organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-Di­hydroxy­benzaldehyde 4-phenyl­thio­semicarbazone

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, bSchool of Chemical Science and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia, cFaculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 30 April 2008; accepted 6 May 2008; online 10 May 2008)

Mol­ecules of the title compound, C14H13N3O2S, are linked by inter­molecular O—H⋯O hydrogen bonds into centrosymmetric dimers forming R22(4) rings which are further linked by O—H⋯S hydrogen bonds and weaker N—H⋯S and N—H⋯O hydrogen bonds to form a three-dimensional network.

Related literature

For the structure of 2,3-dihydroxy­benzaldehyde thio­semi­carbazone hemihydrate, see: Swesi et al. (2006[Swesi, A. T., Farina, Y., Kassim, M. & Ng, S. W. (2006). Acta Cryst. E62, o5457-o5458.]). For metal derivatives of the title compound, see: Zhu et al. (1997[Zhu, X. D., Wang, G. C., Lu, Z. P. & Li, Y. L. (1997). Transition Met. Chem. 22, 9-13.]). The graph-set notation is given by Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N3O2S

  • Mr = 287.33

  • Monoclinic, P 21 /c

  • a = 9.7261 (2) Å

  • b = 13.1863 (3) Å

  • c = 10.7732 (3) Å

  • β = 99.055 (2)°

  • V = 1364.46 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.909, Tmax = 0.953

  • 16724 measured reflections

  • 3132 independent reflections

  • 2358 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.115

  • S = 1.04

  • 3132 reflections

  • 197 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O2i 0.85 (1) 2.03 (2) 2.737 (2) 141 (2)
O2—H2o⋯S1ii 0.85 (1) 2.34 (1) 3.134 (1) 156 (2)
N2—H2n⋯S1iii 0.85 (1) 2.73 (1) 3.487 (2) 150 (2)
N2—H2n⋯O1iv 0.85 (1) 2.56 (2) 3.022 (2) 115 (2)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y, -z+1; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

A previous study of the Schiff bases derived by condensing substituted benzaldehydes with 4-phenylthiosemicarbazides reported the 2,3-dihydroxy compound, which crystallizes as a hemihydrate. The compound features extensive hydrogen bond (Swesi et al., 2006). In the title 3,4-dihydroxy isomer the 4-hydroxy group functions as hydrogen-bond donor to the 3-hydroxy group of a symmetry-related molecule forming R22(4) rings (Bernstein et al., 1995). In addition, the 3-hydroxy group is a donor to the sulfur atom of another molecule; the hydrogen bonding arrangement furnishes a three-dimensional network motif. The amino groups are involved in weaker hydrogen bond interactions.

Further work will investigate the formation of metal deratives of the ligand; some metal complexes have been reported by others but these have not characterized by crystallography yet (Zhu et al., 1997).

Related literature top

For the structure of 2,3-dihydroxybenzaldehyde thiosemicarbazone hemihydrate, see: Swesi et al. (2006). For metal derivatives of the title compound, see: Zhu et al. (1997). The graph-set notation is given by Bernstein et al. (1995).

Experimental top

4-Phenylthiosemicarbazide (0.17 g, 1 mmol) and 3,4-dihydroxybenzaldehyde (0.14 g, 1 mmol) were heated in ethanol (20 ml) for 3 h. Slow evaporation of the solvent yielded yellow crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C). The hydroxy and amino H-atoms were located in a difference Fourier map, and were refined with a distance retraint of O–H = N–H = 0.85±0.01 Å; their temperature factors were similarly tied.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid (Barbour, 2001) plot of C14H13N3O2S at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.
3,4-Dihydroxybenzaldehyde 4-phenylthiosemicarbazone top
Crystal data top
C14H13N3O2SF(000) = 600
Mr = 287.33Dx = 1.399 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2291 reflections
a = 9.7261 (2) Åθ = 2.5–23.4°
b = 13.1863 (3) ŵ = 0.24 mm1
c = 10.7732 (3) ÅT = 100 K
β = 99.055 (2)°Block, yellow
V = 1364.46 (6) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3132 independent reflections
Radiation source: fine-focus sealed tube2358 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.910, Tmax = 0.953k = 1716
16724 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.2883P]
where P = (Fo2 + 2Fc2)/3
3132 reflections(Δ/σ)max = 0.001
197 parametersΔρmax = 0.40 e Å3
4 restraintsΔρmin = 0.32 e Å3
Crystal data top
C14H13N3O2SV = 1364.46 (6) Å3
Mr = 287.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7261 (2) ŵ = 0.24 mm1
b = 13.1863 (3) ÅT = 100 K
c = 10.7732 (3) Å0.40 × 0.30 × 0.20 mm
β = 99.055 (2)°
Data collection top
Bruker SMART APEX
diffractometer
3132 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2358 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.953Rint = 0.078
16724 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0444 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.40 e Å3
3132 reflectionsΔρmin = 0.32 e Å3
197 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.08441 (5)0.12769 (4)0.40212 (5)0.02006 (15)
O10.65919 (15)0.45705 (10)0.89678 (14)0.0221 (3)
O20.40955 (14)0.39195 (11)0.94986 (14)0.0231 (3)
N10.83208 (16)0.18905 (12)0.63925 (15)0.0187 (4)
N20.90695 (16)0.13520 (12)0.56294 (16)0.0185 (4)
N31.03542 (19)0.27810 (13)0.55853 (18)0.0258 (4)
C10.64419 (19)0.20682 (14)0.75172 (18)0.0172 (4)
C20.6914 (2)0.30261 (14)0.79586 (18)0.0177 (4)
H20.77980.32620.78140.021*
C30.61093 (19)0.36257 (14)0.85974 (18)0.0168 (4)
C40.48283 (19)0.32692 (15)0.88517 (18)0.0175 (4)
C50.4360 (2)0.23207 (15)0.84415 (19)0.0207 (4)
H50.34920.20770.86200.025*
C60.5160 (2)0.17194 (15)0.77643 (19)0.0204 (4)
H60.48310.10710.74710.024*
C70.72652 (19)0.14733 (15)0.67561 (19)0.0190 (4)
H70.70220.07920.65360.023*
C81.00702 (19)0.18502 (14)0.51400 (19)0.0177 (4)
C91.1227 (2)0.35150 (15)0.5122 (2)0.0212 (4)
C101.2393 (2)0.38550 (18)0.5909 (2)0.0304 (5)
H101.26510.35650.67190.037*
C111.3183 (3)0.4624 (2)0.5504 (2)0.0386 (6)
H111.39860.48630.60420.046*
C121.2821 (2)0.50451 (18)0.4336 (2)0.0339 (6)
H121.33660.55760.40700.041*
C131.1657 (2)0.46947 (18)0.3545 (2)0.0348 (6)
H131.14100.49770.27290.042*
C141.0858 (2)0.39327 (17)0.3946 (2)0.0287 (5)
H141.00530.36960.34100.034*
H1O0.602 (2)0.4875 (17)0.935 (2)0.035 (7)*
H2O0.3276 (14)0.3698 (18)0.950 (3)0.043 (8)*
H2N0.890 (2)0.0737 (9)0.542 (2)0.036 (7)*
H3N0.995 (2)0.2960 (17)0.6187 (16)0.027 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0175 (2)0.0195 (3)0.0249 (3)0.00003 (19)0.00859 (19)0.0035 (2)
O10.0209 (7)0.0162 (7)0.0316 (9)0.0015 (6)0.0116 (6)0.0063 (6)
O20.0158 (7)0.0226 (8)0.0328 (9)0.0011 (6)0.0093 (6)0.0075 (6)
N10.0181 (8)0.0188 (9)0.0207 (9)0.0021 (7)0.0081 (7)0.0017 (7)
N20.0173 (8)0.0148 (9)0.0250 (9)0.0013 (7)0.0086 (7)0.0043 (7)
N30.0313 (10)0.0202 (9)0.0310 (11)0.0081 (8)0.0202 (8)0.0076 (8)
C10.0159 (9)0.0187 (10)0.0178 (10)0.0003 (7)0.0048 (8)0.0011 (8)
C20.0146 (9)0.0178 (10)0.0216 (10)0.0011 (7)0.0056 (8)0.0001 (8)
C30.0169 (9)0.0148 (10)0.0184 (10)0.0004 (7)0.0016 (7)0.0000 (7)
C40.0148 (9)0.0204 (10)0.0183 (10)0.0026 (7)0.0052 (7)0.0008 (8)
C50.0141 (9)0.0206 (10)0.0285 (12)0.0020 (8)0.0064 (8)0.0007 (8)
C60.0199 (10)0.0175 (10)0.0246 (11)0.0030 (8)0.0061 (8)0.0026 (8)
C70.0185 (10)0.0168 (10)0.0223 (11)0.0018 (8)0.0054 (8)0.0027 (8)
C80.0145 (9)0.0167 (10)0.0224 (10)0.0011 (7)0.0046 (8)0.0002 (8)
C90.0204 (10)0.0170 (10)0.0287 (12)0.0037 (8)0.0114 (8)0.0041 (8)
C100.0317 (12)0.0345 (13)0.0248 (12)0.0058 (10)0.0034 (9)0.0012 (10)
C110.0328 (13)0.0442 (15)0.0381 (15)0.0193 (11)0.0032 (11)0.0047 (11)
C120.0323 (13)0.0250 (12)0.0474 (16)0.0093 (10)0.0155 (11)0.0037 (11)
C130.0336 (13)0.0312 (13)0.0396 (15)0.0016 (10)0.0059 (11)0.0148 (11)
C140.0211 (10)0.0310 (12)0.0328 (13)0.0033 (9)0.0011 (9)0.0030 (10)
Geometric parameters (Å, º) top
S1—C81.696 (2)C3—C41.398 (3)
O1—C31.368 (2)C4—C51.380 (3)
O1—H1O0.85 (1)C5—C61.395 (3)
O2—C41.373 (2)C5—H50.9500
O2—H2O0.85 (1)C6—H60.9500
N1—C71.279 (2)C7—H70.9500
N1—N21.378 (2)C9—C141.376 (3)
N2—C81.348 (2)C9—C101.380 (3)
N2—H2N0.85 (1)C10—C111.383 (3)
N3—C81.331 (3)C10—H100.9500
N3—C91.428 (3)C11—C121.370 (3)
N3—H3N0.84 (1)C11—H110.9500
C1—C61.393 (3)C12—C131.385 (3)
C1—C21.401 (3)C12—H120.9500
C1—C71.461 (3)C13—C141.381 (3)
C2—C31.372 (3)C13—H130.9500
C2—H20.9500C14—H140.9500
C3—O1—H1O110.7 (17)C5—C6—H6119.9
C4—O2—H2O110.6 (18)N1—C7—C1118.55 (17)
C7—N1—N2119.07 (16)N1—C7—H7120.7
C8—N2—N1117.64 (16)C1—C7—H7120.7
C8—N2—H2N119.3 (17)N3—C8—N2115.47 (17)
N1—N2—H2N123.0 (17)N3—C8—S1125.24 (15)
C8—N3—C9126.89 (17)N2—C8—S1119.28 (15)
C8—N3—H3N116.2 (16)C14—C9—C10120.35 (19)
C9—N3—H3N116.9 (16)C14—C9—N3120.67 (19)
C6—C1—C2119.21 (17)C10—C9—N3118.8 (2)
C6—C1—C7121.05 (18)C9—C10—C11119.2 (2)
C2—C1—C7119.68 (17)C9—C10—H10120.4
C3—C2—C1120.50 (17)C11—C10—H10120.4
C3—C2—H2119.7C12—C11—C10120.8 (2)
C1—C2—H2119.7C12—C11—H11119.6
O1—C3—C2118.33 (17)C10—C11—H11119.6
O1—C3—C4121.62 (17)C11—C12—C13119.8 (2)
C2—C3—C4120.06 (17)C11—C12—H12120.1
O2—C4—C5123.84 (17)C13—C12—H12120.1
O2—C4—C3116.05 (17)C14—C13—C12119.7 (2)
C5—C4—C3120.10 (18)C14—C13—H13120.1
C4—C5—C6119.95 (18)C12—C13—H13120.1
C4—C5—H5120.0C9—C14—C13120.1 (2)
C6—C5—H5120.0C9—C14—H14119.9
C1—C6—C5120.14 (18)C13—C14—H14119.9
C1—C6—H6119.9
C7—N1—N2—C8172.24 (18)C2—C1—C7—N17.8 (3)
C6—C1—C2—C31.7 (3)C9—N3—C8—N2171.35 (19)
C7—C1—C2—C3175.33 (18)C9—N3—C8—S17.8 (3)
C1—C2—C3—O1177.55 (17)N1—N2—C8—N38.7 (3)
C1—C2—C3—C42.2 (3)N1—N2—C8—S1170.51 (13)
O1—C3—C4—O20.4 (3)C8—N3—C9—C1466.2 (3)
C2—C3—C4—O2179.82 (17)C8—N3—C9—C10118.6 (2)
O1—C3—C4—C5178.64 (18)C14—C9—C10—C110.3 (3)
C2—C3—C4—C51.1 (3)N3—C9—C10—C11174.9 (2)
O2—C4—C5—C6178.51 (18)C9—C10—C11—C120.2 (4)
C3—C4—C5—C60.5 (3)C10—C11—C12—C130.5 (4)
C2—C1—C6—C50.1 (3)C11—C12—C13—C141.0 (4)
C7—C1—C6—C5176.89 (18)C10—C9—C14—C130.1 (3)
C4—C5—C6—C11.0 (3)N3—C9—C14—C13175.3 (2)
N2—N1—C7—C1177.22 (16)C12—C13—C14—C90.8 (4)
C6—C1—C7—N1169.23 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.85 (1)2.03 (2)2.737 (2)141 (2)
O2—H2O···S1ii0.85 (1)2.34 (1)3.134 (1)156 (2)
N2—H2N···S1iii0.85 (1)2.73 (1)3.487 (2)150 (2)
N2—H2N···O1iv0.85 (1)2.56 (2)3.022 (2)115 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y+1/2, z+1/2; (iii) x+2, y, z+1; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H13N3O2S
Mr287.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.7261 (2), 13.1863 (3), 10.7732 (3)
β (°) 99.055 (2)
V3)1364.46 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.910, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
16724, 3132, 2358
Rint0.078
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.115, 1.04
No. of reflections3132
No. of parameters197
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.85 (1)2.03 (2)2.737 (2)141 (2)
O2—H2O···S1ii0.85 (1)2.34 (1)3.134 (1)156 (2)
N2—H2N···S1iii0.85 (1)2.73 (1)3.487 (2)150 (2)
N2—H2N···O1iv0.85 (1)2.56 (2)3.022 (2)115 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y+1/2, z+1/2; (iii) x+2, y, z+1; (iv) x, y+1/2, z1/2.
 

Acknowledgements

We thank the University of Malaya (P0265/2007 A) for supporting this study; KWT thanks the Ministry of Higher Education for an SLAI scholarship in this research.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwesi, A. T., Farina, Y., Kassim, M. & Ng, S. W. (2006). Acta Cryst. E62, o5457–o5458.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationZhu, X. D., Wang, G. C., Lu, Z. P. & Li, Y. L. (1997). Transition Met. Chem. 22, 9–13.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds