organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1010-o1011

1-De­­oxy-D-arabinitol

aDepartment of Organic Chemistry, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, bRare Sugar Research Centre, Kagawa University, 2393 Miki-cho, Kita-gun, Kagawa 761-0795, Japan, cLaboratory of Molecular Recognition and Selective Synthesis, Institute of Chemistry, Chinese Academy of Sciences, Beijing 10080, People's Republic of China, and dDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk

(Received 24 April 2008; accepted 29 April 2008; online 7 May 2008)

Addition of methyl lithium to D-erythrono-1,4-lactone followed by acid deprotection was shown, by X-ray crystallography, to give 1-de­oxy-D-arabinitol, C5H12O4, rather than 1-de­oxy-D-ribitol as the major product. The crystal structure exists as hydrogen-bonded chains of mol­ecules running parallel to the c axis which are further linked together by hydrogen bonds. Each mol­ecule is a donor and an acceptor for four hydrogen bonds.

Related literature

For related literature see: Izumori (2002[Izumori, K. (2002). Naturwissenschaften, 89, 120-124.], 2006[Izumori, K. (2006). J. Biotechnol. 124, 717-722.]); Granstrom et al. (2004[Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89-94.]); Beadle et al. (1992[Beadle, J. R., Saunders, J. P. & Wajda, T. J. (1992). US Patent 5 078 796.]); Skytte (2002[Skytte, U. P. (2002). Cereal Foods World 47, 224-224.]); Levin (2002[Levin, G. V. (2002). J. Med. Food, 5, 23-36.]); Howling & Callagan (2000[Howling, D. & Callagan, J. L. (2000). PCT Int. App. WO 2000 042 865.]); Bertelsen et al. (1999[Bertelsen, H., Jensen, B. B. & Buemann, B. (1999). World Rev. Nutr. Diet. 85, 98-109.]); Takata et al. (2005[Takata, M. K., Yamaguchi, F., Nakanose, Y., Watanabe, Y., Hatano, N., Tsukamoto, I., Nagata, M., Izumori, K. & Tokuda, M. (2005). J. Biosci. Bioeng. 100, 511-516.]); Menavuvu et al. (2006[Menavuvu, B. T., Poonperm, W., Leang, K., Noguchi, N., Okada, H., Morimoto, K., Granstrom, T. B., Takada, G. & Izumori, K. (2006). J. Biosci. Bioeng. 101, 340-345.]); Sui et al. (2005[Sui, L., Dong, Y. Y., Watanabe, Y., Yamaguchi, F., Hatano, N., Tsukamoto, I., Izumori, K. & Tokuda, M. (2005). Intl. J. Ocology, 27, 907-912.]); Hossain et al. (2006[Hossain, M. A., Wakabayashi, H., Izuishi, K., Okano, K., Yachida, S., Tokuda, M., Izumori, K. & Maeta, H. (2006). J. Biosci. Bioeng. 101, 369-371.]); Zehner et al. (1994[Zehner, L. R., Levin, G. V., Saunders, J. P. & Beadle, J. R. (1994). US Patent 5 356 879.]); Donner et al. (1999[Donner, T. W., Wilber, J. F. & Ostrowski, D. (1999). Diabetes Obes. Metab. 1, 285-291.]); Yoshihara et al. (2008[Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 1739-745. ]); Takai & Heathcock (1985[Takai, K. & Heathcock, C. H. (1985). J. Org. Chem. 50, 3247-3251.]); Zissis & Richtmyer (1954[Zissis, E. & Richtmyer, N. K. (1954). J. Am. Chem. Soc. 76, 5515-5522.]).

[Scheme 1]

Experimental

Crystal data
  • C5H12O4

  • Mr = 136.15

  • Tetragonal, I 41

  • a = 12.9873 (5) Å

  • c = 8.3679 (3) Å

  • V = 1411.41 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 150 K

  • 0.25 × 0.25 × 0.25 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.93, Tmax = 0.97

  • 3189 measured reflections

  • 855 independent reflections

  • 750 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.123

  • S = 1.00

  • 855 reflections

  • 82 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8⋯O8i 0.96 1.76 2.698 (4) 164
O6—H6⋯O6ii 1.00 1.98 2.712 (4) 128
O4—H4⋯O1iii 0.98 1.77 2.718 (4) 162
O1—H1⋯O4iv 1.05 2.03 2.712 (3) 120
Symmetry codes: (i) [y+{\script{1\over 2}}, -x+1, z-{\script{1\over 4}}]; (ii) [y, -x+{\script{3\over 2}}, z+{\script{1\over 4}}]; (iii) [-y+{\script{3\over 2}}, x, z-{\script{1\over 4}}]; (iv) [-y+1, x-{\script{1\over 2}}, z+{\script{1\over 4}}].

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The demand for the large scale production of rare sugars by biotechnological (Izumori, 2006; Izumori, 2002; Granstrom et al., 2004) and chemical (Beadle et al., 1992) methods is driven by the demand for alternative foodstuffs (Skytte, 2002) and D-tagatose itself is used as a low calorie sweetener (Levin, 2002; Howling & Callagan, 2000; Bertelsen et al. 1999) Rare monosaccharides have been found to demonstrate interesting pharmaceutical properties, for example, D-psicose (Takata et al., 2005; Menavuvu et al., 2006) and D-allose (Sui et al., 2005; Hossain et al., 2006) have significant chemotherapeutic properties and D-tagatose has been found to be an anti-hyperglycemic agent (Zehner et al., 1994; Donner et al., 1999) and therefore potentially useful in the treatment of diabetes.

The methodology developed by Izumori et al. (2002, 2006) for the interconversion of tetroses, pentoses and hexoses by enzymatic oxidation, inversion at C3 with a single epimerase, and reduction to the aldose has been seen to be generally applicable for the 1-deoxy ketohexoses (Yoshihara et al., 2008). In order to investigate the viability of this process to the corresponding pentoses and thus to evaluate their therapeutic potential 1-deoxy-D-arabinitol was synthesized, in 3 steps, from 2,3-O-isopropylidene-D-erythronolactone 1 (Fig.1). It has previously been seen that the four diastereomeric tetraols are very difficult to distinguish between by NMR spectroscopy (Takai & Heathcock, 1985). X-ray crystallography confirmed that the major product was the arabinitol 4 rather than the ribitol 3 which differs only in the stereochemistry at the C2 position (Fig. 2).

The molecules are linked by three hydrogen bonding systems and the structure consists of alternating spiral chains of O6—H6···O6 or O8—H8···O8 hydrogen-bonded molecules running parallel to the c-axis (Fig. 3) interconnected by O1—H1···O4—H4···O1 hydrogen bonds (Fig.4). Each molecule is a donor and acceptor for 4 hydrogen bonds (Fig. 5).

In summary, the stereochemistry at C2 of the title compound 1-deoxy-D-arabinitol 4 was firmly established by X-ray crystallography, the absolute configuration is determined by the use of D-erythronolactone as the starting material. As well as the potential biological properties of 1-deoxy ketoses, they are likely to provide a new set of building blocks for the synthesis of a wide variety of complex biomolecules.

Related literature top

For related literature see: Izumori (2002, 2006); Granstrom et al. (2004); Beadle et al. (1992); Skytte (2002); Levin (2002); Howling & Callagan (2000); Bertelsen et al. (1999); Takata et al. (2005); Menavuvu et al. (2006); Sui et al. (2005); Hossain et al. (2006); Zehner et al. (1994); Donner et al. (1999); Yoshihara et al. (2008); Takai & Heathcock (1985); Zissis & Richtmyer (1954).

Experimental top

The title compound was recrystallized from hot methanol: m.p. 398–400 K; [α]D21 +0.8 (c, 8 in H2O) {Lit. (Zissis & Richtmyer, 1954) m.p. 129–131°C; [α]D20 +0.7 (c, 10 in H2O; l, 4)}.

Refinement top

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration assigned from the starting material.

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Synthetic scheme.
[Figure 2] Fig. 2. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 3] Fig. 3. Packing diagram showing the O6—H6···O6 and O8—H8···O8 hydrogen bonds.
[Figure 4] Fig. 4. Packing diagram showing the O1—H1···O4—H4···O1 hydrogen bonds.
[Figure 5] Fig. 5. Packing diagram for the compound projected along the c-axis. Each molecule is a donor and an acceptor for 4 hydrogen-bonds.
1-Deoxy-D-arabinitol top
Crystal data top
C5H12O4Dx = 1.281 Mg m3
Mr = 136.15Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41Cell parameters from 815 reflections
Hall symbol: I 4bwθ = 5–27°
a = 12.9873 (5) ŵ = 0.11 mm1
c = 8.3679 (3) ÅT = 150 K
V = 1411.41 (9) Å3Block, colourless
Z = 80.25 × 0.25 × 0.25 mm
F(000) = 592
Data collection top
Nonius KappaCCD area-detector
diffractometer
750 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.5°, θmin = 5.3°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1616
Tmin = 0.93, Tmax = 0.97k = 1111
3189 measured reflectionsl = 1010
855 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(F2) + ( 0.07P)2 + 1.26P],
where P = (max(Fo2,0) + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
855 reflectionsΔρmax = 0.34 e Å3
82 parametersΔρmin = 0.39 e Å3
1 restraint
Crystal data top
C5H12O4Z = 8
Mr = 136.15Mo Kα radiation
Tetragonal, I41µ = 0.11 mm1
a = 12.9873 (5) ÅT = 150 K
c = 8.3679 (3) Å0.25 × 0.25 × 0.25 mm
V = 1411.41 (9) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
855 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
750 reflections with I > 2σ(I)
Tmin = 0.93, Tmax = 0.97Rint = 0.020
3189 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.123H-atom parameters constrained
S = 1.00Δρmax = 0.34 e Å3
855 reflectionsΔρmin = 0.39 e Å3
82 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.64776 (13)0.51955 (15)0.6622 (3)0.0211
C20.75127 (18)0.5139 (2)0.6068 (4)0.0186
C30.7537 (2)0.4842 (2)0.4296 (4)0.0187
O40.85700 (13)0.48073 (16)0.3723 (3)0.0237
C50.6897 (2)0.5564 (2)0.3268 (4)0.0235
O60.73116 (15)0.65798 (14)0.3242 (3)0.0250
C70.8135 (2)0.4417 (2)0.7135 (4)0.0208
O80.76689 (14)0.34124 (13)0.7126 (3)0.0216
C90.8162 (3)0.4788 (2)0.8844 (4)0.0371
H210.78530.58220.62860.0184*
H310.72080.41680.41260.0196*
H510.69850.53150.22380.0277*
H520.61910.55420.34750.0271*
H710.88270.43790.66040.0259*
H910.84130.42650.95440.0541*
H920.85950.53960.89580.0548*
H930.74740.49710.92020.0552*
H10.61940.47220.57030.0308*
H80.79750.29440.63790.0334*
H60.74180.67610.43880.0359*
H40.90700.53690.36510.0365*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0197 (10)0.0197 (9)0.0240 (12)0.0010 (7)0.0042 (9)0.0023 (9)
C20.0139 (13)0.0193 (12)0.0225 (16)0.0037 (9)0.0006 (12)0.0001 (13)
C30.0176 (14)0.0167 (12)0.0218 (17)0.0006 (9)0.0011 (12)0.0010 (13)
O40.0169 (9)0.0213 (9)0.0329 (14)0.0015 (7)0.0061 (10)0.0035 (10)
C50.0223 (14)0.0269 (15)0.0214 (16)0.0014 (11)0.0013 (13)0.0032 (15)
O60.0308 (11)0.0215 (10)0.0227 (12)0.0025 (8)0.0056 (11)0.0046 (10)
C70.0201 (13)0.0204 (13)0.0218 (16)0.0035 (10)0.0045 (13)0.0004 (13)
O80.0254 (10)0.0189 (10)0.0204 (12)0.0010 (7)0.0049 (10)0.0000 (9)
C90.053 (2)0.0332 (16)0.0253 (15)0.0023 (15)0.0149 (15)0.0036 (13)
Geometric parameters (Å, º) top
O1—C21.424 (3)C5—H510.927
O1—H11.051C5—H520.934
C2—C31.532 (3)O6—H60.997
C2—C71.527 (4)C7—O81.438 (3)
C2—H211.008C7—C91.510 (5)
C3—O41.425 (3)C7—H711.004
C3—C51.520 (4)O8—H80.959
C3—H310.985C9—H910.954
O4—H40.978C9—H920.974
C5—O61.425 (3)C9—H930.972
C2—O1—H193.6C3—C5—H52114.4
O1—C2—C3110.4 (2)O6—C5—H52113.8
O1—C2—C7109.9 (3)H51—C5—H52106.4
C3—C2—C7113.6 (2)C5—O6—H6104.9
O1—C2—H21108.0C2—C7—O8109.4 (2)
C3—C2—H21112.9C2—C7—C9111.7 (2)
C7—C2—H21101.7O8—C7—C9107.7 (3)
C2—C3—O4110.7 (2)C2—C7—H71104.2
C2—C3—C5112.4 (2)O8—C7—H71109.3
O4—C3—C5110.1 (2)C9—C7—H71114.4
C2—C3—H31110.8C7—O8—H8113.9
O4—C3—H31109.4C7—C9—H91111.2
C5—C3—H31103.2C7—C9—H92111.4
C3—O4—H4128.4H91—C9—H92108.7
C3—C5—O6111.9 (2)C7—C9—H93110.4
C3—C5—H51104.0H91—C9—H93107.4
O6—C5—H51105.2H92—C9—H93107.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O8i0.961.762.698 (4)164
O6—H6···O6ii1.001.982.712 (4)128
O4—H4···O1iii0.981.772.718 (4)162
O1—H1···O4iv1.052.032.712 (3)120
Symmetry codes: (i) y+1/2, x+1, z1/4; (ii) y, x+3/2, z+1/4; (iii) y+3/2, x, z1/4; (iv) y+1, x1/2, z+1/4.

Experimental details

Crystal data
Chemical formulaC5H12O4
Mr136.15
Crystal system, space groupTetragonal, I41
Temperature (K)150
a, c (Å)12.9873 (5), 8.3679 (3)
V3)1411.41 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.25 × 0.25 × 0.25
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.93, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
3189, 855, 750
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.00
No. of reflections855
No. of parameters82
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.39

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O8i0.961.762.698 (4)164
O6—H6···O6ii1.001.982.712 (4)128
O4—H4···O1iii0.981.772.718 (4)162
O1—H1···O4iv1.052.032.712 (3)120
Symmetry codes: (i) y+1/2, x+1, z1/4; (ii) y, x+3/2, z+1/4; (iii) y+3/2, x, z1/4; (iv) y+1, x1/2, z+1/4.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBeadle, J. R., Saunders, J. P. & Wajda, T. J. (1992). US Patent 5 078 796.  Google Scholar
First citationBertelsen, H., Jensen, B. B. & Buemann, B. (1999). World Rev. Nutr. Diet. 85, 98–109.  CrossRef PubMed CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDonner, T. W., Wilber, J. F. & Ostrowski, D. (1999). Diabetes Obes. Metab. 1, 285–291.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGranstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89–94.  Web of Science CrossRef PubMed Google Scholar
First citationHossain, M. A., Wakabayashi, H., Izuishi, K., Okano, K., Yachida, S., Tokuda, M., Izumori, K. & Maeta, H. (2006). J. Biosci. Bioeng. 101, 369–371.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHowling, D. & Callagan, J. L. (2000). PCT Int. App. WO 2000 042 865.  Google Scholar
First citationIzumori, K. (2002). Naturwissenschaften, 89, 120–124.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIzumori, K. (2006). J. Biotechnol. 124, 717–722.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLevin, G. V. (2002). J. Med. Food, 5, 23–36.  CrossRef PubMed CAS Google Scholar
First citationMenavuvu, B. T., Poonperm, W., Leang, K., Noguchi, N., Okada, H., Morimoto, K., Granstrom, T. B., Takada, G. & Izumori, K. (2006). J. Biosci. Bioeng. 101, 340–345.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSkytte, U. P. (2002). Cereal Foods World 47, 224–224.  Google Scholar
First citationSui, L., Dong, Y. Y., Watanabe, Y., Yamaguchi, F., Hatano, N., Tsukamoto, I., Izumori, K. & Tokuda, M. (2005). Intl. J. Ocology, 27, 907-912.  CAS Google Scholar
First citationTakai, K. & Heathcock, C. H. (1985). J. Org. Chem. 50, 3247–3251.  CrossRef CAS Web of Science Google Scholar
First citationTakata, M. K., Yamaguchi, F., Nakanose, Y., Watanabe, Y., Hatano, N., Tsukamoto, I., Nagata, M., Izumori, K. & Tokuda, M. (2005). J. Biosci. Bioeng. 100, 511–516.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.  Google Scholar
First citationYoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 1739–745.   Web of Science CrossRef Google Scholar
First citationZehner, L. R., Levin, G. V., Saunders, J. P. & Beadle, J. R. (1994). US Patent 5 356 879.  Google Scholar
First citationZissis, E. & Richtmyer, N. K. (1954). J. Am. Chem. Soc. 76, 5515–5522.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1010-o1011
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds