organic compounds
1-Deoxy-D-arabinitol
aDepartment of Organic Chemistry, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, bRare Sugar Research Centre, Kagawa University, 2393 Miki-cho, Kita-gun, Kagawa 761-0795, Japan, cLaboratory of Molecular Recognition and Selective Synthesis, Institute of Chemistry, Chinese Academy of Sciences, Beijing 10080, People's Republic of China, and dDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk
Addition of methyl lithium to D-erythrono-1,4-lactone followed by acid deprotection was shown, by X-ray crystallography, to give 1-deoxy-D-arabinitol, C5H12O4, rather than 1-deoxy-D-ribitol as the major product. The exists as hydrogen-bonded chains of molecules running parallel to the c axis which are further linked together by hydrogen bonds. Each molecule is a donor and an acceptor for four hydrogen bonds.
Related literature
For related literature see: Izumori (2002, 2006); Granstrom et al. (2004); Beadle et al. (1992); Skytte (2002); Levin (2002); Howling & Callagan (2000); Bertelsen et al. (1999); Takata et al. (2005); Menavuvu et al. (2006); Sui et al. (2005); Hossain et al. (2006); Zehner et al. (1994); Donner et al. (1999); Yoshihara et al. (2008); Takai & Heathcock (1985); Zissis & Richtmyer (1954).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2001); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
10.1107/S1600536808012555/lh2622sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808012555/lh2622Isup2.hkl
The title compound was recrystallized from hot methanol: m.p. 398–400 K; [α]D21 +0.8 (c, 8 in H2O) {Lit. (Zissis & Richtmyer, 1954) m.p. 129–131°C; [α]D20 +0.7 (c, 10 in H2O; l, 4)}.
In the absence of significant
Friedel pairs were merged and the assigned from the starting material.The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.
Data collection: COLLECT (Nonius, 2001); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).C5H12O4 | Dx = 1.281 Mg m−3 |
Mr = 136.15 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I41 | Cell parameters from 815 reflections |
Hall symbol: I 4bw | θ = 5–27° |
a = 12.9873 (5) Å | µ = 0.11 mm−1 |
c = 8.3679 (3) Å | T = 150 K |
V = 1411.41 (9) Å3 | Block, colourless |
Z = 8 | 0.25 × 0.25 × 0.25 mm |
F(000) = 592 |
Nonius KappaCCD area-detector diffractometer | 750 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ω scans | θmax = 27.5°, θmin = 5.3° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −16→16 |
Tmin = 0.93, Tmax = 0.97 | k = −11→11 |
3189 measured reflections | l = −10→10 |
855 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.123 | w = 1/[σ2(F2) + ( 0.07P)2 + 1.26P], where P = (max(Fo2,0) + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.002 |
855 reflections | Δρmax = 0.34 e Å−3 |
82 parameters | Δρmin = −0.39 e Å−3 |
1 restraint |
C5H12O4 | Z = 8 |
Mr = 136.15 | Mo Kα radiation |
Tetragonal, I41 | µ = 0.11 mm−1 |
a = 12.9873 (5) Å | T = 150 K |
c = 8.3679 (3) Å | 0.25 × 0.25 × 0.25 mm |
V = 1411.41 (9) Å3 |
Nonius KappaCCD area-detector diffractometer | 855 independent reflections |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | 750 reflections with I > 2σ(I) |
Tmin = 0.93, Tmax = 0.97 | Rint = 0.020 |
3189 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 1 restraint |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.34 e Å−3 |
855 reflections | Δρmin = −0.39 e Å−3 |
82 parameters |
x | y | z | Uiso*/Ueq | ||
O1 | 0.64776 (13) | 0.51955 (15) | 0.6622 (3) | 0.0211 | |
C2 | 0.75127 (18) | 0.5139 (2) | 0.6068 (4) | 0.0186 | |
C3 | 0.7537 (2) | 0.4842 (2) | 0.4296 (4) | 0.0187 | |
O4 | 0.85700 (13) | 0.48073 (16) | 0.3723 (3) | 0.0237 | |
C5 | 0.6897 (2) | 0.5564 (2) | 0.3268 (4) | 0.0235 | |
O6 | 0.73116 (15) | 0.65798 (14) | 0.3242 (3) | 0.0250 | |
C7 | 0.8135 (2) | 0.4417 (2) | 0.7135 (4) | 0.0208 | |
O8 | 0.76689 (14) | 0.34124 (13) | 0.7126 (3) | 0.0216 | |
C9 | 0.8162 (3) | 0.4788 (2) | 0.8844 (4) | 0.0371 | |
H21 | 0.7853 | 0.5822 | 0.6286 | 0.0184* | |
H31 | 0.7208 | 0.4168 | 0.4126 | 0.0196* | |
H51 | 0.6985 | 0.5315 | 0.2238 | 0.0277* | |
H52 | 0.6191 | 0.5542 | 0.3475 | 0.0271* | |
H71 | 0.8827 | 0.4379 | 0.6604 | 0.0259* | |
H91 | 0.8413 | 0.4265 | 0.9544 | 0.0541* | |
H92 | 0.8595 | 0.5396 | 0.8958 | 0.0548* | |
H93 | 0.7474 | 0.4971 | 0.9202 | 0.0552* | |
H1 | 0.6194 | 0.4722 | 0.5703 | 0.0308* | |
H8 | 0.7975 | 0.2944 | 0.6379 | 0.0334* | |
H6 | 0.7418 | 0.6761 | 0.4388 | 0.0359* | |
H4 | 0.9070 | 0.5369 | 0.3651 | 0.0365* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0197 (10) | 0.0197 (9) | 0.0240 (12) | 0.0010 (7) | 0.0042 (9) | −0.0023 (9) |
C2 | 0.0139 (13) | 0.0193 (12) | 0.0225 (16) | −0.0037 (9) | 0.0006 (12) | −0.0001 (13) |
C3 | 0.0176 (14) | 0.0167 (12) | 0.0218 (17) | −0.0006 (9) | −0.0011 (12) | 0.0010 (13) |
O4 | 0.0169 (9) | 0.0213 (9) | 0.0329 (14) | 0.0015 (7) | 0.0061 (10) | 0.0035 (10) |
C5 | 0.0223 (14) | 0.0269 (15) | 0.0214 (16) | 0.0014 (11) | 0.0013 (13) | 0.0032 (15) |
O6 | 0.0308 (11) | 0.0215 (10) | 0.0227 (12) | 0.0025 (8) | 0.0056 (11) | 0.0046 (10) |
C7 | 0.0201 (13) | 0.0204 (13) | 0.0218 (16) | −0.0035 (10) | −0.0045 (13) | −0.0004 (13) |
O8 | 0.0254 (10) | 0.0189 (10) | 0.0204 (12) | 0.0010 (7) | 0.0049 (10) | 0.0000 (9) |
C9 | 0.053 (2) | 0.0332 (16) | 0.0253 (15) | −0.0023 (15) | −0.0149 (15) | −0.0036 (13) |
O1—C2 | 1.424 (3) | C5—H51 | 0.927 |
O1—H1 | 1.051 | C5—H52 | 0.934 |
C2—C3 | 1.532 (3) | O6—H6 | 0.997 |
C2—C7 | 1.527 (4) | C7—O8 | 1.438 (3) |
C2—H21 | 1.008 | C7—C9 | 1.510 (5) |
C3—O4 | 1.425 (3) | C7—H71 | 1.004 |
C3—C5 | 1.520 (4) | O8—H8 | 0.959 |
C3—H31 | 0.985 | C9—H91 | 0.954 |
O4—H4 | 0.978 | C9—H92 | 0.974 |
C5—O6 | 1.425 (3) | C9—H93 | 0.972 |
C2—O1—H1 | 93.6 | C3—C5—H52 | 114.4 |
O1—C2—C3 | 110.4 (2) | O6—C5—H52 | 113.8 |
O1—C2—C7 | 109.9 (3) | H51—C5—H52 | 106.4 |
C3—C2—C7 | 113.6 (2) | C5—O6—H6 | 104.9 |
O1—C2—H21 | 108.0 | C2—C7—O8 | 109.4 (2) |
C3—C2—H21 | 112.9 | C2—C7—C9 | 111.7 (2) |
C7—C2—H21 | 101.7 | O8—C7—C9 | 107.7 (3) |
C2—C3—O4 | 110.7 (2) | C2—C7—H71 | 104.2 |
C2—C3—C5 | 112.4 (2) | O8—C7—H71 | 109.3 |
O4—C3—C5 | 110.1 (2) | C9—C7—H71 | 114.4 |
C2—C3—H31 | 110.8 | C7—O8—H8 | 113.9 |
O4—C3—H31 | 109.4 | C7—C9—H91 | 111.2 |
C5—C3—H31 | 103.2 | C7—C9—H92 | 111.4 |
C3—O4—H4 | 128.4 | H91—C9—H92 | 108.7 |
C3—C5—O6 | 111.9 (2) | C7—C9—H93 | 110.4 |
C3—C5—H51 | 104.0 | H91—C9—H93 | 107.4 |
O6—C5—H51 | 105.2 | H92—C9—H93 | 107.6 |
D—H···A | D—H | H···A | D···A | D—H···A |
O8—H8···O8i | 0.96 | 1.76 | 2.698 (4) | 164 |
O6—H6···O6ii | 1.00 | 1.98 | 2.712 (4) | 128 |
O4—H4···O1iii | 0.98 | 1.77 | 2.718 (4) | 162 |
O1—H1···O4iv | 1.05 | 2.03 | 2.712 (3) | 120 |
Symmetry codes: (i) y+1/2, −x+1, z−1/4; (ii) y, −x+3/2, z+1/4; (iii) −y+3/2, x, z−1/4; (iv) −y+1, x−1/2, z+1/4. |
Experimental details
Crystal data | |
Chemical formula | C5H12O4 |
Mr | 136.15 |
Crystal system, space group | Tetragonal, I41 |
Temperature (K) | 150 |
a, c (Å) | 12.9873 (5), 8.3679 (3) |
V (Å3) | 1411.41 (9) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.25 × 0.25 × 0.25 |
Data collection | |
Diffractometer | Nonius KappaCCD area-detector diffractometer |
Absorption correction | Multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.93, 0.97 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3189, 855, 750 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.123, 1.00 |
No. of reflections | 855 |
No. of parameters | 82 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.39 |
Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
O8—H8···O8i | 0.96 | 1.76 | 2.698 (4) | 164 |
O6—H6···O6ii | 1.00 | 1.98 | 2.712 (4) | 128 |
O4—H4···O1iii | 0.98 | 1.77 | 2.718 (4) | 162 |
O1—H1···O4iv | 1.05 | 2.03 | 2.712 (3) | 120 |
Symmetry codes: (i) y+1/2, −x+1, z−1/4; (ii) y, −x+3/2, z+1/4; (iii) −y+3/2, x, z−1/4; (iv) −y+1, x−1/2, z+1/4. |
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Beadle, J. R., Saunders, J. P. & Wajda, T. J. (1992). US Patent 5 078 796. Google Scholar
Bertelsen, H., Jensen, B. B. & Buemann, B. (1999). World Rev. Nutr. Diet. 85, 98–109. CrossRef PubMed CAS Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Donner, T. W., Wilber, J. F. & Ostrowski, D. (1999). Diabetes Obes. Metab. 1, 285–291. Web of Science CrossRef PubMed CAS Google Scholar
Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89–94. Web of Science CrossRef PubMed Google Scholar
Hossain, M. A., Wakabayashi, H., Izuishi, K., Okano, K., Yachida, S., Tokuda, M., Izumori, K. & Maeta, H. (2006). J. Biosci. Bioeng. 101, 369–371. Web of Science CrossRef PubMed CAS Google Scholar
Howling, D. & Callagan, J. L. (2000). PCT Int. App. WO 2000 042 865. Google Scholar
Izumori, K. (2002). Naturwissenschaften, 89, 120–124. Web of Science CrossRef PubMed CAS Google Scholar
Izumori, K. (2006). J. Biotechnol. 124, 717–722. Web of Science CrossRef PubMed CAS Google Scholar
Levin, G. V. (2002). J. Med. Food, 5, 23–36. CrossRef PubMed CAS Google Scholar
Menavuvu, B. T., Poonperm, W., Leang, K., Noguchi, N., Okada, H., Morimoto, K., Granstrom, T. B., Takada, G. & Izumori, K. (2006). J. Biosci. Bioeng. 101, 340–345. Web of Science CrossRef PubMed CAS Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Skytte, U. P. (2002). Cereal Foods World 47, 224–224. Google Scholar
Sui, L., Dong, Y. Y., Watanabe, Y., Yamaguchi, F., Hatano, N., Tsukamoto, I., Izumori, K. & Tokuda, M. (2005). Intl. J. Ocology, 27, 907-912. CAS Google Scholar
Takai, K. & Heathcock, C. H. (1985). J. Org. Chem. 50, 3247–3251. CrossRef CAS Web of Science Google Scholar
Takata, M. K., Yamaguchi, F., Nakanose, Y., Watanabe, Y., Hatano, N., Tsukamoto, I., Nagata, M., Izumori, K. & Tokuda, M. (2005). J. Biosci. Bioeng. 100, 511–516. Web of Science CrossRef PubMed CAS Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK. Google Scholar
Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 1739–745. Web of Science CrossRef Google Scholar
Zehner, L. R., Levin, G. V., Saunders, J. P. & Beadle, J. R. (1994). US Patent 5 356 879. Google Scholar
Zissis, E. & Richtmyer, N. K. (1954). J. Am. Chem. Soc. 76, 5515–5522. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The demand for the large scale production of rare sugars by biotechnological (Izumori, 2006; Izumori, 2002; Granstrom et al., 2004) and chemical (Beadle et al., 1992) methods is driven by the demand for alternative foodstuffs (Skytte, 2002) and D-tagatose itself is used as a low calorie sweetener (Levin, 2002; Howling & Callagan, 2000; Bertelsen et al. 1999) Rare monosaccharides have been found to demonstrate interesting pharmaceutical properties, for example, D-psicose (Takata et al., 2005; Menavuvu et al., 2006) and D-allose (Sui et al., 2005; Hossain et al., 2006) have significant chemotherapeutic properties and D-tagatose has been found to be an anti-hyperglycemic agent (Zehner et al., 1994; Donner et al., 1999) and therefore potentially useful in the treatment of diabetes.
The methodology developed by Izumori et al. (2002, 2006) for the interconversion of tetroses, pentoses and hexoses by enzymatic oxidation, inversion at C3 with a single epimerase, and reduction to the aldose has been seen to be generally applicable for the 1-deoxy ketohexoses (Yoshihara et al., 2008). In order to investigate the viability of this process to the corresponding pentoses and thus to evaluate their therapeutic potential 1-deoxy-D-arabinitol was synthesized, in 3 steps, from 2,3-O-isopropylidene-D-erythronolactone 1 (Fig.1). It has previously been seen that the four diastereomeric tetraols are very difficult to distinguish between by NMR spectroscopy (Takai & Heathcock, 1985). X-ray crystallography confirmed that the major product was the arabinitol 4 rather than the ribitol 3 which differs only in the stereochemistry at the C2 position (Fig. 2).
The molecules are linked by three hydrogen bonding systems and the structure consists of alternating spiral chains of O6—H6···O6 or O8—H8···O8 hydrogen-bonded molecules running parallel to the c-axis (Fig. 3) interconnected by O1—H1···O4—H4···O1 hydrogen bonds (Fig.4). Each molecule is a donor and acceptor for 4 hydrogen bonds (Fig. 5).
In summary, the stereochemistry at C2 of the title compound 1-deoxy-D-arabinitol 4 was firmly established by X-ray crystallography, the absolute configuration is determined by the use of D-erythronolactone as the starting material. As well as the potential biological properties of 1-deoxy ketoses, they are likely to provide a new set of building blocks for the synthesis of a wide variety of complex biomolecules.