organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(2-Chloro­phen­yl)-1-(4-chloro­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 6 May 2008; accepted 22 May 2008; online 30 May 2008)

The title compound, C15H10Cl2O, adopts an E configuration with respect to the C=C bond of the propenone unit. The dihedral angle between the two benzene rings is 32.4 (1)°. Intra­molecular C—H⋯O and C—H⋯Cl hydrogen bonds generate an S(5)S(5)S(5) motif. In addition, the crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For related literature on chalcones, see: Fun et al. (2007[Fun, H.-K., Chantrapromma, S., Patil, P. S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2724-o2725.]); Patil et al. (2007[Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497-o2498.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10Cl2O

  • Mr = 277.13

  • Orthorhombic, P b c a

  • a = 7.2777 (1) Å

  • b = 11.2686 (2) Å

  • c = 30.2365 (6) Å

  • V = 2479.68 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 100.0 (1) K

  • 0.51 × 0.34 × 0.19 mm

Data collection
  • Bruker SMART APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.781, Tmax = 0.911

  • 42713 measured reflections

  • 5996 independent reflections

  • 4413 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.127

  • S = 1.05

  • 5996 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯Cl1 0.93 2.65 3.0484 (12) 107
C7—H7A⋯O1 0.93 2.46 2.7973 (15) 101
C15—H15A⋯O1 0.93 2.46 2.7691 (15) 100
C12—H12A⋯O1i 0.93 2.59 3.2064 (16) 125
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

In continuation of our study on chalcone derivatives (Fun et al., 2007; Patil et al., 2007), the crystal structure of the title compound (I) is reported herein.

In (I), the molecule exhibits an E configuration with respect to the C8C9 double bond with the C7–C8–C9–C10 torsion angle being 163.0 (2) °. The bond lengths in the title compound (Fig. 1) have normal values (Allen et al., 1987). The dihedral angle between the two benzene rings is 32.7 (1)°.

Intramolecular C—H···O and C-H···Cl hydrogen bonds generate an S(5)S(5)S(5) motif (Bernstein et al., 1995). In addition, the crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1).

Related literature top

For related literature on chalcones, see: Fun et al. (2007); Patil et al. (2007). For bond-length data, see: Allen et al. (1987). For graph-set motifs, see: Bernstein et al. (1995); .

Experimental top

The compound (I) was synthesized by the condensation of 2 -chlorobenzaldehyde (0.01 mol) with 4-chloroacetophenones (0.01 mol) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 30%). After stirring (6 h), the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 12 h. The resulting crude solid was filtered and dried. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of an acetone solution at room temperature.

Refinement top

H atoms were positioned geometrically [C—H = 0.93 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. Intramolecular H-bonds are shown as a dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis.
(E)-3-(2-Chlorophenyl)-1-(4-chlorophenyl)prop-2-en-1-one top
Crystal data top
C15H10Cl2OF(000) = 1136
Mr = 277.13Dx = 1.485 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8869 reflections
a = 7.2777 (1) Åθ = 2.7–36.0°
b = 11.2686 (2) ŵ = 0.51 mm1
c = 30.2365 (6) ÅT = 100 K
V = 2479.68 (7) Å3Block, colourless
Z = 80.51 × 0.34 × 0.19 mm
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
5996 independent reflections
Radiation source: fine-focus sealed tube4413 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 36.4°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 712
Tmin = 0.781, Tmax = 0.911k = 1718
42713 measured reflectionsl = 5048
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.6003P]
where P = (Fo2 + 2Fc2)/3
5996 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H10Cl2OV = 2479.68 (7) Å3
Mr = 277.13Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.2777 (1) ŵ = 0.51 mm1
b = 11.2686 (2) ÅT = 100 K
c = 30.2365 (6) Å0.51 × 0.34 × 0.19 mm
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
5996 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4413 reflections with I > 2σ(I)
Tmin = 0.781, Tmax = 0.911Rint = 0.042
42713 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.05Δρmax = 0.55 e Å3
5996 reflectionsΔρmin = 0.21 e Å3
163 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.92678 (5)0.49110 (3)0.058017 (10)0.02768 (8)
Cl21.06791 (4)0.29033 (3)0.406266 (11)0.02816 (8)
O11.19326 (15)0.53008 (8)0.20697 (3)0.0293 (2)
C10.99869 (17)0.34415 (10)0.06050 (4)0.0217 (2)
C20.9725 (2)0.27399 (11)0.02335 (4)0.0261 (2)
H2A0.92330.30660.00230.031*
C31.0200 (2)0.15500 (11)0.02468 (5)0.0295 (3)
H3A1.00320.10740.00010.035*
C41.0934 (2)0.10670 (11)0.06340 (5)0.0277 (3)
H4A1.12500.02680.06440.033*
C51.11899 (19)0.17750 (10)0.10012 (4)0.0247 (2)
H5A1.16820.14430.12570.030*
C61.07237 (16)0.29880 (10)0.09989 (4)0.0214 (2)
C71.10257 (17)0.37394 (10)0.13844 (4)0.0229 (2)
H7A1.10070.45550.13370.028*
C81.13268 (18)0.33788 (10)0.17986 (4)0.0245 (2)
H8A1.13640.25720.18630.029*
C91.16008 (17)0.42575 (10)0.21552 (4)0.0226 (2)
C101.14122 (17)0.38733 (10)0.26259 (4)0.0212 (2)
C111.10474 (19)0.27011 (11)0.27512 (4)0.0258 (2)
H11A1.09480.21160.25360.031*
C121.08325 (18)0.24012 (11)0.31927 (5)0.0260 (2)
H12A1.05830.16220.32740.031*
C131.09944 (16)0.32798 (10)0.35122 (4)0.0227 (2)
C141.13629 (18)0.44474 (11)0.33986 (4)0.0247 (2)
H14A1.14710.50280.36160.030*
C151.15668 (18)0.47343 (10)0.29565 (4)0.0239 (2)
H15A1.18120.55160.28780.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03936 (18)0.01927 (12)0.02440 (15)0.00338 (11)0.00267 (12)0.00341 (9)
Cl20.03176 (16)0.02708 (15)0.02565 (15)0.00451 (12)0.00190 (11)0.00078 (10)
O10.0399 (5)0.0181 (4)0.0299 (5)0.0008 (4)0.0062 (4)0.0006 (3)
C10.0255 (5)0.0174 (4)0.0223 (5)0.0004 (4)0.0031 (4)0.0014 (4)
C20.0355 (6)0.0228 (5)0.0201 (5)0.0030 (5)0.0029 (5)0.0015 (4)
C30.0414 (7)0.0213 (5)0.0260 (6)0.0050 (5)0.0034 (5)0.0026 (4)
C40.0362 (7)0.0171 (5)0.0299 (6)0.0008 (5)0.0012 (5)0.0016 (4)
C50.0283 (6)0.0187 (5)0.0272 (6)0.0014 (5)0.0011 (5)0.0006 (4)
C60.0219 (5)0.0186 (5)0.0236 (5)0.0010 (4)0.0011 (4)0.0007 (4)
C70.0243 (5)0.0181 (4)0.0263 (6)0.0003 (4)0.0021 (4)0.0009 (4)
C80.0283 (6)0.0194 (5)0.0258 (6)0.0015 (4)0.0022 (5)0.0022 (4)
C90.0244 (5)0.0182 (4)0.0253 (6)0.0022 (4)0.0042 (4)0.0015 (4)
C100.0217 (5)0.0158 (4)0.0262 (6)0.0014 (4)0.0026 (4)0.0028 (4)
C110.0324 (6)0.0178 (5)0.0272 (6)0.0002 (5)0.0003 (5)0.0051 (4)
C120.0309 (6)0.0174 (4)0.0295 (6)0.0016 (4)0.0018 (5)0.0020 (4)
C130.0223 (5)0.0208 (5)0.0251 (6)0.0002 (4)0.0007 (4)0.0015 (4)
C140.0281 (6)0.0195 (5)0.0264 (6)0.0012 (5)0.0032 (5)0.0039 (4)
C150.0274 (5)0.0168 (4)0.0275 (6)0.0004 (4)0.0045 (5)0.0019 (4)
Geometric parameters (Å, º) top
Cl1—C11.7383 (12)C7—H7A0.9300
Cl2—C131.7330 (13)C8—C91.4775 (17)
O1—C91.2277 (14)C8—H8A0.9300
C1—C21.3868 (18)C9—C101.4939 (18)
C1—C61.4024 (17)C10—C151.3975 (16)
C2—C31.3854 (18)C10—C111.3997 (17)
C2—H2A0.9300C11—C121.3857 (19)
C3—C41.397 (2)C11—H11A0.9300
C3—H3A0.9300C12—C131.3883 (18)
C4—C51.3800 (18)C12—H12A0.9300
C4—H4A0.9300C13—C141.3860 (17)
C5—C61.4084 (16)C14—C151.3834 (19)
C5—H5A0.9300C14—H14A0.9300
C6—C71.4574 (17)C15—H15A0.9300
C7—C81.3347 (18)
C2—C1—C6122.19 (11)C9—C8—H8A119.9
C2—C1—Cl1117.81 (10)O1—C9—C8120.97 (12)
C6—C1—Cl1119.93 (9)O1—C9—C10119.75 (11)
C3—C2—C1119.60 (12)C8—C9—C10119.25 (10)
C3—C2—H2A120.2C15—C10—C11118.47 (12)
C1—C2—H2A120.2C15—C10—C9118.22 (10)
C2—C3—C4119.79 (12)C11—C10—C9123.29 (11)
C2—C3—H3A120.1C12—C11—C10120.83 (11)
C4—C3—H3A120.1C12—C11—H11A119.6
C5—C4—C3120.04 (12)C10—C11—H11A119.6
C5—C4—H4A120.0C11—C12—C13119.13 (11)
C3—C4—H4A120.0C11—C12—H12A120.4
C4—C5—C6121.64 (12)C13—C12—H12A120.4
C4—C5—H5A119.2C14—C13—C12121.40 (12)
C6—C5—H5A119.2C14—C13—Cl2119.73 (10)
C1—C6—C5116.74 (11)C12—C13—Cl2118.85 (10)
C1—C6—C7121.68 (10)C15—C14—C13118.81 (11)
C5—C6—C7121.57 (11)C15—C14—H14A120.6
C8—C7—C6126.75 (11)C13—C14—H14A120.6
C8—C7—H7A116.6C14—C15—C10121.36 (11)
C6—C7—H7A116.6C14—C15—H15A119.3
C7—C8—C9120.19 (11)C10—C15—H15A119.3
C7—C8—H8A119.9
C6—C1—C2—C30.0 (2)C7—C8—C9—C10163.02 (12)
Cl1—C1—C2—C3177.01 (11)O1—C9—C10—C151.95 (18)
C1—C2—C3—C40.2 (2)C8—C9—C10—C15176.18 (11)
C2—C3—C4—C50.3 (2)O1—C9—C10—C11179.57 (13)
C3—C4—C5—C60.2 (2)C8—C9—C10—C112.31 (18)
C2—C1—C6—C50.06 (18)C15—C10—C11—C120.40 (19)
Cl1—C1—C6—C5176.87 (10)C9—C10—C11—C12178.08 (12)
C2—C1—C6—C7178.80 (12)C10—C11—C12—C130.4 (2)
Cl1—C1—C6—C74.27 (16)C11—C12—C13—C140.09 (19)
C4—C5—C6—C10.02 (19)C11—C12—C13—Cl2178.74 (10)
C4—C5—C6—C7178.88 (12)C12—C13—C14—C150.16 (19)
C1—C6—C7—C8164.24 (13)Cl2—C13—C14—C15178.48 (10)
C5—C6—C7—C817.0 (2)C13—C14—C15—C100.13 (19)
C6—C7—C8—C9179.71 (12)C11—C10—C15—C140.15 (19)
C7—C8—C9—O115.08 (19)C9—C10—C15—C14178.41 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cl10.932.653.0484 (12)107
C7—H7A···O10.932.462.7973 (15)101
C15—H15A···O10.932.462.7691 (15)100
C12—H12A···O1i0.932.593.2064 (16)125
Symmetry code: (i) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H10Cl2O
Mr277.13
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)7.2777 (1), 11.2686 (2), 30.2365 (6)
V3)2479.68 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.51 × 0.34 × 0.19
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.781, 0.911
No. of measured, independent and
observed [I > 2σ(I)] reflections
42713, 5996, 4413
Rint0.042
(sin θ/λ)max1)0.834
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 1.05
No. of reflections5996
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.21

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cl10.932.653.0484 (12)107
C7—H7A···O10.932.462.7973 (15)101
C15—H15A···O10.932.462.7691 (15)100
C12—H12A···O1i0.932.593.2064 (16)125
Symmetry code: (i) x+2, y1/2, z+1/2.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

FHK and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. HKF and IAR also thank the Malaysian Government and Universiti Sains Malaysia for FRGS grant No. 203/PFIZIK/671064. SRJ thanks the Universiti Sains Malaysia for a post-doctoral research fellowship. This work was supported by the Department of Science and Technology (DST), Government of India (grant No. SR/S2/LOP-17/2006).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Chantrapromma, S., Patil, P. S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2724–o2725.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497–o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds