organic compounds
2-(2-Methylnaphtho[2,1-b]furan-1-yl)acetic acid
aDepartment of Chemistry, University of Adelaide, 5005 South Australia, Australia, bDepartment of Wine and Horticulture, University of Adelaide, Waite Campus, Glen Osmond 5064, South Australia, Australia, and cDepartment of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA
*Correspondence e-mail: edward.tiekink@utsa.edu
In the title molecule, C15H12O3, the two six-membered and one five-membered fused-ring system is almost planar and the CH2C(=O)OH residue is essentially orthogonal to it. In the centrosymmetric dimers are formed via the carboxylic acid {⋯O=C—O—H}2 synthon.
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808015572/lh2631sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808015572/lh2631Isup2.hkl
To a stirring solution of 1 (Fig. 3, 1.91 g, 7.46 mmol) in anhydrous THF (50 ml) was added DDQ (1.81 g, 7.97 mmol) and the reaction brought to reflux for 24 h under a nitrogen atmosphere. The solution was allowed to cool to room temperature, diluted with water and extracted twice with dichloromethane. The organic phase was dried (MgSO4), filtered and volatiles removed in vacuo. The crude residue was purified by δ 2.25 (s, 3H), 3.70 (s, 3H), 3.98 (s, 2H), 7.45–7.48 (m, 1H), 7.56–7.60 (m, 2H), 7.65–7.68 (m, 1H), 7.92–7.94 (m, 1H), 8.23–8.26 (m, 1H) p.p.m.. 13C NMR (CDCl3, 50 MHz) δ 12.0, 31.5, 52.2, 109.5, 112.1, 122.2, 122.8, 124.0, 124.6, 126.1, 128.0, 129.0, 130.8, 151.5, 152.2, 171.6 p.p.m.. MS m/z (%): 254 (M+, 76), 95 (100), 181 (31), 165 (27), 152 (22). HRMS, C16H14O3: calcd, 254.0943. Found 254.0942.
(10% acetone in hexane) to give pure methyl 2-(2-methylnaphtho[2,1-b]furan-1-yl)acetate, 2, as a yellow solid, m.p: 349 - 351 K. Rf 0.41 (10% acetone in hexane). IR (CH2Cl2, cm-1) 1738, 1620, 1581, 1525, 804. 1H NMR (CDCl3, 300 MHz)Compound (I) was obtained by the base hydrolysis of 2 in methanol solution. The colourless solid was recrystallized from ethanol solution in 75% yield; m.p.: 451 - 455 K (decomposes, sealed tube). IR (nujol, cm-1) 1699, 1622, 1579, 1525. 1H NMR (CDCl3, 300 MHz) δ 2.51 (s, 3H), 4.00 (s, 2H), 7.44–7.69 (m, 4H), 7.91–7.94 (m, 1H), 8.21–8.23 (m, 1H) p.p.m.. 13C NMR (CDCl3, 50 MHz) δ 11.9, 31.1, 108.8, 112.1, 122.0, 122.7, 124.0, 126.2, 127.9, 129.1, 130.8, 151.6, 152.4, 175.5 (1 masked carbon) p.p.m.. MS m/z (%): 240 (M+, 39), 195 (100), 165 (13), 152 (13), 69 (37). Elemental analysis found: C, 74.92; H, 4.98%. C15H12O3 requires C, 74.99; H, 5.03%.
All H atoms were included in the riding-model approximation, with C—H = 0.94 to 0.98 Å and O—H = 0.83 Å, and with Uiso(H) = 1.5Ueq(methyl-C and O) or 1.2Ueq(remaining C).
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C15H12O3 | F(000) = 1008 |
Mr = 240.25 | Dx = 1.345 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -C 2yc | Cell parameters from 3301 reflections |
a = 31.380 (3) Å | θ = 2.6–29.4° |
b = 4.8370 (4) Å | µ = 0.09 mm−1 |
c = 15.7885 (13) Å | T = 223 K |
β = 98.087 (2)° | Block, colourless |
V = 2372.6 (3) Å3 | 0.49 × 0.36 × 0.18 mm |
Z = 8 |
Bruker SMART CCD diffractometer | 2790 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.026 |
Graphite monochromator | θmax = 30.0°, θmin = 2.6° |
ω scans | h = −43→43 |
9334 measured reflections | k = −6→4 |
3445 independent reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.138 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0801P)2 + 0.5375P] where P = (Fo2 + 2Fc2)/3 |
3445 reflections | (Δ/σ)max < 0.001 |
164 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.15 e Å−3 |
C15H12O3 | V = 2372.6 (3) Å3 |
Mr = 240.25 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 31.380 (3) Å | µ = 0.09 mm−1 |
b = 4.8370 (4) Å | T = 223 K |
c = 15.7885 (13) Å | 0.49 × 0.36 × 0.18 mm |
β = 98.087 (2)° |
Bruker SMART CCD diffractometer | 2790 reflections with I > 2σ(I) |
9334 measured reflections | Rint = 0.026 |
3445 independent reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.138 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.34 e Å−3 |
3445 reflections | Δρmin = −0.15 e Å−3 |
164 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O3 | 0.39156 (3) | 0.5681 (2) | 0.14890 (5) | 0.0436 (2) | |
O11 | 0.47261 (3) | 0.47260 (18) | 0.40193 (6) | 0.0458 (2) | |
O12 | 0.46215 (3) | 0.7752 (2) | 0.50211 (6) | 0.0597 (3) | |
H12 | 0.4808 | 0.6801 | 0.5312 | 0.090* | |
C1 | 0.40206 (3) | 0.6881 (2) | 0.28846 (7) | 0.0322 (2) | |
C2 | 0.41414 (4) | 0.7340 (3) | 0.21078 (7) | 0.0389 (3) | |
C3a | 0.36422 (4) | 0.4133 (2) | 0.19008 (7) | 0.0371 (3) | |
C4 | 0.33570 (4) | 0.2173 (3) | 0.14967 (8) | 0.0445 (3) | |
H4 | 0.3340 | 0.1805 | 0.0908 | 0.053* | |
C5 | 0.31044 (4) | 0.0821 (3) | 0.19964 (8) | 0.0447 (3) | |
H5 | 0.2911 | −0.0532 | 0.1748 | 0.054* | |
C5a | 0.31254 (3) | 0.1401 (2) | 0.28866 (8) | 0.0374 (3) | |
C6 | 0.28513 (4) | 0.0037 (3) | 0.33887 (10) | 0.0480 (3) | |
H6 | 0.2655 | −0.1288 | 0.3131 | 0.058* | |
C7 | 0.28646 (4) | 0.0600 (3) | 0.42402 (10) | 0.0511 (3) | |
H7 | 0.2675 | −0.0308 | 0.4559 | 0.061* | |
C8 | 0.31603 (4) | 0.2532 (3) | 0.46375 (8) | 0.0451 (3) | |
H8 | 0.3170 | 0.2900 | 0.5225 | 0.054* | |
C9 | 0.34350 (4) | 0.3890 (2) | 0.41782 (7) | 0.0360 (2) | |
H9 | 0.3634 | 0.5163 | 0.4456 | 0.043* | |
C9a | 0.34237 (3) | 0.3400 (2) | 0.32913 (7) | 0.0312 (2) | |
C9b | 0.36901 (3) | 0.4774 (2) | 0.27625 (7) | 0.0309 (2) | |
C11 | 0.42022 (3) | 0.8343 (2) | 0.36877 (7) | 0.0336 (2) | |
H11A | 0.3967 | 0.8781 | 0.4012 | 0.040* | |
H11B | 0.4329 | 1.0095 | 0.3535 | 0.040* | |
C12 | 0.45400 (3) | 0.6725 (2) | 0.42568 (6) | 0.0306 (2) | |
C21 | 0.44569 (4) | 0.9241 (4) | 0.17989 (10) | 0.0560 (4) | |
H21A | 0.4541 | 1.0645 | 0.2229 | 0.084* | |
H21B | 0.4327 | 1.0118 | 0.1273 | 0.084* | |
H21C | 0.4709 | 0.8204 | 0.1693 | 0.084* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O3 | 0.0459 (5) | 0.0549 (5) | 0.0297 (4) | 0.0104 (4) | 0.0047 (3) | 0.0020 (3) |
O11 | 0.0497 (5) | 0.0434 (5) | 0.0394 (5) | 0.0167 (4) | −0.0108 (4) | −0.0094 (3) |
O12 | 0.0662 (6) | 0.0695 (7) | 0.0373 (5) | 0.0348 (5) | −0.0140 (4) | −0.0176 (4) |
C1 | 0.0310 (5) | 0.0332 (5) | 0.0311 (5) | 0.0067 (4) | 0.0001 (4) | 0.0038 (4) |
C2 | 0.0352 (5) | 0.0463 (6) | 0.0347 (5) | 0.0086 (4) | 0.0029 (4) | 0.0069 (5) |
C3a | 0.0392 (5) | 0.0411 (6) | 0.0293 (5) | 0.0108 (4) | −0.0013 (4) | −0.0013 (4) |
C4 | 0.0490 (6) | 0.0471 (7) | 0.0334 (6) | 0.0121 (5) | −0.0089 (5) | −0.0100 (5) |
C5 | 0.0424 (6) | 0.0386 (6) | 0.0476 (7) | 0.0056 (5) | −0.0129 (5) | −0.0106 (5) |
C5a | 0.0329 (5) | 0.0316 (5) | 0.0447 (6) | 0.0052 (4) | −0.0055 (4) | −0.0004 (4) |
C6 | 0.0395 (6) | 0.0379 (6) | 0.0636 (8) | −0.0032 (5) | −0.0037 (5) | 0.0045 (6) |
C7 | 0.0460 (7) | 0.0459 (7) | 0.0624 (9) | −0.0033 (5) | 0.0110 (6) | 0.0150 (6) |
C8 | 0.0519 (7) | 0.0433 (6) | 0.0407 (6) | 0.0039 (5) | 0.0087 (5) | 0.0085 (5) |
C9 | 0.0405 (5) | 0.0331 (5) | 0.0335 (5) | 0.0031 (4) | 0.0019 (4) | 0.0016 (4) |
C9a | 0.0312 (5) | 0.0281 (5) | 0.0325 (5) | 0.0070 (4) | −0.0016 (4) | 0.0004 (4) |
C9b | 0.0318 (5) | 0.0306 (5) | 0.0284 (5) | 0.0075 (4) | −0.0017 (4) | −0.0010 (4) |
C11 | 0.0338 (5) | 0.0294 (5) | 0.0357 (5) | 0.0029 (4) | −0.0013 (4) | 0.0016 (4) |
C12 | 0.0289 (4) | 0.0312 (5) | 0.0305 (5) | −0.0006 (4) | 0.0005 (3) | −0.0001 (4) |
C21 | 0.0455 (7) | 0.0702 (10) | 0.0545 (8) | 0.0040 (6) | 0.0150 (6) | 0.0185 (7) |
O3—C3a | 1.3697 (15) | C5a—C9a | 1.4323 (15) |
O3—C2 | 1.3807 (15) | C6—C7 | 1.366 (2) |
O11—C12 | 1.2157 (13) | C6—H6 | 0.9400 |
O12—C12 | 1.2968 (13) | C7—C8 | 1.401 (2) |
O12—H12 | 0.8300 | C7—H7 | 0.9400 |
C1—C2 | 1.3519 (16) | C8—C9 | 1.3697 (17) |
C1—C9b | 1.4474 (15) | C8—H8 | 0.9400 |
C1—C11 | 1.4930 (15) | C9—C9a | 1.4157 (15) |
C2—C21 | 1.4832 (18) | C9—H9 | 0.9400 |
C3a—C9b | 1.3829 (15) | C9a—C9b | 1.4261 (15) |
C3a—C4 | 1.3950 (17) | C11—C12 | 1.5084 (14) |
C4—C5 | 1.362 (2) | C11—H11A | 0.9800 |
C4—H4 | 0.9400 | C11—H11B | 0.9800 |
C5—C5a | 1.4255 (18) | C21—H21A | 0.9700 |
C5—H5 | 0.9400 | C21—H21B | 0.9700 |
C5a—C6 | 1.4127 (18) | C21—H21C | 0.9700 |
C3a—O3—C2 | 105.97 (9) | C9—C8—H8 | 119.7 |
C12—O12—H12 | 109.5 | C7—C8—H8 | 119.7 |
C2—C1—C9b | 106.37 (10) | C8—C9—C9a | 120.89 (11) |
C2—C1—C11 | 124.78 (11) | C8—C9—H9 | 119.6 |
C9b—C1—C11 | 128.84 (10) | C9a—C9—H9 | 119.6 |
C1—C2—O3 | 111.41 (11) | C9—C9a—C9b | 124.47 (10) |
C1—C2—C21 | 133.27 (12) | C9—C9a—C5a | 118.55 (11) |
O3—C2—C21 | 115.32 (11) | C9b—C9a—C5a | 116.98 (10) |
O3—C3a—C9b | 110.84 (10) | C3a—C9b—C9a | 118.67 (10) |
O3—C3a—C4 | 123.97 (10) | C3a—C9b—C1 | 105.40 (10) |
C9b—C3a—C4 | 125.19 (11) | C9a—C9b—C1 | 135.91 (9) |
C5—C4—C3a | 116.72 (11) | C1—C11—C12 | 114.36 (9) |
C5—C4—H4 | 121.6 | C1—C11—H11A | 108.7 |
C3a—C4—H4 | 121.6 | C12—C11—H11A | 108.7 |
C4—C5—C5a | 121.79 (11) | C1—C11—H11B | 108.7 |
C4—C5—H5 | 119.1 | C12—C11—H11B | 108.7 |
C5a—C5—H5 | 119.1 | H11A—C11—H11B | 107.6 |
C6—C5a—C5 | 120.93 (11) | O11—C12—O12 | 123.46 (9) |
C6—C5a—C9a | 118.45 (11) | O11—C12—C11 | 123.82 (9) |
C5—C5a—C9a | 120.62 (11) | O12—C12—C11 | 112.68 (9) |
C7—C6—C5a | 121.48 (12) | C2—C21—H21A | 109.5 |
C7—C6—H6 | 119.3 | C2—C21—H21B | 109.5 |
C5a—C6—H6 | 119.3 | H21A—C21—H21B | 109.5 |
C6—C7—C8 | 120.00 (12) | C2—C21—H21C | 109.5 |
C6—C7—H7 | 120.0 | H21A—C21—H21C | 109.5 |
C8—C7—H7 | 120.0 | H21B—C21—H21C | 109.5 |
C9—C8—C7 | 120.60 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O12—H12···O11i | 0.83 | 1.83 | 2.6553 (14) | 170 |
C21—H21B···O12ii | 0.97 | 2.52 | 3.2663 (19) | 134 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C15H12O3 |
Mr | 240.25 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 223 |
a, b, c (Å) | 31.380 (3), 4.8370 (4), 15.7885 (13) |
β (°) | 98.087 (2) |
V (Å3) | 2372.6 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.49 × 0.36 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9334, 3445, 2790 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.704 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.138, 1.04 |
No. of reflections | 3445 |
No. of parameters | 164 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.15 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
O12—H12···O11i | 0.83 | 1.83 | 2.6553 (14) | 170 |
C21—H21B···O12ii | 0.97 | 2.52 | 3.2663 (19) | 134 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+2, z−1/2. |
Footnotes
‡Additional correspondence e-mail: dennis.taylor@adelaide.edu.au.
Acknowledgements
We are grateful to the Australian Research Council for financial support.
References
Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–435. CrossRef Web of Science IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Haselgrove, T. D., Jevric, M., Taylor, D. K. & Tiekink, E. R. T. (1999). Tetrahedron, 55, 14739–14762. Web of Science CSD CrossRef CAS Google Scholar
Jevric, M., Taylor, D. K. & Tiekink, E. R. T. (2001). Z. Kristallogr. 216, 543–544. CAS Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The effective dehydrogenation of diastereomeric mixture of 1, Fig. 3, to form the aromatized tricyclic 2 could be effected with the use of DDQ in THF under reflux conditions (Haselgrove et al., 1999). Crystals of the title acid derivative (I) were obtained by base hydrolysis of 2 in methanol solution (Jevric et al., 2001).
The tricyclic system in (I), Fig. 1, comprises six- (A), six- (B), and five-membered rings (C) with the sequence of dihedral angles between their respective least-squares planes being 1.48 (6), 2.34 (6), 0.91 (6) ° for A/B, A/C, and B/C, respectively. The CH2C(=O)OH residue is essentially orthogonal to this aromatic system as seen in the C1/C11/C12/O11 torsion angle of -165.68 (9)°. Centrosymmetrically related molecules associate into dimers via the familiar eight-membered carboxylic acid {···O=C—O—H}2 synthon, Table 1. Each dimer thus formed is associated to two other molecules, each related by 2-fold symmetry, via C—H···O contacts. These consolidate molecules into a 2-D array in the bc-plane as shown in Fig. 2.