—C1—C15122.4 (2)
N2—C8—C5117.48 (17)N1—C1—H1118.8
C9—C8—C5119.14 (19)C15—C1—H1118.8
C7—C6—C4121.2 (2)O1—C13—H13A109.5
C7—C6—H6119.4O1—C13—H13B109.5
C4—C6—H6119.4H13A—C13—H13B109.5
N2—C12—O1112.55 (19)O1—C13—H13C109.5
N2—C12—C11121.6 (2)H13A—C13—H13C109.5
O1—C12—C11125.8 (2)H13B—C13—H13C109.5
C14—N4—Zn1171.4 (2)
N3—Zn1—N1—C164.6 (2)C4—C5—C8—C91.0 (3)
N4—Zn1—N1—C166.2 (2)C5—C4—C6—C70.4 (3)
N2—Zn1—N1—C1179.9 (2)C3—C4—C6—C7178.8 (2)
N3—Zn1—N1—C5116.32 (14)C8—N2—C12—O1179.57 (18)
N4—Zn1—N1—C5112.90 (14)Zn1—N2—C12—O12.3 (3)
N2—Zn1—N1—C51.00 (13)C8—N2—C12—C110.7 (3)
N3—Zn1—N2—C1266.0 (2)Zn1—N2—C12—C11177.98 (16)
N4—Zn1—N2—C1272.75 (19)C13—O1—C12—N2173.2 (2)
N1—Zn1—N2—C12178.84 (19)C13—O1—C12—C117.1 (4)
N3—Zn1—N2—C8116.55 (14)N2—C8—C9—C100.6 (3)
N4—Zn1—N2—C8104.70 (15)C5—C8—C9—C10179.83 (19)
N1—Zn1—N2—C81.40 (13)N2—C8—C9—C7179.9 (2)
C1—N1—C5—C40.2 (3)C5—C8—C9—C70.6 (3)
Zn1—N1—C5—C4179.00 (16)C4—C6—C7—C90.7 (4)
C1—N1—C5—C8179.68 (19)C8—C9—C7—C60.2 (4)
Zn1—N1—C5—C80.5 (2)C10—C9—C7—C6179.3 (2)
N1—C5—C4—C30.2 (3)N2—C12—C11—C100.8 (4)
C8—C5—C4—C3179.70 (19)O1—C12—C11—C10179.5 (2)
N1—C5—C4—C6178.99 (19)C5—C4—C3—C150.1 (3)
C8—C5—C4—C60.5 (3)C6—C4—C3—C15179.1 (2)
C12—N2—C8—C90.1 (3)C12—C11—C10—C90.2 (4)
Zn1—N2—C8—C9177.64 (16)C8—C9—C10—C110.5 (3)
C12—N2—C8—C5179.27 (18)C7—C9—C10—C11180.0 (2)
Zn1—N2—C8—C51.6 (2)C4—C3—C15—C10.0 (4)
N1—C5—C8—N20.7 (3)C5—N1—C1—C150.1 (3)
C4—C5—C8—N2179.77 (18)Zn1—N1—C1—C15178.98 (17)
N1—C5—C8—C9178.51 (17)C3—C15—C1—N10.1 (4)

Experimental details

Crystal data
Chemical formula[Zn(NCS)2(C13H10N2O)]
Mr391.76
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)26.360 (5), 8.5949 (16), 14.814 (3)
β (°) 96.266 (2)
V3)3336.3 (10)
Z8
Radiation typeMo Kα
µ (mm1)1.73
Crystal size (mm)0.61 × 0.42 × 0.40
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.418, 0.545
No. of measured, independent and
observed [I > 2σ(I)] reflections
9311, 3616, 2974
Rint0.040
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.06
No. of reflections3616
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.49

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—N31.916 (2)Zn1—N22.0254 (16)
Zn1—N41.926 (2)Zn1—N12.0636 (19)
N3—Zn1—N4114.85 (9)N3—Zn1—N1116.20 (8)
N3—Zn1—N2116.36 (8)N4—Zn1—N1108.07 (8)
N4—Zn1—N2115.23 (9)N2—Zn1—N181.62 (7)
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province of China for support (grant No. Y2007B26).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMcMorran, D. A. & Steel, P. J. (2002). Dalton Trans. pp. 3321–3326.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. (2006). Eur. J. Inorg. Chem. pp. 3407–3412.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds