organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,6-Di­methyl­anilino)-5,6-di­hydro-4H-1,3-thia­zin-3-ium chloride monohydrate

aUniversity of Latvia, Kr. Valdemara 48, Riga, LV 1013, Latvia
*Correspondence e-mail: veidis@lu.lv

(Received 22 April 2008; accepted 8 May 2008; online 10 May 2008)

In the title compound, alternatively called xylazine hydro­chloride monohydrate, C12H17N2S+·Cl·H2O, the six-membered thia­zine ring is in a half-chair conformation. In the crystal structure, six component centrosymmetric clusters are formed via inter­molecular O—H⋯Cl, N—H⋯O and N—H⋯Cl hydrogen bonds involving xylazine cations, chloride anions and water mol­ecules.

Related literature

For related literature see: Carpy et al. (1979[Carpy, A., Gadret, M. & Leger, J. M. (1979). Acta Cryst. B35, 994-996.]); Kalman et al. (1977[Kalman, A., Argay, G., Ribar, B. & Toldy, L. (1977). Tetrahedron Lett. 18, 4241-4244.]).

[Scheme 1]

Experimental

Crystal data
  • C12H17N2S+·Cl·H2O

  • Mr = 274.81

  • Monoclinic, P 21 /c

  • a = 13.4546 (2) Å

  • b = 8.6547 (1) Å

  • c = 12.7732 (2) Å

  • β = 109.210 (2)°

  • V = 1404.56 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.69 mm−1

  • T = 100 K

  • 0.44 × 0.25 × 0.14 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: numerical (de Meulenaer & Tompa, 1965[Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. A19, 1014-1018.]) Tmin = 0.30, Tmax = 0.61

  • 19046 measured reflections

  • 2747 independent reflections

  • 2509 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.088

  • S = 1.01

  • 2509 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O17 0.87 1.97 2.815 (2) 163
O17—H171⋯Cl16i 0.82 2.36 3.158 (1) 164
N7—H7⋯Cl16i 0.87 2.37 3.204 (1) 162
O17—H172⋯Cl16ii 0.83 2.35 3.171 (1) 173
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Xylazine hydrochloride monohydrate is a pharmaceutical used in veterinary medicine as an anesthetic. The substance is an alpha2-agonist with sedative, analgesic, and muscle relaxing properties.

The crystal structure of the title compound has been determined at 100 K. The structure is depicted in Fig. 1. The phenyl ring forms a dihedral angle of 83.24 (14)° with the plane defined by S1, C6 and N5 of the thiazine ring. The six-member thiazine ring assumes the half-chair conformation.

Hydrogen atoms are bonded to both nitrogen atoms forming a cation. Both hydrogen atoms participate in hydrogen bonding. The two xylazine moieties are held together through an extended H-bond network involving the nitrogen, oxygen, and chlorine anions. In the crystal structure, centrosymmetric clusters are formed by N—H···O—H···Cl···H—N hydrogen bond sequence between the two xylazine moieties.

There are H-bonds which do not join the xylazine moities between oxygen and chlorine (Fig. 2). These may impart additional rigidity in the cluster. As a result of Cl···H—O hydrogen bonding a parallelogram is formed by the Cl—O—Cl—O atoms.

The hydrogen bond lengths are given in the Table 1.

Related literature top

For related literature see: Carpy et al. (1979); Kalman et al. (1977).

Experimental top

The title compound was supplied by Grindeks Company. For crystal structure determination suitable crystals were grown by slow evaporation of an ethanol (96%) solution at room temperature.

Refinement top

The hydrogen atoms were located by difference Fourier method. During refinement hydrogen atoms were costrained to the riding mode. Uiso(H)=xUeq(C,N,O), where the average values of x are 1.15 for H atoms bonded to the thiazine ring, 1.48 for methyl H atoms, 1.16 for benzene ring H atoms, 1.17 fot the H atoms bonded to the nitrogen atoms and 1.44 for the H atoms of the water molecule.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with thermal ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Intermolecular hydrogen bond formation (dashed lines) in the title compound.
N-(2,6-Dimethylanilino)-5,6-dihydro-4H-1,3-thiazin-3-ium chloride monohydrate top
Crystal data top
C12H17N2S+·Cl·H2OF(000) = 584
Mr = 274.81Dx = 1.300 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybcCell parameters from 19046 reflections
a = 13.4546 (2) Åθ = 3.5–74.6°
b = 8.6547 (1) ŵ = 3.69 mm1
c = 12.7732 (2) ÅT = 100 K
β = 109.210 (2)°Prism, white
V = 1404.56 (4) Å30.44 × 0.25 × 0.14 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2747 independent reflections
Radiation source: Enhance (Cu) X-ray Source2509 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 74.6°, θmin = 3.5°
Absorption correction: numerical
(de Meulenaer & Tompa, 1965)
h = 1616
Tmin = 0.30, Tmax = 0.61k = 1010
19046 measured reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 W = [weight][1-(δF/6σF)2]2
wR(F2) = 0.088(Δ/σ)max = 0.000294
S = 1.02Δρmax = 0.43 e Å3
2509 reflectionsΔρmin = 0.33 e Å3
154 parameters
Crystal data top
C12H17N2S+·Cl·H2OV = 1404.56 (4) Å3
Mr = 274.81Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.4546 (2) ŵ = 3.69 mm1
b = 8.6547 (1) ÅT = 100 K
c = 12.7732 (2) Å0.44 × 0.25 × 0.14 mm
β = 109.210 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2747 independent reflections
Absorption correction: numerical
(de Meulenaer & Tompa, 1965)
2509 reflections with I > 2.0σ(I)
Tmin = 0.30, Tmax = 0.61Rint = 0.029
19046 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.02Δρmax = 0.43 e Å3
2509 reflectionsΔρmin = 0.33 e Å3
154 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.72343 (3)0.06408 (5)0.19253 (3)0.0234
C20.79732 (14)0.11421 (19)0.19970 (14)0.0244
C30.90751 (14)0.0827 (2)0.19854 (14)0.0252
C40.90283 (13)0.0099 (2)0.08935 (14)0.0244
N50.84522 (11)0.13793 (17)0.06888 (12)0.0225
C60.76970 (12)0.17936 (19)0.10687 (13)0.0199
N70.72435 (11)0.31807 (16)0.08222 (11)0.0217
C80.65460 (13)0.37922 (18)0.13689 (14)0.0210
C90.69975 (13)0.4718 (2)0.23077 (14)0.0224
C100.63438 (14)0.5346 (2)0.28445 (15)0.0278
C110.52719 (15)0.5046 (2)0.24466 (17)0.0319
C120.48404 (14)0.4128 (2)0.15214 (17)0.0300
C130.54694 (13)0.3482 (2)0.09525 (15)0.0255
C140.49879 (15)0.2481 (2)0.00495 (16)0.0319
C150.81647 (13)0.4980 (2)0.27462 (14)0.0249
Cl160.18401 (3)0.10294 (5)0.51765 (3)0.0238
O170.94136 (9)0.31268 (14)0.05720 (10)0.0272
H210.80120.16440.26780.0280*
H310.94500.18030.20670.0276*
H320.94320.01450.25730.0277*
H410.97480.01010.09080.0289*
H420.86940.08040.03000.0289*
H1410.43120.28850.04880.0475*
H1420.54260.24140.05100.0467*
H1430.48890.14500.01890.0475*
H1510.83320.57240.33390.0357*
H1520.84150.53570.21740.0356*
H1530.85150.40170.30300.0359*
H1710.91240.39660.05700.0391*
H1721.00560.32860.03350.0395*
H220.76040.17940.13790.0278*
H50.86670.20660.03180.0267*
H70.74660.38120.04170.0250*
H100.66350.59600.34740.0320*
H110.48380.54830.28250.0362*
H120.41110.39330.12550.0341*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0236 (2)0.0216 (2)0.0306 (2)0.00450 (15)0.01642 (17)0.00271 (14)
C20.0292 (9)0.0208 (8)0.0269 (8)0.0023 (6)0.0143 (7)0.0055 (6)
C30.0257 (8)0.0265 (8)0.0251 (8)0.0001 (7)0.0109 (7)0.0059 (7)
C40.0227 (8)0.0262 (9)0.0274 (8)0.0012 (7)0.0127 (7)0.0037 (6)
N50.0227 (7)0.0222 (7)0.0268 (7)0.0015 (5)0.0137 (5)0.0004 (5)
C60.0186 (7)0.0218 (8)0.0203 (7)0.0012 (6)0.0076 (6)0.0019 (6)
N70.0237 (7)0.0206 (7)0.0245 (7)0.0018 (5)0.0130 (6)0.0002 (5)
C80.0203 (7)0.0193 (8)0.0258 (8)0.0046 (6)0.0107 (6)0.0032 (6)
C90.0225 (8)0.0204 (8)0.0258 (8)0.0035 (6)0.0103 (7)0.0035 (6)
C100.0297 (9)0.0274 (8)0.0296 (9)0.0003 (7)0.0140 (7)0.0043 (7)
C110.0274 (9)0.0319 (10)0.0432 (10)0.0024 (8)0.0209 (8)0.0065 (7)
C120.0181 (8)0.0290 (9)0.0442 (11)0.0072 (8)0.0121 (7)0.0020 (7)
C130.0221 (8)0.0218 (8)0.0319 (9)0.0052 (7)0.0078 (7)0.0008 (6)
C140.0264 (8)0.0263 (9)0.0382 (10)0.0001 (8)0.0042 (7)0.0029 (7)
C150.0224 (8)0.0254 (9)0.0259 (8)0.0012 (7)0.0065 (7)0.0007 (6)
Cl160.0232 (2)0.0239 (2)0.0266 (2)0.00033 (14)0.01150 (16)0.00127 (14)
O170.0244 (6)0.0248 (6)0.0351 (7)0.0025 (5)0.0135 (5)0.0028 (5)
Geometric parameters (Å, º) top
S1—C21.8215 (17)C9—C101.391 (2)
S1—C61.7403 (16)C9—C151.501 (2)
C2—C31.512 (2)C10—C111.387 (3)
C2—H210.959C10—H100.936
C2—H220.964C11—C121.383 (3)
C3—C41.513 (2)C11—H110.950
C3—H310.971C12—C131.401 (3)
C3—H320.952C12—H120.942
C4—N51.474 (2)C13—C141.504 (3)
C4—H410.977C14—H1410.964
C4—H420.961C14—H1420.961
N5—C61.312 (2)C14—H1430.966
N5—H50.866C15—H1510.963
C6—N71.336 (2)C15—H1520.957
N7—C81.442 (2)C15—H1530.967
N7—H70.870O17—H1710.825
C8—C91.404 (2)O17—H1720.829
C8—C131.395 (2)
C2—S1—C6102.42 (8)C9—C8—C13122.61 (15)
S1—C2—C3111.57 (12)C8—C9—C10118.55 (16)
S1—C2—H21107.2C8—C9—C15120.71 (15)
C3—C2—H21109.3C10—C9—C15120.71 (16)
S1—C2—H22109.2C9—C10—C11119.76 (17)
C3—C2—H22109.9C9—C10—H10119.4
H21—C2—H22109.7C11—C10—H10120.8
C2—C3—C4109.91 (14)C10—C11—C12120.93 (16)
C2—C3—H31108.6C10—C11—H11118.6
C4—C3—H31108.9C12—C11—H11120.5
C2—C3—H32110.3C11—C12—C13121.14 (16)
C4—C3—H32109.0C11—C12—H12120.4
H31—C3—H32110.2C13—C12—H12118.5
C3—C4—N5112.65 (13)C12—C13—C8117.01 (16)
C3—C4—H41108.4C12—C13—C14120.45 (16)
N5—C4—H41108.0C8—C13—C14122.53 (16)
C3—C4—H42109.2C13—C14—H141110.2
N5—C4—H42109.1C13—C14—H142112.1
H41—C4—H42109.3H141—C14—H142108.5
C4—N5—C6126.70 (14)C13—C14—H143109.2
C4—N5—H5116.2H141—C14—H143108.5
C6—N5—H5116.9H142—C14—H143108.3
S1—C6—N5123.83 (13)C9—C15—H151109.9
S1—C6—N7115.66 (12)C9—C15—H152110.8
N5—C6—N7120.50 (15)H151—C15—H152108.8
C6—N7—C8122.35 (13)C9—C15—H153109.3
C6—N7—H7118.9H151—C15—H153108.8
C8—N7—H7117.6H152—C15—H153109.3
N7—C8—C9117.10 (14)H171—O17—H172106.9
N7—C8—C13120.28 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O170.871.972.815 (2)163
O17—H171···Cl16i0.822.363.158 (1)164
N7—H7···Cl16i0.872.373.204 (1)162
O17—H172···Cl16ii0.832.353.171 (1)173
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H17N2S+·Cl·H2O
Mr274.81
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.4546 (2), 8.6547 (1), 12.7732 (2)
β (°) 109.210 (2)
V3)1404.56 (4)
Z4
Radiation typeCu Kα
µ (mm1)3.69
Crystal size (mm)0.44 × 0.25 × 0.14
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionNumerical
(de Meulenaer & Tompa, 1965)
Tmin, Tmax0.30, 0.61
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
19046, 2747, 2509
Rint0.029
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.02
No. of reflections2509
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.33

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O170.871.972.815 (2)163
O17—H171···Cl16i0.822.363.158 (1)164
N7—H7···Cl16i0.872.373.204 (1)162
O17—H172···Cl16ii0.832.353.171 (1)173
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1/2, z1/2.
 

Acknowledgements

We thank Oxford Diffraction Ltd for the low-temperature data collection and reduction. Cooperation of the University of Cincinnati Crystallography Centre and the Latvia Institute of Organic Synthesis is acknowledged. Financial aid was provided by Latvia Science Council grant 05.1737.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCarpy, A., Gadret, M. & Leger, J. M. (1979). Acta Cryst. B35, 994–996.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKalman, A., Argay, G., Ribar, B. & Toldy, L. (1977). Tetrahedron Lett. 18, 4241–4244.  CSD CrossRef Google Scholar
First citationMeulenaer, J. de & Tompa, H. (1965). Acta Cryst. A19, 1014–1018.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds