organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl-1H-benzimidazole-2(3H)-thione

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, bDISTA, Universita del Piemonte Orientale, Alessandria I-15100, Italy, and cDepartment of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan
*Correspondence e-mail: aminbadshah@yahoo.com

(Received 21 April 2008; accepted 18 May 2008; online 24 May 2008)

The title compound, C8H8N2S, was prepared by the condensation of N-methyl-1,2-phenyl­enediamine and carbon disulfide. The crystal structure is stabilized by a C—H⋯π inter­action between a benzene H atom and the benzene ring of a neighbouring mol­ecule, and by inter­molecular N—H⋯S inter­actions.

Related literature

For related literature, see: Baily et al. (1996[Baily, N., Dean, A. W., Judd, D. B., Middlemiss, D., Storer, R. & Watson, S. P. (1996). Bioorg. Med. Chem. Lett. 6, 1409-1413.]); Koch (2001[Koch, K. R. (2001). Coord. Chem. Rev. 216, 473-482.]); Namgun et al. (2001[Namgun, L., Mi-Hyun, C. & Tack, H. K. (2001). J. Korean Chem. Soc. 45, 96-99.]); Schuster et al. (1990[Schuster, M., Kugler, B. & Konig, K. H. (1990). J. Anal. Chem. 338, 717-720.]); Patel & Chedekel (1984[Patel, D. G. & Chedekel, M. R. (1984). J. Org. Chem. 49, 997-1000.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8N2S

  • Mr = 164.22

  • Monoclinic, P 21 /n

  • a = 9.997 (4) Å

  • b = 5.8140 (7) Å

  • c = 13.703 (4) Å

  • β = 94.05 (3)°

  • V = 794.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 (2) K

  • 0.20 × 0.10 × 0.02 mm

Data collection
  • Oxford Diffraction Xcalibur2 CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction; 2004[Oxford Diffraction (2004). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]; Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) Tmin = 0.929, Tmax = 0.967

  • 7237 measured reflections

  • 962 independent reflections

  • 855 reflections with I > 2σ(I)

  • Rint = 0.023

  • θmax = 23.1°

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.077

  • S = 1.09

  • 962 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Si 0.86 2.57 3.408 (2) 166
C3—H3⋯Cgii 0.93 2.74 3.464 (3) 136
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]. Cg is the centroid of the C2–C7 ring.

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

N,N'- disubstituted and N-substituted thiourea derivatives are the major building blocks of organic macromolecular compounds. Thiourea derivatives such as benzothiazoles have been isolated by bromination of arylthioureas (Patil & Chedekel, 1984) and by condensation of 2-aminothiazole (Baily et al., 1996), by cyclization of N-(2-hydroxyethyl-N-methylthioureas and 2-methyl-aminothiazole (Namgun et al., 2001). Aliphatic and acylthioureas have a wide range of application due to their coordination behavior towards transition metals (Schuster et al., 1990). N,N-dialkyl-N-arylthioureas have been used for the extraction of metals such as nickel, palladium and platinum (Koch, 2001). Here we report the crystal structure of the title compound, 1-methyl-2H-benzimidazole-2-thione (Fig. 1).

The benzimidazole unit is essentially planar, with a mean deviation of 0.023 Å from the least-squares plane defined by the nine constituent atoms. The molecular packing (Fig. 2) is stabilized by a C—H···π interaction between a benzene H atom and the benzene ring of neighbouring molecules, with a C3—H3···Cgi separation of 2.735 (3) Å (Fig. 2 and Table 1; Cg is the C2-C7 benzene ring, symmetry code as in Fig. 2). Additionally, intermolecular N—H···S interactions in the structure were observed (Fig. 2 and Table 1; symmetry code as in Fig. 2).

Related literature top

For related literature, see: Baily et al. (1996); Koch (2001); Namgun et al. (2001); Schuster et al. (1990); Patel & Chedekel (1984). Cg is the centroid of the C2–C7 ring

For related literature, see: Patel & Chedekel (1984).

Experimental top

Compound (I) was synthesized by the addition of carbondisulfide (0.79 ml, 13.02 mmol) to N-methyl-1,2-phenylenediamine (0.744 ml, 6.55 mmol) in methanol (20 ml). The resulting mixture was stirred for 24 h, at 0°C temperature, giving a clear light yellow solution. The solution was evaporated under reduced pressure to give a light yellow solid, which was recrystallized in methanol/peteroleum ether (9:1) to afford compound (I) (yield : 76%).

Refinement top

All H atoms were placed in idealized positions (C—H = 0.96 A ° (methyl); C—H = 0.93 A ° (aromatic); N—H = 0.86 A °) and refined as riding, with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2004); data reduction: CrysAlis RED (Oxford Diffraction, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. C—H···π and N—H···S interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry code: (i) -x+1/2, y-1/2, -z+3/2; (ii) -x+3/2, y+1/2, -z+3/2; (iii) -x+3/2, y-1/2, -z+3/2; (iv) -x+1/2, y+1/2, -z+3/2.]
1-Methyl-1H-benzimidazole-2(3H)-thione top
Crystal data top
C8H8N2SF(000) = 344
Mr = 164.22Dx = 1.373 Mg m3
Monoclinic, P21/nMelting point: 402 K
Hall symbol: -P_2ynMo Kα radiation, λ = 0.71073 Å
a = 9.997 (4) ÅCell parameters from 5701 reflections
b = 5.8140 (7) Åθ = 3.7–23.1°
c = 13.703 (4) ŵ = 0.34 mm1
β = 94.05 (3)°T = 293 K
V = 794.5 (4) Å3Block, colourless
Z = 40.20 × 0.10 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur2 CCD
diffractometer
962 independent reflections
Radiation source: Enhance (Mo) X-ray Source855 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.0 pixels mm-1θmax = 23.1°, θmin = 3.8°
ω scansh = 1011
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction; 2004; Clark & Reid, 1995)
k = 66
Tmin = 0.929, Tmax = 0.967l = 1414
7237 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0353P)2 + 0.4983P]
where P = (Fo2 + 2Fc2)/3
962 reflections(Δ/σ)max = 0.001
101 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C8H8N2SV = 794.5 (4) Å3
Mr = 164.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.997 (4) ŵ = 0.34 mm1
b = 5.8140 (7) ÅT = 293 K
c = 13.703 (4) Å0.20 × 0.10 × 0.02 mm
β = 94.05 (3)°
Data collection top
Oxford Diffraction Xcalibur2 CCD
diffractometer
962 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction; 2004; Clark & Reid, 1995)
855 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.967Rint = 0.023
7237 measured reflectionsθmax = 23.1°
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.09Δρmax = 0.21 e Å3
962 reflectionsΔρmin = 0.19 e Å3
101 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.73449 (6)0.62833 (10)0.62836 (4)0.0475 (3)
N10.52959 (17)0.3736 (3)0.69273 (12)0.0345 (5)
N20.57646 (17)0.6789 (3)0.78071 (12)0.0380 (5)
H20.61190.80710.80040.046*
C10.6119 (2)0.5599 (4)0.70145 (15)0.0359 (6)
C20.4462 (2)0.3690 (3)0.77058 (15)0.0323 (5)
C30.3528 (2)0.2095 (4)0.79703 (16)0.0399 (6)
H30.33420.07730.76030.048*
C40.2882 (2)0.2566 (4)0.88107 (17)0.0461 (6)
H40.22550.15240.90170.055*
C50.3145 (2)0.4548 (4)0.93499 (17)0.0466 (6)
H50.26840.48120.99060.056*
C60.4079 (2)0.6150 (4)0.90824 (16)0.0412 (6)
H60.42460.74920.94400.049*
C70.4752 (2)0.5656 (4)0.82572 (15)0.0330 (5)
C80.5331 (3)0.1997 (4)0.61682 (17)0.0518 (7)
H8A0.55080.27170.55600.078*
H8B0.44820.12210.60980.078*
H8C0.60260.09040.63450.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0446 (4)0.0454 (4)0.0547 (4)0.0026 (3)0.0184 (3)0.0102 (3)
N10.0345 (10)0.0313 (10)0.0384 (10)0.0019 (8)0.0071 (8)0.0027 (8)
N20.0379 (11)0.0323 (10)0.0443 (11)0.0042 (8)0.0064 (9)0.0040 (9)
C10.0350 (12)0.0332 (12)0.0396 (13)0.0068 (11)0.0026 (10)0.0050 (10)
C20.0283 (11)0.0339 (13)0.0348 (12)0.0062 (10)0.0024 (9)0.0023 (10)
C30.0365 (12)0.0356 (13)0.0478 (14)0.0024 (11)0.0043 (11)0.0016 (11)
C40.0380 (13)0.0483 (16)0.0529 (15)0.0053 (11)0.0094 (12)0.0080 (13)
C50.0425 (13)0.0601 (16)0.0383 (13)0.0015 (13)0.0104 (11)0.0021 (12)
C60.0423 (13)0.0431 (14)0.0380 (13)0.0040 (11)0.0017 (10)0.0060 (11)
C70.0302 (12)0.0330 (12)0.0358 (12)0.0021 (10)0.0019 (10)0.0020 (10)
C80.0536 (15)0.0493 (15)0.0542 (15)0.0015 (13)0.0150 (12)0.0150 (13)
Geometric parameters (Å, º) top
S—C11.684 (2)C3—H30.9300
N1—C11.361 (3)C4—C51.384 (3)
N1—C21.400 (3)C4—H40.9300
N1—C81.453 (3)C5—C61.386 (3)
N2—C11.356 (3)C5—H50.9300
N2—C71.389 (3)C6—C71.386 (3)
N2—H20.8600C6—H60.9300
C2—C31.383 (3)C8—H8A0.9600
C2—C71.389 (3)C8—H8B0.9600
C3—C41.387 (3)C8—H8C0.9600
C1—N1—C2109.71 (17)C3—C4—H4119.2
C1—N1—C8124.88 (18)C4—C5—C6121.6 (2)
C2—N1—C8125.34 (18)C4—C5—H5119.2
C1—N2—C7110.71 (18)C6—C5—H5119.2
C1—N2—H2124.6C7—C6—C5116.8 (2)
C7—N2—H2124.6C7—C6—H6121.6
N2—C1—N1106.62 (18)C5—C6—H6121.6
N2—C1—S126.72 (18)C6—C7—N2132.5 (2)
N1—C1—S126.65 (17)C6—C7—C2121.3 (2)
C3—C2—C7121.86 (19)N2—C7—C2106.21 (17)
C3—C2—N1131.46 (19)N1—C8—H8A109.5
C7—C2—N1106.66 (17)N1—C8—H8B109.5
C2—C3—C4116.6 (2)H8A—C8—H8B109.5
C2—C3—H3121.7N1—C8—H8C109.5
C4—C3—H3121.7H8A—C8—H8C109.5
C5—C4—C3121.7 (2)H8B—C8—H8C109.5
C5—C4—H4119.2
C7—N2—C1—N12.4 (2)C2—C3—C4—C50.9 (3)
C7—N2—C1—S177.28 (16)C3—C4—C5—C60.7 (4)
C2—N1—C1—N23.2 (2)C4—C5—C6—C71.0 (3)
C8—N1—C1—N2179.79 (19)C5—C6—C7—N2177.1 (2)
C2—N1—C1—S176.50 (15)C5—C6—C7—C22.4 (3)
C8—N1—C1—S0.5 (3)C1—N2—C7—C6178.9 (2)
C1—N1—C2—C3175.6 (2)C1—N2—C7—C20.7 (2)
C8—N1—C2—C31.4 (3)C3—C2—C7—C62.3 (3)
C1—N1—C2—C72.8 (2)N1—C2—C7—C6179.11 (19)
C8—N1—C2—C7179.79 (19)C3—C2—C7—N2177.32 (19)
C7—C2—C3—C40.6 (3)N1—C2—C7—N21.2 (2)
N1—C2—C3—C4178.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Si0.862.573.408 (2)166
C3—H3···Cgii0.932.743.464 (3)136
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H8N2S
Mr164.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.997 (4), 5.8140 (7), 13.703 (4)
β (°) 94.05 (3)
V3)794.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.20 × 0.10 × 0.02
Data collection
DiffractometerOxford Diffraction Xcalibur2 CCD
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction; 2004; Clark & Reid, 1995)
Tmin, Tmax0.929, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
7237, 962, 855
Rint0.023
θmax (°)23.1
(sin θ/λ)max1)0.552
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.078, 1.09
No. of reflections962
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Si0.862.573.408 (2)166.3
C3—H3···Cgii0.932.743.464 (3)136
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1/2, y1/2, z+3/2.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Pakistan, for financial support.

References

First citationBaily, N., Dean, A. W., Judd, D. B., Middlemiss, D., Storer, R. & Watson, S. P. (1996). Bioorg. Med. Chem. Lett. 6, 1409–1413.  CrossRef Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKoch, K. R. (2001). Coord. Chem. Rev. 216, 473–482.  Web of Science CrossRef Google Scholar
First citationNamgun, L., Mi-Hyun, C. & Tack, H. K. (2001). J. Korean Chem. Soc. 45, 96–99.  Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPatel, D. G. & Chedekel, M. R. (1984). J. Org. Chem. 49, 997–1000.  Google Scholar
First citationSchuster, M., Kugler, B. & Konig, K. H. (1990). J. Anal. Chem. 338, 717–720.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds