organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-Di­hydroxy­benzaldehyde thio­semi­carbazone

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, bSchool of Chemical Science and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia, and cFaculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 May 2008; accepted 9 May 2008; online 14 May 2008)

The asymmetric unit of the title compound, C8H9N3O2S, contains three independent mol­ecules which are stacked approximately over each other. In the crystal structure, centrosymmetric pairs of mol­ecules are formed through inter­molecular hydr­oxy–hydr­oxy O—H⋯O and hydr­oxy–sulfur O—H⋯S hydrogen bonds which are, in turn, linked into a two-dimensional network by N—H⋯O(hydr­oxy) hydrogen bonds.

Related literature

For the structure of 3,4-dihydroxy­benzaldehyde 4-phenyl­thio­semicarbazone, see: Swesi et al. (2006[Swesi, A. T., Farina, Y., Kassim, M. & Ng, S. W. (2006). Acta Cryst. E62, o5457-o5458.]). For some metal complexes of the ligand, see: Zhu et al. (1991[Zhu, X.-D., Wang, C.-G., Le, Z.-F., Mei, S.-Y., Yen, Z.-H. & Wu, Z.-S. (1991). Synth. React. Inorg. Met. Org. Chem. 21, 1365-1373.], 1997[Zhu, X.-D., Wang, C.-G., Lu, Z.-P. & Dang, Y.-L. (1997). Transition Met. Chem. 22, 9-13.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9N3O2S

  • Mr = 211.24

  • Triclinic, [P \overline 1]

  • a = 10.657 (2) Å

  • b = 11.794 (2) Å

  • c = 12.356 (2) Å

  • α = 111.657 (2)°

  • β = 104.082 (2)°

  • γ = 90.929 (2)°

  • V = 1390.2 (4) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 100 (2) K

  • 0.20 × 0.18 × 0.04 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.938, Tmax = 0.987

  • 8792 measured reflections

  • 6298 independent reflections

  • 3727 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.189

  • S = 1.01

  • 6298 reflections

  • 397 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O6i 0.84 (1) 2.07 (3) 2.784 (3) 143 (4)
O2—H2o⋯S1ii 0.84 (1) 2.47 (1) 3.300 (2) 171 (4)
N1—H1n2⋯O5iii 0.88 2.00 2.856 (4) 163
O3—H3o⋯O4i 0.84 (1) 2.11 (4) 2.732 (3) 130 (4)
O4—H4o⋯S2ii 0.84 (1) 2.38 (1) 3.219 (2) 174 (4)
N4—H4n2⋯O3iii 0.88 2.05 2.900 (4) 162
O5—H5o⋯O2i 0.84 (1) 2.16 (4) 2.742 (3) 127 (4)
O6—H6o⋯S3ii 0.84 (1) 2.40 (1) 3.244 (2) 177 (4)
N7—H7n2⋯O1iii 0.88 2.13 2.981 (4) 161
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x, y, z+1; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

A previous study of Schiff bases derived by condensing substituted benzaldehydes with 4-phenylthiosemicarbazides describes the 3,4-dihydroxybenzaldehyde derivative, which crystallizes as a hemihydrate. The compound features extensive hydrogen bonds (Swesi et al., 2006). The condensation product of the reaction between thiosemicarbazide and 3,4-dihydroxybenzaldehyde has an amino –NH2 group in place of the phenyl group. In the crystal structure, a molecule is linked to an adjacent molecule by a hydrogen bond [O–H3-hydroxy···O4-hydroxy]; it is linked to another adjacent molecule by another hydrogen bond [O–H4-hydroxy···S]. The structure is consolidated into a two-dimensional network motif by a NterminalH···O4-hydroxy hydrogen bond. The asymmetric unit features three molecules that are approximately stacked over each other (Fig. 1).

Related literature top

For the structure of 3,4-dihydroxybenzaldehyde 4-phenylthiosemicarbazone, see: Swesi et al. (2006). For some metal complexes of the ligand, see: Zhu et al. (1991, 1997).

Experimental top

Thiosemicarbazide (0.09 g, 1 mmol) and 2,4-dihydroxybenzaldehyde (0.14 g, 1 mmol) were heated in an ethanol/water mixture (20/5 ml) for 3 h. Slow evaporation of the solvent yielded yellow crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 U(C). The amino H-atoms were similarly treated (N–H 0.88 Å). The hydroxy H-atoms were located in a difference Fourier map, and were refined with a distance retraint of O–H 0.85±0.01 Å; their temperature factors were tied by a factor of 1.5.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid (Barbour, 2001) plot of the three independent molecules of C14H13N3O2S at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.
3,4-Dihydroxybenzaldehyde thiosemicarbazone top
Crystal data top
C8H9N3O2SZ = 6
Mr = 211.24F(000) = 660
Triclinic, P1Dx = 1.514 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.657 (2) ÅCell parameters from 1478 reflections
b = 11.794 (2) Åθ = 2.7–27.8°
c = 12.356 (2) ŵ = 0.33 mm1
α = 111.657 (2)°T = 100 K
β = 104.082 (2)°Block, yellow
γ = 90.929 (2)°0.20 × 0.18 × 0.04 mm
V = 1390.2 (4) Å3
Data collection top
Bruker SMART APEX
diffractometer
6298 independent reflections
Radiation source: fine-focus sealed tube3727 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.938, Tmax = 0.987k = 159
8792 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.1004P)2]
where P = (Fo2 + 2Fc2)/3
6298 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 0.51 e Å3
6 restraintsΔρmin = 0.40 e Å3
Crystal data top
C8H9N3O2Sγ = 90.929 (2)°
Mr = 211.24V = 1390.2 (4) Å3
Triclinic, P1Z = 6
a = 10.657 (2) ÅMo Kα radiation
b = 11.794 (2) ŵ = 0.33 mm1
c = 12.356 (2) ÅT = 100 K
α = 111.657 (2)°0.20 × 0.18 × 0.04 mm
β = 104.082 (2)°
Data collection top
Bruker SMART APEX
diffractometer
6298 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3727 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.987Rint = 0.028
8792 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0616 restraints
wR(F2) = 0.189H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.51 e Å3
6298 reflectionsΔρmin = 0.40 e Å3
397 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.84547 (10)0.94314 (8)0.21803 (8)0.0401 (3)
S20.45653 (10)0.85179 (8)0.31556 (7)0.0359 (2)
S30.10237 (10)0.74686 (8)0.41416 (8)0.0390 (3)
O10.7414 (3)0.5896 (2)0.7057 (2)0.0440 (7)
H1O0.750 (4)0.566 (4)0.763 (3)0.066*
O20.7519 (2)0.7405 (2)0.9368 (2)0.0333 (6)
H2O0.769 (4)0.797 (3)1.0057 (17)0.050*
O30.4715 (4)0.5066 (2)0.8312 (2)0.0615 (9)
H3O0.476 (5)0.496 (5)0.895 (3)0.092*
O40.4659 (3)0.6536 (2)1.05646 (19)0.0359 (6)
H4O0.464 (4)0.710 (3)1.122 (2)0.054*
O50.2270 (3)0.4329 (2)0.9629 (2)0.0441 (7)
H5O0.232 (4)0.426 (4)1.029 (2)0.066*
O60.1658 (3)0.5600 (2)1.1704 (2)0.0370 (6)
H6O0.152 (4)0.609 (3)1.235 (2)0.056*
N10.7685 (3)0.7537 (3)0.2628 (2)0.0407 (8)
H1N10.74860.72100.31090.049*
H1N20.76220.70720.18680.049*
N20.8145 (3)0.9368 (2)0.4209 (2)0.0328 (7)
H2N0.83321.01720.45200.039*
N30.7922 (3)0.8755 (2)0.4912 (2)0.0316 (6)
N40.4570 (3)0.6598 (3)0.3786 (3)0.0438 (8)
H4N10.45310.62590.43050.053*
H4N20.46370.61410.30610.053*
N50.4424 (3)0.8421 (2)0.5209 (2)0.0294 (6)
H5N0.43790.92180.54600.035*
N60.4390 (3)0.7808 (2)0.5960 (2)0.0282 (6)
N70.1429 (3)0.5636 (3)0.4892 (3)0.0470 (9)
H7N10.14570.53090.54310.056*
H7N20.16070.52100.42050.056*
N80.0866 (3)0.7341 (3)0.6182 (2)0.0334 (7)
H8N0.06170.80820.63700.040*
N90.1000 (3)0.6760 (2)0.6982 (2)0.0299 (6)
C10.8075 (3)0.8720 (3)0.3043 (3)0.0300 (7)
C20.7942 (3)0.9415 (3)0.5994 (3)0.0306 (7)
H20.80721.02840.62580.037*
C30.7772 (3)0.8876 (3)0.6840 (3)0.0279 (7)
C40.7636 (3)0.7614 (3)0.6542 (3)0.0296 (7)
H40.76050.70700.57430.035*
C50.7545 (3)0.7147 (3)0.7389 (3)0.0293 (7)
C60.7597 (3)0.7934 (3)0.8565 (3)0.0257 (7)
C70.7714 (3)0.9180 (3)0.8871 (3)0.0319 (8)
H7C0.77370.97190.96700.038*
C80.7799 (3)0.9652 (3)0.8013 (3)0.0327 (8)
H80.78751.05160.82280.039*
C90.4526 (3)0.7787 (3)0.4095 (3)0.0273 (7)
C100.4204 (3)0.8443 (3)0.6983 (3)0.0288 (7)
H100.40540.92770.71640.035*
C110.4218 (3)0.7917 (3)0.7876 (3)0.0252 (7)
C120.4409 (3)0.6698 (3)0.7657 (3)0.0298 (7)
H120.44590.61640.68790.036*
C130.4526 (3)0.6261 (3)0.8557 (3)0.0321 (8)
C140.4480 (3)0.7039 (3)0.9711 (3)0.0257 (7)
C150.4243 (3)0.8234 (3)0.9921 (3)0.0316 (8)
H150.41720.87601.06940.038*
C160.4107 (3)0.8671 (3)0.9006 (3)0.0304 (7)
H160.39360.94950.91530.036*
C170.1122 (3)0.6761 (3)0.5111 (3)0.0306 (7)
C180.0760 (3)0.7363 (3)0.7984 (3)0.0286 (7)
H180.04650.81470.81200.034*
C190.0928 (3)0.6872 (3)0.8926 (3)0.0264 (7)
C200.1458 (3)0.5772 (3)0.8812 (3)0.0288 (7)
H200.16620.52950.80810.035*
C210.1686 (3)0.5376 (3)0.9745 (3)0.0291 (7)
C220.1375 (3)0.6051 (3)1.0814 (3)0.0270 (7)
C230.0804 (3)0.7116 (3)1.0922 (3)0.0295 (7)
H230.05560.75661.16370.035*
C240.0594 (3)0.7524 (3)0.9982 (3)0.0300 (7)
H240.02140.82641.00640.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0718 (7)0.0287 (5)0.0288 (5)0.0104 (4)0.0234 (4)0.0146 (4)
S20.0636 (6)0.0242 (4)0.0253 (4)0.0079 (4)0.0172 (4)0.0123 (4)
S30.0631 (6)0.0330 (5)0.0286 (5)0.0124 (4)0.0187 (4)0.0164 (4)
O10.083 (2)0.0205 (12)0.0354 (14)0.0112 (13)0.0242 (14)0.0123 (11)
O20.0527 (15)0.0269 (13)0.0263 (12)0.0067 (11)0.0144 (11)0.0144 (10)
O30.137 (3)0.0278 (15)0.0344 (15)0.0361 (17)0.0385 (18)0.0173 (13)
O40.0637 (17)0.0257 (13)0.0238 (12)0.0131 (12)0.0166 (12)0.0123 (10)
O50.083 (2)0.0266 (13)0.0343 (14)0.0200 (13)0.0278 (14)0.0167 (12)
O60.0633 (17)0.0276 (13)0.0252 (12)0.0146 (12)0.0162 (12)0.0127 (11)
N10.075 (2)0.0255 (16)0.0245 (15)0.0053 (15)0.0198 (15)0.0091 (13)
N20.0565 (19)0.0214 (14)0.0249 (14)0.0070 (13)0.0161 (13)0.0105 (12)
N30.0492 (18)0.0255 (15)0.0270 (14)0.0069 (13)0.0133 (13)0.0156 (12)
N40.085 (3)0.0232 (16)0.0285 (16)0.0122 (16)0.0230 (16)0.0106 (13)
N50.0500 (18)0.0194 (13)0.0235 (14)0.0081 (12)0.0140 (12)0.0107 (11)
N60.0444 (17)0.0221 (14)0.0230 (13)0.0032 (12)0.0105 (12)0.0131 (11)
N70.088 (3)0.0285 (17)0.0371 (17)0.0156 (17)0.0319 (17)0.0165 (14)
N80.0529 (19)0.0271 (15)0.0302 (15)0.0141 (13)0.0172 (13)0.0179 (13)
N90.0426 (17)0.0239 (14)0.0293 (14)0.0056 (12)0.0133 (12)0.0147 (12)
C10.043 (2)0.0262 (17)0.0261 (17)0.0123 (15)0.0121 (15)0.0143 (15)
C20.044 (2)0.0221 (16)0.0274 (17)0.0042 (15)0.0093 (15)0.0119 (14)
C30.0387 (19)0.0247 (17)0.0249 (16)0.0075 (14)0.0106 (14)0.0134 (14)
C40.042 (2)0.0221 (16)0.0261 (17)0.0081 (14)0.0122 (14)0.0087 (14)
C50.0412 (19)0.0190 (16)0.0316 (17)0.0082 (14)0.0128 (15)0.0119 (14)
C60.0326 (18)0.0267 (17)0.0235 (16)0.0092 (14)0.0116 (13)0.0132 (14)
C70.050 (2)0.0246 (17)0.0223 (16)0.0063 (15)0.0118 (15)0.0086 (14)
C80.049 (2)0.0179 (16)0.0316 (18)0.0037 (15)0.0121 (16)0.0094 (14)
C90.0363 (18)0.0234 (17)0.0245 (16)0.0080 (14)0.0089 (14)0.0111 (14)
C100.0357 (19)0.0256 (17)0.0293 (17)0.0079 (14)0.0114 (14)0.0137 (14)
C110.0315 (17)0.0240 (16)0.0250 (16)0.0059 (13)0.0099 (13)0.0133 (14)
C120.046 (2)0.0250 (17)0.0211 (15)0.0092 (15)0.0134 (14)0.0092 (14)
C130.050 (2)0.0209 (16)0.0306 (17)0.0120 (15)0.0156 (15)0.0126 (14)
C140.0371 (18)0.0245 (16)0.0211 (15)0.0062 (14)0.0111 (13)0.0128 (13)
C150.047 (2)0.0236 (17)0.0259 (17)0.0085 (15)0.0163 (15)0.0074 (14)
C160.048 (2)0.0191 (16)0.0296 (17)0.0078 (14)0.0133 (15)0.0132 (14)
C170.0397 (19)0.0259 (17)0.0288 (17)0.0040 (15)0.0122 (15)0.0116 (15)
C180.0333 (18)0.0267 (17)0.0289 (17)0.0061 (14)0.0096 (14)0.0131 (14)
C190.0337 (18)0.0221 (16)0.0242 (16)0.0019 (13)0.0079 (13)0.0098 (13)
C200.042 (2)0.0212 (16)0.0262 (16)0.0048 (14)0.0140 (14)0.0094 (14)
C210.0408 (19)0.0205 (16)0.0300 (17)0.0070 (14)0.0141 (14)0.0111 (14)
C220.0361 (18)0.0240 (16)0.0242 (16)0.0036 (14)0.0103 (14)0.0115 (14)
C230.0405 (19)0.0252 (17)0.0245 (16)0.0092 (15)0.0131 (14)0.0084 (14)
C240.0375 (19)0.0248 (17)0.0281 (17)0.0067 (14)0.0089 (14)0.0103 (14)
Geometric parameters (Å, º) top
S1—C11.693 (3)N9—C181.270 (4)
S2—C91.689 (3)C2—C31.453 (4)
S3—C171.680 (3)C2—H20.9500
O1—C51.372 (4)C3—C41.391 (4)
O1—H1O0.837 (10)C3—C81.393 (4)
O2—C61.369 (4)C4—C51.372 (4)
O2—H2O0.840 (10)C4—H40.9500
O3—C131.358 (4)C5—C61.392 (4)
O3—H3O0.836 (10)C6—C71.371 (4)
O4—C141.367 (4)C7—C81.387 (4)
O4—H4O0.841 (10)C7—H7C0.9500
O5—C211.368 (4)C8—H80.9500
O5—H5O0.838 (10)C10—C111.450 (4)
O6—C221.364 (4)C10—H100.9500
O6—H6O0.844 (10)C11—C161.385 (4)
N1—C11.316 (4)C11—C121.390 (4)
N1—H1N10.8800C12—C131.369 (4)
N1—H1N20.8800C12—H120.9500
N2—C11.341 (4)C13—C141.396 (4)
N2—N31.375 (3)C14—C151.375 (4)
N2—H2N0.8800C15—C161.385 (4)
N3—C21.269 (4)C15—H150.9500
N4—C91.316 (4)C16—H160.9500
N4—H4N10.8800C18—C191.457 (4)
N4—H4N20.8800C18—H180.9500
N5—C91.335 (4)C19—C241.384 (4)
N5—N61.377 (3)C19—C201.397 (4)
N5—H5N0.8800C20—C211.368 (4)
N6—C101.276 (4)C20—H200.9500
N7—C171.316 (4)C21—C221.390 (4)
N7—H7N10.8800C22—C231.380 (4)
N7—H7N20.8800C23—C241.386 (4)
N8—C171.344 (4)C23—H230.9500
N8—N91.380 (3)C24—H240.9500
N8—H8N0.8800
C5—O1—H1O115 (3)C3—C8—H8119.6
C6—O2—H2O107 (3)N4—C9—N5116.7 (3)
C13—O3—H3O106 (4)N4—C9—S2123.5 (2)
C14—O4—H4O107 (3)N5—C9—S2119.8 (2)
C21—O5—H5O103 (3)N6—C10—C11121.2 (3)
C22—O6—H6O112 (3)N6—C10—H10119.4
C1—N1—H1N1120.0C11—C10—H10119.4
C1—N1—H1N2120.0C16—C11—C12119.0 (3)
H1N1—N1—H1N2120.0C16—C11—C10118.9 (3)
C1—N2—N3118.9 (3)C12—C11—C10122.0 (3)
C1—N2—H2N120.5C13—C12—C11120.3 (3)
N3—N2—H2N120.5C13—C12—H12119.8
C2—N3—N2116.4 (3)C11—C12—H12119.8
C9—N4—H4N1120.0O3—C13—C12118.8 (3)
C9—N4—H4N2120.0O3—C13—C14120.7 (3)
H4N1—N4—H4N2120.0C12—C13—C14120.5 (3)
C9—N5—N6118.9 (3)O4—C14—C15124.2 (3)
C9—N5—H5N120.6O4—C14—C13116.4 (3)
N6—N5—H5N120.6C15—C14—C13119.4 (3)
C10—N6—N5116.1 (3)C14—C15—C16120.0 (3)
C17—N7—H7N1120.0C14—C15—H15120.0
C17—N7—H7N2120.0C16—C15—H15120.0
H7N1—N7—H7N2120.0C15—C16—C11120.6 (3)
C17—N8—N9119.0 (3)C15—C16—H16119.7
C17—N8—H8N120.5C11—C16—H16119.7
N9—N8—H8N120.5N7—C17—N8115.9 (3)
C18—N9—N8115.9 (3)N7—C17—S3124.0 (3)
N1—C1—N2116.6 (3)N8—C17—S3120.0 (3)
N1—C1—S1123.3 (2)N9—C18—C19121.1 (3)
N2—C1—S1120.1 (2)N9—C18—H18119.5
N3—C2—C3121.7 (3)C19—C18—H18119.5
N3—C2—H2119.2C24—C19—C20118.6 (3)
C3—C2—H2119.2C24—C19—C18119.6 (3)
C4—C3—C8118.5 (3)C20—C19—C18121.8 (3)
C4—C3—C2122.7 (3)C21—C20—C19120.4 (3)
C8—C3—C2118.8 (3)C21—C20—H20119.8
C5—C4—C3120.7 (3)C19—C20—H20119.8
C5—C4—H4119.7O5—C21—C20119.0 (3)
C3—C4—H4119.7O5—C21—C22120.3 (3)
O1—C5—C4118.7 (3)C20—C21—C22120.6 (3)
O1—C5—C6121.0 (3)O6—C22—C23123.8 (3)
C4—C5—C6120.3 (3)O6—C22—C21116.6 (3)
O2—C6—C7123.0 (3)C23—C22—C21119.6 (3)
O2—C6—C5117.1 (3)C22—C23—C24119.5 (3)
C7—C6—C5119.9 (3)C22—C23—H23120.2
C6—C7—C8119.8 (3)C24—C23—H23120.2
C6—C7—H7C120.1C19—C24—C23121.2 (3)
C8—C7—H7C120.1C19—C24—H24119.4
C7—C8—C3120.8 (3)C23—C24—H24119.4
C7—C8—H8119.6
C1—N2—N3—C2176.9 (3)C11—C12—C13—C141.3 (5)
C9—N5—N6—C10175.5 (3)O3—C13—C14—O41.2 (5)
C17—N8—N9—C18179.2 (3)C12—C13—C14—O4177.4 (3)
N3—N2—C1—N15.5 (5)O3—C13—C14—C15177.8 (3)
N3—N2—C1—S1175.4 (2)C12—C13—C14—C153.7 (5)
N2—N3—C2—C3177.5 (3)O4—C14—C15—C16178.4 (3)
N3—C2—C3—C42.9 (5)C13—C14—C15—C162.7 (5)
N3—C2—C3—C8179.7 (3)C14—C15—C16—C110.5 (5)
C8—C3—C4—C50.8 (5)C12—C11—C16—C152.9 (5)
C2—C3—C4—C5176.6 (3)C10—C11—C16—C15173.6 (3)
C3—C4—C5—O1179.9 (3)N9—N8—C17—N73.0 (5)
C3—C4—C5—C60.4 (5)N9—N8—C17—S3177.6 (2)
O1—C5—C6—O20.4 (5)N8—N9—C18—C19177.0 (3)
C4—C5—C6—O2179.1 (3)N9—C18—C19—C24176.7 (3)
O1—C5—C6—C7179.3 (3)N9—C18—C19—C205.3 (5)
C4—C5—C6—C71.2 (5)C24—C19—C20—C212.5 (5)
O2—C6—C7—C8179.5 (3)C18—C19—C20—C21175.5 (3)
C5—C6—C7—C80.9 (5)C19—C20—C21—O5176.6 (3)
C6—C7—C8—C30.3 (5)C19—C20—C21—C221.1 (5)
C4—C3—C8—C71.1 (5)O5—C21—C22—O61.2 (5)
C2—C3—C8—C7176.4 (3)C20—C21—C22—O6178.8 (3)
N6—N5—C9—N40.9 (5)O5—C21—C22—C23179.0 (3)
N6—N5—C9—S2179.8 (2)C20—C21—C22—C231.4 (5)
N5—N6—C10—C11176.7 (3)O6—C22—C23—C24177.8 (3)
N6—C10—C11—C16175.3 (3)C21—C22—C23—C242.5 (5)
N6—C10—C11—C121.1 (5)C20—C19—C24—C231.4 (5)
C16—C11—C12—C132.0 (5)C18—C19—C24—C23176.6 (3)
C10—C11—C12—C13174.4 (3)C22—C23—C24—C191.0 (5)
C11—C12—C13—O3179.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O6i0.84 (1)2.07 (3)2.784 (3)143 (4)
O2—H2o···S1ii0.84 (1)2.47 (1)3.300 (2)171 (4)
N1—H1n2···O5iii0.882.002.856 (4)163
O3—H3o···O4i0.84 (1)2.11 (4)2.732 (3)130 (4)
O4—H4o···S2ii0.84 (1)2.38 (1)3.219 (2)174 (4)
N4—H4n2···O3iii0.882.052.900 (4)162
O5—H5o···O2i0.84 (1)2.16 (4)2.742 (3)127 (4)
O6—H6o···S3ii0.84 (1)2.40 (1)3.244 (2)177 (4)
N7—H7n2···O1iii0.882.132.981 (4)161
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC8H9N3O2S
Mr211.24
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.657 (2), 11.794 (2), 12.356 (2)
α, β, γ (°)111.657 (2), 104.082 (2), 90.929 (2)
V3)1390.2 (4)
Z6
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.20 × 0.18 × 0.04
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.938, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
8792, 6298, 3727
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.189, 1.01
No. of reflections6298
No. of parameters397
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.40

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O6i0.84 (1)2.07 (3)2.784 (3)143 (4)
O2—H2o···S1ii0.84 (1)2.47 (1)3.300 (2)171 (4)
N1—H1n2···O5iii0.882.002.856 (4)163
O3—H3o···O4i0.84 (1)2.11 (4)2.732 (3)130 (4)
O4—H4o···S2ii0.84 (1)2.38 (1)3.219 (2)174 (4)
N4—H4n2···O3iii0.882.052.900 (4)162
O5—H5o···O2i0.84 (1)2.16 (4)2.742 (3)127 (4)
O6—H6o···S3ii0.84 (1)2.40 (1)3.244 (2)177 (4)
N7—H7n2···O1iii0.882.132.981 (4)161
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

We thank the University of Malaya (P0265/2007A) for supporting this study. KWT thanks the Ministry of Higher Education for a SLAI scholarship in this research.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwesi, A. T., Farina, Y., Kassim, M. & Ng, S. W. (2006). Acta Cryst. E62, o5457–o5458.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationZhu, X.-D., Wang, C.-G., Le, Z.-F., Mei, S.-Y., Yen, Z.-H. & Wu, Z.-S. (1991). Synth. React. Inorg. Met. Org. Chem. 21, 1365–1373.  CAS Google Scholar
First citationZhu, X.-D., Wang, C.-G., Lu, Z.-P. & Dang, Y.-L. (1997). Transition Met. Chem. 22, 9–13.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds