organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Fluoro­phen­yl)-6-(2-fur­yl)pyrimidin-2-amine

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bDepartment of Chemistry, F. C. College University, Lahore 54600, Pakistan, and cDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: mujahid_bk@yahoo.com

(Received 23 April 2008; accepted 28 April 2008; online 3 May 2008)

Mol­ecules of the title compound, C14H10FN3O, are essentially planar and in the crystal structure they form dimers via hydrogen bonds, involving pyrimidinyl N atoms and amino H atoms, about inversion centers. The centroids of the furyl and pyrimidinyl rings are separated by 3.489 (2)Å, indicating ππ stacking inter­actions.

Related literature

For related literature, see: Colorado, & Brodbelt (1996[Colorado, A. & Brodbelt, J. (1996). J. Mass Spectrom. 31, 403-410.]); Bojarski et al. (1985[Bojarski, J. T., Mockrosz, J. L., Barton, H. J. & Paluchowska, M. H. (1985). Adv. Hetreocycl. Chem. 38, 229-297.]); Fun et al. (2006[Fun, H.-K., Goswami, S., Jana, S. & Chantrapromma, S. (2006). Acta Cryst. E62, o5332-o5334.]); Gallagher et al. (2004[Gallagher, J. F., Goswami, S., Chatterjee, B., Jana, S. & Dutta, K. (2004). Acta Cryst. C60, o229-o231.]); Hueso et al. (2003[Hueso, F., Illán, N. A., Moreno, M. N., Martínez, J. M. & Ramírez, M. J. (2003). J. Inorg. Biochem. 94, 326-334.]); Miranda et al. (2006[Miranda, M. G., Norton, E. J., Feazell, R. P., Klausmeyer, K. K. & Pinney, K. G. (2006). J. Chem. Crystallogr. 36, 309-314.]); Varga et al. (2003[Varga, L., Nagy, T., Kovesdi, I., Benet-Buchholz, J., Dorman, G., Urge, L. & Darvas, F. (2003). Tetrahedron, 59, 655-662.]).; Miyazaki et al. (2005[Miyazaki, Y., Matsunaga, S., Tang, J., Maeda, Y., Nakano, M., Philippe, R. J., Shibahara, M., Liu, W., Sato, H., Wang, L. & Notle, R. T. (2005). Bioorg. Med. Chem. Lett. 15, 2203-2207.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10FN3O

  • Mr = 255.25

  • Monoclinic, P 21 /c

  • a = 11.629 (4) Å

  • b = 5.992 (3) Å

  • c = 16.389 (6) Å

  • β = 97.69 (2)°

  • V = 1131.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 173 (2) K

  • 0.24 × 0.20 × 0.16 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.974, Tmax = 0.983

  • 4617 measured reflections

  • 2567 independent reflections

  • 1935 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.123

  • S = 1.03

  • 2567 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H31⋯N2i 0.90 (2) 2.30 (2) 3.190 (2) 168 (2)
C5—H5⋯O1ii 0.95 2.58 3.474 (2) 157
C2—H2⋯N1 0.95 2.46 2.789 (2) 100
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Compounds containing a pyrimidine moiety play a significant role in many biological systems (Hueso et al., 2003). The pyrimidine ring is present in nucleic acids, several vitamins, coenzymes and antibiotics. Pyrimidine based compounds have been reported as anticancer and antiviral agents (Miyazaki et al., 2005). They have been used as hypnotic drugs for the nervous system, e.g., barbiturates act as anaesthetic and sleeping agents and have been in use for the treatment of anxiety, epilepsy and other psychiatric disorders (Colorado & Brodbelt, 1996; Bojarski et al., 1985). We have prepared a series of pyrimidine based compounds from different chalcones following the literature method (Varga et al., 2003). In this paper we report the preparation and structure of the title pyrimidine compound, (I).

The crystal structure of (I) is composed of more or less planar molecules of 4-(4-fluorophenyl)-6-(2-furyl)pyrimidin-2-yl-amine (Fig. 1) wherein the dihedral angle between the mean-planes formed by the furyl and pyrimidinyl rings is 1.91 (12)° and the phenyl ring is oriented at 12.33 (11) and 10.45 (10)° with respect to these rings, respectively. The atoms F1 and N3 are displaced from the mean-planes of the phenyl and pyrimidinyl rings by 0.026 (2) and 0.032 (2) Å, respectively. The bond distances and bond angles in (I) agree well with the corresponding bond distances and angles reported in some compounds closely related to (I)(e.g., Gallagher et al., 2004; Fun et al., 2006; Miranda et al., 2006). The geometry at atom N3 is trigonal pyramidal with sum of the angles about N3 being 348.6°.

It is interesting to note that only one of the amino H-atoms, namely H31 is involved in hydrogen bonding, resulting in dimers about inversion centers (Fig. 2) (details of hydrogen bonding geometry are given in Table 1). In addition, non-classical intermolecular hydrogen bonds, C5–H5···O1, and intramolecular interactions C2–H2···N1 were also observed. The shortest distance between the centroids of furyl and pyrimidinyl rings from adjacent molecules separated by translation along the b axis is 3.489 (2) Å indicating π-π stacking interactions.

Related literature top

For related literature, see: Colorado & Brodbelt (1996); Bojarski et al. (1985); Fun et al. (2006); Gallagher et al. (2004); Hueso et al. (2003); Miranda et al. (2006); Varga et al. (2003).

For related literature, see: Miyazaki et al. (2005).

Experimental top

3-(4-Fluorophenyl)-1-(furan-2-yl)prop-2-en-1-one (2.5 g, 9.08 mmol), guanidine hydrochloride (1.3 g, 1.5 mmol), ethanol (20 ml) and 50% aqueous KOH solution (4 ml) were mixed together and stirred at reflux temperature for 1 hr. Under the same conditions, 30% aqueous H2O2 (3.1 ml, 27.3 mmol) was added to the above mixture in small portions over a period of I hr. The ethanol was removed under reduced pressure in a rotary evaporator and distilled water (20 ml) was added to the residue. The product was isolated as precipitates, washed repeatedly with pure water and recrystallized from chloroform (yield 58%).

Refinement top

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms bonded to C-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: C—H distances were set to 0.95 Å and Uiso(H) = 1.2Ueq(C). H-atoms bonded to N3 were taken from the difference map and were allowed to refine with Uiso = 1.2 times Ueq of N3. The final difference map was free of any chemically significant features.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of (I) with displacement ellipsoids plotted at 50% probability level.
[Figure 2] Fig. 2. Unit cell packing of (I) showing hydrogen bonds with dashed lines; H-atoms not involved in H-bonds have been omitted.
4-(4-Fluorophenyl)-6-(2-furyl)pyrimidin-2-amine top
Crystal data top
C14H10FN3OF(000) = 528
Mr = 255.25Dx = 1.498 Mg m3
Monoclinic, P21/cMelting point = 513–515 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.629 (4) ÅCell parameters from 4617 reflections
b = 5.992 (3) Åθ = 3.6–27.5°
c = 16.389 (6) ŵ = 0.11 mm1
β = 97.69 (2)°T = 173 K
V = 1131.7 (8) Å3Prism, colorless
Z = 40.24 × 0.20 × 0.16 mm
Data collection top
Nonius KappaCCD
diffractometer
2567 independent reflections
Radiation source: fine-focus sealed tube1935 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ϕ scansθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1415
Tmin = 0.974, Tmax = 0.983k = 77
4617 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.061P)2 + 0.4P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2567 reflectionsΔρmax = 0.25 e Å3
179 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.025 (6)
Crystal data top
C14H10FN3OV = 1131.7 (8) Å3
Mr = 255.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.629 (4) ŵ = 0.11 mm1
b = 5.992 (3) ÅT = 173 K
c = 16.389 (6) Å0.24 × 0.20 × 0.16 mm
β = 97.69 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2567 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
1935 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.983Rint = 0.033
4617 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.25 e Å3
2567 reflectionsΔρmin = 0.21 e Å3
179 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.25524 (8)0.3651 (2)0.33665 (7)0.0417 (3)
N10.78951 (10)0.1133 (2)0.47173 (8)0.0212 (3)
N20.63490 (10)0.1576 (2)0.46105 (8)0.0214 (3)
N30.64102 (12)0.1403 (3)0.55076 (8)0.0260 (3)
H310.5641 (17)0.128 (3)0.5524 (11)0.031*
H320.6685 (16)0.273 (4)0.5618 (11)0.031*
O10.68164 (9)0.57384 (19)0.30924 (7)0.0252 (3)
C10.94793 (12)0.0974 (3)0.39086 (9)0.0209 (3)
C20.98310 (14)0.3102 (3)0.41767 (10)0.0269 (4)
H20.93530.39480.44880.032*
C31.08664 (14)0.4012 (3)0.39983 (10)0.0302 (4)
H31.11080.54560.41910.036*
C41.15313 (13)0.2769 (3)0.35368 (10)0.0282 (4)
C51.12145 (14)0.0680 (3)0.32395 (10)0.0280 (4)
H51.16900.01300.29150.034*
C61.01768 (13)0.0212 (3)0.34272 (10)0.0256 (4)
H60.99390.16490.32250.031*
C70.83900 (12)0.0007 (3)0.41450 (9)0.0203 (3)
C80.79028 (13)0.1937 (3)0.37932 (9)0.0225 (3)
H80.82610.27370.33950.027*
C90.68719 (12)0.2674 (3)0.40437 (9)0.0200 (3)
C100.68960 (12)0.0280 (3)0.49192 (9)0.0208 (3)
C110.62985 (12)0.4679 (3)0.36912 (9)0.0207 (3)
C120.53195 (13)0.5788 (3)0.38160 (10)0.0242 (4)
H120.48030.54060.41960.029*
C130.52194 (14)0.7633 (3)0.32661 (10)0.0279 (4)
H130.46200.87220.32060.033*
C140.61369 (14)0.7542 (3)0.28479 (10)0.0279 (4)
H140.62910.85840.24400.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0259 (5)0.0527 (7)0.0494 (6)0.0132 (5)0.0156 (4)0.0045 (5)
N10.0169 (6)0.0245 (7)0.0224 (6)0.0016 (5)0.0036 (5)0.0019 (5)
N20.0184 (6)0.0232 (7)0.0229 (6)0.0012 (5)0.0041 (5)0.0007 (5)
N30.0201 (7)0.0296 (8)0.0296 (7)0.0035 (6)0.0085 (5)0.0081 (6)
O10.0253 (6)0.0242 (6)0.0270 (6)0.0029 (5)0.0073 (5)0.0040 (5)
C10.0165 (7)0.0256 (8)0.0208 (7)0.0008 (6)0.0031 (6)0.0022 (6)
C20.0242 (8)0.0277 (9)0.0300 (8)0.0039 (7)0.0078 (6)0.0032 (7)
C30.0280 (8)0.0300 (9)0.0330 (9)0.0095 (7)0.0063 (7)0.0016 (7)
C40.0185 (7)0.0379 (10)0.0285 (8)0.0071 (7)0.0048 (6)0.0080 (7)
C50.0233 (8)0.0341 (10)0.0283 (8)0.0024 (7)0.0100 (6)0.0026 (7)
C60.0230 (7)0.0270 (8)0.0272 (8)0.0025 (7)0.0052 (6)0.0006 (7)
C70.0178 (7)0.0225 (8)0.0205 (7)0.0013 (6)0.0020 (6)0.0018 (6)
C80.0201 (7)0.0245 (8)0.0236 (7)0.0005 (6)0.0052 (6)0.0023 (6)
C90.0185 (7)0.0210 (8)0.0203 (7)0.0004 (6)0.0013 (6)0.0023 (6)
C100.0179 (7)0.0238 (8)0.0206 (7)0.0004 (6)0.0030 (6)0.0012 (6)
C110.0198 (7)0.0218 (8)0.0207 (7)0.0007 (6)0.0033 (6)0.0015 (6)
C120.0211 (7)0.0243 (8)0.0272 (8)0.0010 (6)0.0036 (6)0.0025 (7)
C130.0271 (8)0.0228 (8)0.0324 (9)0.0047 (7)0.0008 (7)0.0002 (7)
C140.0328 (8)0.0216 (8)0.0283 (8)0.0035 (7)0.0004 (7)0.0051 (7)
Geometric parameters (Å, º) top
F1—C41.3623 (18)C3—H30.9500
N1—C71.346 (2)C4—C51.376 (3)
N1—C101.3503 (19)C5—C61.391 (2)
N2—C101.346 (2)C5—H50.9500
N2—C91.348 (2)C6—H60.9500
N3—C101.359 (2)C7—C81.387 (2)
N3—H310.902 (19)C8—C91.390 (2)
N3—H320.87 (2)C8—H80.9500
O1—C141.3667 (19)C9—C111.456 (2)
O1—C111.3736 (18)C11—C121.357 (2)
C1—C21.392 (2)C12—C131.421 (2)
C1—C61.399 (2)C12—H120.9500
C1—C71.491 (2)C13—C141.344 (2)
C2—C31.388 (2)C13—H130.9500
C2—H20.9500C14—H140.9500
C3—C41.372 (2)
C7—N1—C10116.33 (13)N1—C7—C8121.46 (14)
C10—N2—C9115.37 (12)N1—C7—C1116.36 (14)
C10—N3—H31119.2 (12)C8—C7—C1122.18 (14)
C10—N3—H32115.2 (12)C7—C8—C9117.68 (14)
H31—N3—H32114.2 (17)C7—C8—H8121.2
C14—O1—C11106.44 (12)C9—C8—H8121.2
C2—C1—C6118.38 (14)N2—C9—C8122.34 (14)
C2—C1—C7119.86 (14)N2—C9—C11116.84 (13)
C6—C1—C7121.76 (14)C8—C9—C11120.82 (14)
C3—C2—C1121.33 (16)N2—C10—N1126.82 (14)
C3—C2—H2119.3N2—C10—N3117.09 (13)
C1—C2—H2119.3N1—C10—N3116.08 (14)
C4—C3—C2118.14 (16)C12—C11—O1109.78 (14)
C4—C3—H3120.9C12—C11—C9133.89 (15)
C2—C3—H3120.9O1—C11—C9116.32 (13)
F1—C4—C3118.27 (16)C11—C12—C13106.53 (15)
F1—C4—C5118.67 (15)C11—C12—H12126.7
C3—C4—C5123.06 (15)C13—C12—H12126.7
C4—C5—C6118.06 (15)C14—C13—C12106.75 (14)
C4—C5—H5121.0C14—C13—H13126.6
C6—C5—H5121.0C12—C13—H13126.6
C5—C6—C1121.00 (16)C13—C14—O1110.49 (14)
C5—C6—H6119.5C13—C14—H14124.8
C1—C6—H6119.5O1—C14—H14124.8
C6—C1—C2—C32.2 (2)C10—N2—C9—C11179.48 (13)
C7—C1—C2—C3177.11 (14)C7—C8—C9—N20.3 (2)
C1—C2—C3—C41.0 (2)C7—C8—C9—C11178.93 (13)
C2—C3—C4—F1179.47 (14)C9—N2—C10—N10.3 (2)
C2—C3—C4—C50.5 (2)C9—N2—C10—N3178.41 (13)
F1—C4—C5—C6179.16 (14)C7—N1—C10—N20.3 (2)
C3—C4—C5—C60.8 (2)C7—N1—C10—N3178.93 (13)
C4—C5—C6—C10.4 (2)C14—O1—C11—C120.17 (17)
C2—C1—C6—C51.8 (2)C14—O1—C11—C9179.54 (13)
C7—C1—C6—C5177.43 (14)N2—C9—C11—C121.5 (2)
C10—N1—C7—C80.8 (2)C8—C9—C11—C12179.20 (16)
C10—N1—C7—C1178.73 (12)N2—C9—C11—O1177.67 (13)
C2—C1—C7—N110.0 (2)C8—C9—C11—O11.6 (2)
C6—C1—C7—N1169.28 (13)O1—C11—C12—C130.07 (17)
C2—C1—C7—C8169.55 (14)C9—C11—C12—C13179.15 (16)
C6—C1—C7—C811.2 (2)C11—C12—C13—C140.29 (18)
N1—C7—C8—C90.9 (2)C12—C13—C14—O10.40 (18)
C1—C7—C8—C9178.66 (13)C11—O1—C14—C130.36 (17)
C10—N2—C9—C80.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H31···N2i0.90 (2)2.30 (2)3.190 (2)168 (2)
C5—H5···O1ii0.952.583.474 (2)157
C2—H2···N10.952.462.789 (2)100
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H10FN3O
Mr255.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)11.629 (4), 5.992 (3), 16.389 (6)
β (°) 97.69 (2)
V3)1131.7 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.24 × 0.20 × 0.16
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.974, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
4617, 2567, 1935
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.123, 1.03
No. of reflections2567
No. of parameters179
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.21

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H31···N2i0.90 (2)2.30 (2)3.190 (2)168 (2)
C5—H5···O1ii0.952.583.474 (2)157
C2—H2···N10.952.462.789 (2)100
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge the Higher Education Commission of Pakistan for the financial support for the project.

References

First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBojarski, J. T., Mockrosz, J. L., Barton, H. J. & Paluchowska, M. H. (1985). Adv. Hetreocycl. Chem. 38, 229–297.  CrossRef CAS Web of Science Google Scholar
First citationColorado, A. & Brodbelt, J. (1996). J. Mass Spectrom. 31, 403–410.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Goswami, S., Jana, S. & Chantrapromma, S. (2006). Acta Cryst. E62, o5332–o5334.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGallagher, J. F., Goswami, S., Chatterjee, B., Jana, S. & Dutta, K. (2004). Acta Cryst. C60, o229–o231.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHueso, F., Illán, N. A., Moreno, M. N., Martínez, J. M. & Ramírez, M. J. (2003). J. Inorg. Biochem. 94, 326–334.  Web of Science CrossRef PubMed Google Scholar
First citationMiranda, M. G., Norton, E. J., Feazell, R. P., Klausmeyer, K. K. & Pinney, K. G. (2006). J. Chem. Crystallogr. 36, 309–314.  Web of Science CSD CrossRef CAS Google Scholar
First citationMiyazaki, Y., Matsunaga, S., Tang, J., Maeda, Y., Nakano, M., Philippe, R. J., Shibahara, M., Liu, W., Sato, H., Wang, L. & Notle, R. T. (2005). Bioorg. Med. Chem. Lett. 15, 2203–2207.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarga, L., Nagy, T., Kovesdi, I., Benet-Buchholz, J., Dorman, G., Urge, L. & Darvas, F. (2003). Tetrahedron, 59, 655–662.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds