inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­di­bromidoeuropium(III) bromide, [EuBr2(H2O)6]Br

aMax-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
*Correspondence e-mail: c.hoch@fkf.mpg.de

(Received 5 May 2008; accepted 13 May 2008; online 17 May 2008)

The title compound crystallizes with the GdCl3·6H2O structure type, exhibiting discrete [EuBr2(H2O)6]+ cations as the main building blocks, linked with isolated bromide anions via H⋯Br hydrogen bonds to form a complex framework. The Eu atom and one Br atom each lie on a twofold rotation axis.

Related literature

For related literature, see: Bärnighausen et al. (1965[Bärnighausen, H., Brauer, G. & Schultz, N. (1965). Z. Anorg. Allg. Chem. 338, 250-265.]); Bell & Smith (1990[Bell, A. M. T. & Smith, A. J. (1990). Acta Cryst. C46, 960-962.]); Burns & Peterson (1971[Burns, J. H. & Peterson, J. R. (1971). Inorg. Chem. 10, 147-151.]); Demyanets et al. (1974[Demyanets, L. N., Bukin, V. I., Emelyanova, E. N. & Ivanov, V. I. (1974). Sov. Phys. Cystallogr. 18, 806-808.]); Duhlev et al. (1988[Duhlev, R., Brown, I. D. & Faggiani, R. (1988). Acta Cryst. C44, 1693-1696.]); Graeber et al. (1966[Graeber, E. J., Conrad, G. H. & Duliere, S. F. (1966). Acta Cryst. 21, 1012-1013.]); Habenschuss & Spedding (1980[Habenschuss, A. & Spedding, F. H. (1980). Cryst. Struct. Commun. 9, 71-75.]); Junk et al. (1999[Junk, P. C., Semenova, L. I., Skelton, B. W. & White, A. H. (1999). Austr. J. Chem. 52, 531-538.]); Kolitsch (2006[Kolitsch, U. (2006). Acta Cryst. E62, i122-i123.]); Marezio et al. (1961[Marezio, M., Plettinger, H. A. & Zachariasen, W. H. (1961). Acta Cryst. 14, 234-236.]); Reuter et al. (1994[Reuter, G., Fink, H. & Seifert, H. J. (1994). Z. Anorg. Allg. Chem. 620, 665-671.]); Tegenfeldt et al. (1979[Tegenfeldt, J., Tellgren, R., Pedersen, B. & Olovsson, I. (1979). Acta Cryst. B35, 1679-1682.]); Wickleder & Meyer (1995[Wickleder, M. S. & Meyer, G. (1995). Z. Anorg. Allg. Chem. 621, 457-463.]).

Experimental

Crystal data
  • [EuBr2(H2O)6]Br

  • Mr = 499.79

  • Monoclinic, P 2/c

  • a = 8.1672 (7) Å

  • b = 6.7538 (4) Å

  • c = 12.5451 (10) Å

  • β = 127.077 (5)°

  • V = 552.08 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 16.52 mm−1

  • T = 293 (2) K

  • 0.25 × 0.24 × 0.18 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: numerical [X-RED (Stoe & Cie, 2001[Stoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]) and X-SHAPE (Stoe & Cie, 1999[Stoe & Cie (1999). X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.])] Tmin = 0.065, Tmax = 0.155

  • 10921 measured reflections

  • 1613 independent reflections

  • 1397 reflections with I > 2s(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.049

  • S = 1.11

  • 1613 reflections

  • 72 parameters

  • All H-atom parameters refined

  • Δρmax = 1.14 e Å−3

  • Δρmin = −1.10 e Å−3

Table 1
Selected geometric parameters (Å, °)

Eu1—Br1 2.9449 (5)
Eu1—O1 2.424 (3)
Eu1—O2 2.422 (3)
Eu1—O3 2.388 (3)
Br1—Eu1—O1 146.89 (8)
Br1—Eu1—O1i 76.21 (9)
Br1—Eu1—O2 77.33 (8)
Br1—Eu1—O2i 78.22 (8)
Br1—Eu1—O3 107.21 (9)
Br1—Eu1—O3i 143.18 (8)
Br1—Eu1—Br1i 84.41 (2)
O1—Eu1—O1i 132.3 (2)
O2—Eu1—O2i 146.8 (2)
O3—Eu1—O3i 84.5 (2)
O1—Eu1—O2 72.6 (1)
O1—Eu1—O2i 122.0 (1)
O1—Eu1—O3 75.8 (1)
O1—Eu1—O3i 69.3 (1)
O2—Eu1—O3 70.9 (1)
O2—Eu1—O3i 138.6 (1)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11⋯Br2ii 0.83 (2) 2.53 (8) 3.343 (4) 168 (6)
O1—H12⋯Br1iii 0.83 (2) 2.52 (13) 3.333 (4) 165 (6)
O2—H21⋯Br1iv 0.82 (2) 2.49 (10) 3.307 (4) 172 (6)
O2—H22⋯Br2v 0.83 (2) 2.63 (11) 3.417 (4) 161 (6)
O3—H31⋯Br1vi 0.83 (2) 2.46 (8) 3.288 (4) 173 (6)
O3—H32⋯Br2 0.83 (2) 2.52 (11) 3.328 (5) 163 (6)
Symmetry codes: (ii) -x, -y+1, -z; (iii) [x-1, -y, z-{\script{1\over 2}}]; (iv) -x+1, -y, -z+1; (v) x, y-1, z; (vi) x, y+1, z.

Data collection: X-AREA (Stoe & Cie, 2006[Stoe & Cie (2006). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DRAWXTL (Finger et al., 2007[Finger, L. W., Kroeker, M. & Toby, B. H. (2007). J. Appl. Cryst. 40, 188-192.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

[EuBr2(H2O)6]Br crystallizes in the monoclinic space group P2/c (No. 13) and is isotypic with the GdCl3.6H2O structure type (Marezio et al., 1961), like many chloride hexahydrates MCl3.6H2O with M = Y (Bell & Smith, 1990), Ce (Reuter et al., 1994), Nd (Habenschuss & Spedding, 1980), Sm - Tm (Graeber et al., 1966), Am, Bk (Burns & Peterson, 1971), and two bromide hexahydrates MBr3.6H2O (M = Pr, Dy, Junk et al., 1999).

The Eu atoms in [EuBr2(H2O)6]Br are coordinated by six water molecules and two bromine atoms forming a distorted square antiprism (Fig. 1). Hydrogen bonds H—Br connect the [EuBr2(H2O)6]+ cations with the Br- counter-anions to a network. The bromine atom Br1 belonging to the cationic complex is surrounded by four, the isolated bromine atom Br2 by six hydrogen bonds (Fig. 2). A view of the unit cell of [EuBr2(H2O)6]Br is given in Fig. 3.

The H—Br distances (2.46–2.63 Å) are in good agreement with those in other bromide hydrates (e.g. 2.38–2.54 Å in [Sc(H2O)5(OH)]Br2, Kolitsch, 2006; 2.32–2.80 Å in [Ca(H2O)6]2[CdBr6], Duhlev et al., 1988; 2.40–2.83 A in NaBr.2H2O, Tegenfeldt et al., 1979). The EuIII—O distances in [EuBr2(H2O)6]Br range from 2.39 to 2.42 Å and thus are very similar to those in EuCl3.3H2O (2.39–2.40 Å, Reuter et al., 1994), EuCl3.6H2O (2.39–2.43 Å, Graeber et al., 1966), or EuCl(OH)2 (2.35–2.44 Å, Demyanets et al., 1974). The same holds for the EuIII—Br distances in [EuBr2(H2O)6]Br (2.94 Å) which lie between those in Na3EuBr6 (2.83 Å, Wickleder & Meyer, 1995) and those in EuOBr (3.19 Å, Bärnighausen et al., 1965).

Related literature top

For related literature, see: Bärnighausen et al. (1965); Bell & Smith (1990); Burns & Peterson (1971); Demyanets et al. (1974); Duhlev et al. (1988); Graeber et al. (1966); Habenschuss & Spedding (1980); Junk et al. (1999); Kolitsch (2006); Marezio et al. (1961); Reuter et al. (1994); Tegenfeldt et al. (1979); Wickleder & Meyer (1995).

Experimental top

Colourless single crystals of [EuBr2(H2O)6]Br were obtained by recrystallizing the commercially available product ("EuBr3.X H2O", Alfa Aesar, 99.99%) under argon from degassed aqueous HBr solution by slow cooling of a solution saturated at ca 60 °C to room temperature.

Refinement top

The positions of all hydrogen atoms were identified from the difference Fourier map, close to their ideal positions. Their refinement was performed applying a DFIX command (Sheldrick, 2008), restricting the O—H bond lengths to 0.82 ± 0.02 Å.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2006); cell refinement: X-AREA (Stoe & Cie, 2006); data reduction: X-AREA (Stoe & Cie, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DRAWXTL (Finger et al., 2007); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of the cationic [Eu(H2O)6Br2]+ unit in [Eu(H2O)6Br2]Br, with displacement ellipsoids drawn at the 90% propability level. H atoms are shown as black spheres of arbitrary radii. [Symmetry code: (i) -x, y, 1/2 - z.]
[Figure 2] Fig. 2. View of the H—Br contacts in [Eu(H2O)6Br(2)2]Br(1), left: four hydrogen bonds link Br1 to water molecules, right: six hydrogen bonds link Br2 to water molecules. All displacement ellipsoids are drawn at the 90% propability level. [Symmetry codes: (i) -x, y, 1/2 - z; (ii) -x, -y, -z; (iii) x, -y, 1/2 + z.]
[Figure 3] Fig. 3. View along (010) on the crystal structure of [Eu(H2O)6Br2]Br. Small black spheres represent H atoms, large black spheres represent Eu atoms, grey spheres represent Br atoms, light grey spheres represent O atoms. Grey polyhedra represent the coordination of H atoms around Br atoms.
Hexaaquadibromidoeuropium(III) bromide top
Crystal data top
[EuBr2(H2O)6]BrF(000) = 456
Mr = 499.79Dx = 3.006 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 10367 reflections
a = 8.1672 (7) Åθ = 3.0–32.1°
b = 6.7538 (4) ŵ = 16.52 mm1
c = 12.5451 (10) ÅT = 293 K
β = 127.077 (5)°Irregular polyhedron, clear colourless
V = 552.08 (8) Å30.25 × 0.24 × 0.18 mm
Z = 2
Data collection top
Stoe IPDSII
diffractometer
1613 independent reflections
Radiation source: fine-focus sealed tube1397 reflections with I > 2s(I)
Graphite monochromatorRint = 0.067
ω scans (in two runs with ϕ1 = 0° and ϕ2 = 90°)θmax = 30.0°, θmin = 3.0°
Absorption correction: numerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
h = 1111
Tmin = 0.065, Tmax = 0.155k = 99
10921 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028All H-atom parameters refined
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0169P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1613 reflectionsΔρmax = 1.14 e Å3
72 parametersΔρmin = 1.10 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0409 (10)
Crystal data top
[EuBr2(H2O)6]BrV = 552.08 (8) Å3
Mr = 499.79Z = 2
Monoclinic, P2/cMo Kα radiation
a = 8.1672 (7) ŵ = 16.52 mm1
b = 6.7538 (4) ÅT = 293 K
c = 12.5451 (10) Å0.25 × 0.24 × 0.18 mm
β = 127.077 (5)°
Data collection top
Stoe IPDSII
diffractometer
1613 independent reflections
Absorption correction: numerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
1397 reflections with I > 2s(I)
Tmin = 0.065, Tmax = 0.155Rint = 0.067
10921 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.049All H-atom parameters refined
S = 1.11Δρmax = 1.14 e Å3
1613 reflectionsΔρmin = 1.10 e Å3
72 parameters
Special details top

Experimental. The title compoud is a commercially available chemical (Alfa Aesar) and was recrystallized under argon from degassed aqueous HBr solution. A suitable single-crystal was sealed with mother liquor in a thin-walled glass capillary.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.500000.16454 (4)0.250000.0170 (1)
Br10.70613 (6)0.15845 (7)0.44669 (4)0.0295 (1)
Br20.000000.63151 (9)0.250000.0318 (2)
O10.1772 (5)0.3097 (5)0.0676 (3)0.0320 (7)
O20.2413 (5)0.0620 (5)0.2757 (4)0.0313 (7)
O30.4434 (5)0.4262 (5)0.3524 (4)0.0335 (7)
H110.148 (11)0.336 (10)0.006 (4)0.06 (2)*
H120.072 (9)0.258 (14)0.050 (10)0.10 (3)*
H210.253 (12)0.098 (11)0.342 (5)0.07 (2)*
H220.183 (11)0.046 (6)0.253 (9)0.09 (3)*
H310.518 (10)0.526 (7)0.376 (8)0.08 (2)*
H320.321 (5)0.456 (12)0.315 (8)0.09 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.0168 (1)0.0180 (1)0.0172 (1)0.0000.0109 (1)0.000
Br10.0295 (2)0.0293 (2)0.0266 (3)0.0027 (2)0.0152 (2)0.0066 (2)
Br20.0294 (3)0.0360 (3)0.0327 (4)0.0000.0202 (3)0.000
O10.0233 (13)0.0385 (17)0.0256 (18)0.0036 (12)0.0102 (13)0.0084 (14)
O20.0316 (15)0.0367 (17)0.0355 (19)0.0076 (13)0.0254 (15)0.0055 (14)
O30.0308 (15)0.0302 (15)0.042 (2)0.0035 (13)0.0229 (16)0.0106 (14)
Geometric parameters (Å, º) top
Eu1—Br12.9449 (5)Eu1—O3i2.388 (3)
Eu1—Br1i2.9449 (5)O1—H110.82 (2)
Eu1—O12.424 (3)O1—H120.83 (2)
Eu1—O1i2.424 (3)O2—H210.82 (2)
Eu1—O22.422 (3)O2—H220.82 (2)
Eu1—O2i2.422 (3)O3—H310.83 (2)
Eu1—O32.388 (3)O3—H320.83 (2)
Br1—Eu1—O1146.89 (8)O1—Eu1—O272.6 (1)
Br1i—Eu1—O1i146.89 (8)O1i—Eu1—O2i72.6 (1)
Br1—Eu1—O1i76.21 (9)O1—Eu1—O2i122.0 (1)
Br1i—Eu1—O176.21 (9)O1i—Eu1—O2122.0 (1)
Br1—Eu1—O277.33 (8)O1—Eu1—O375.8 (1)
Br1i—Eu1—O2i77.33 (8)O1i—Eu1—O3i75.8 (1)
Br1—Eu1—O2i78.22 (8)O1—Eu1—O3i69.3 (1)
Br1i—Eu1—O278.22 (8)O1i—Eu1—O369.3 (1)
Br1—Eu1—O3107.21 (9)O2—Eu1—O370.9 (1)
Br1i—Eu1—O3i107.21 (9)O2i—Eu1—O3i70.9 (1)
Br1—Eu1—O3i143.18 (8)O2—Eu1—O3i138.6 (1)
Br1i—Eu1—O3143.18 (8)O2i—Eu1—O3138.6 (1)
Br1—Eu1—Br1i84.41 (2)H11—O1—H12104 (8)
O1—Eu1—O1i132.3 (2)H21—O2—H22107 (8)
O2—Eu1—O2i146.8 (2)H31—O3—H32112 (8)
O3—Eu1—O3i84.5 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···Br2ii0.83 (2)2.53 (8)3.343 (4)168 (6)
O1—H12···Br1iii0.83 (2)2.52 (13)3.333 (4)165 (6)
O2—H21···Br1iv0.82 (2)2.49 (10)3.307 (4)172 (6)
O2—H22···Br2v0.83 (2)2.63 (11)3.417 (4)161 (6)
O3—H31···Br1vi0.83 (2)2.46 (8)3.288 (4)173 (6)
O3—H32···Br20.83 (2)2.52 (11)3.328 (5)163 (6)
Symmetry codes: (ii) x, y+1, z; (iii) x1, y, z1/2; (iv) x+1, y, z+1; (v) x, y1, z; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[EuBr2(H2O)6]Br
Mr499.79
Crystal system, space groupMonoclinic, P2/c
Temperature (K)293
a, b, c (Å)8.1672 (7), 6.7538 (4), 12.5451 (10)
β (°) 127.077 (5)
V3)552.08 (8)
Z2
Radiation typeMo Kα
µ (mm1)16.52
Crystal size (mm)0.25 × 0.24 × 0.18
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionNumerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
Tmin, Tmax0.065, 0.155
No. of measured, independent and
observed [I > 2s(I)] reflections
10921, 1613, 1397
Rint0.067
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.049, 1.11
No. of reflections1613
No. of parameters72
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)1.14, 1.10

Computer programs: X-AREA (Stoe & Cie, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DRAWXTL (Finger et al., 2007), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Eu1—Br12.9449 (5)Eu1—O3i2.388 (3)
Eu1—Br1i2.9449 (5)O1—H110.82 (2)
Eu1—O12.424 (3)O1—H120.83 (2)
Eu1—O1i2.424 (3)O2—H210.82 (2)
Eu1—O22.422 (3)O2—H220.82 (2)
Eu1—O2i2.422 (3)O3—H310.83 (2)
Eu1—O32.388 (3)O3—H320.83 (2)
Br1—Eu1—O1146.89 (8)O1—Eu1—O272.6 (1)
Br1i—Eu1—O1i146.89 (8)O1i—Eu1—O2i72.6 (1)
Br1—Eu1—O1i76.21 (9)O1—Eu1—O2i122.0 (1)
Br1i—Eu1—O176.21 (9)O1i—Eu1—O2122.0 (1)
Br1—Eu1—O277.33 (8)O1—Eu1—O375.8 (1)
Br1i—Eu1—O2i77.33 (8)O1i—Eu1—O3i75.8 (1)
Br1—Eu1—O2i78.22 (8)O1—Eu1—O3i69.3 (1)
Br1i—Eu1—O278.22 (8)O1i—Eu1—O369.3 (1)
Br1—Eu1—O3107.21 (9)O2—Eu1—O370.9 (1)
Br1i—Eu1—O3i107.21 (9)O2i—Eu1—O3i70.9 (1)
Br1—Eu1—O3i143.18 (8)O2—Eu1—O3i138.6 (1)
Br1i—Eu1—O3143.18 (8)O2i—Eu1—O3138.6 (1)
Br1—Eu1—Br1i84.41 (2)H11—O1—H12104 (8)
O1—Eu1—O1i132.3 (2)H21—O2—H22107 (8)
O2—Eu1—O2i146.8 (2)H31—O3—H32112 (8)
O3—Eu1—O3i84.5 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···Br2ii0.83 (2)2.53 (8)3.343 (4)168 (6)
O1—H12···Br1iii0.83 (2)2.52 (13)3.333 (4)165 (6)
O2—H21···Br1iv0.82 (2)2.49 (10)3.307 (4)172 (6)
O2—H22···Br2v0.83 (2)2.63 (11)3.417 (4)161 (6)
O3—H31···Br1vi0.83 (2)2.46 (8)3.288 (4)173 (6)
O3—H32···Br20.83 (2)2.52 (11)3.328 (5)163 (6)
Symmetry codes: (ii) x, y+1, z; (iii) x1, y, z1/2; (iv) x+1, y, z+1; (v) x, y1, z; (vi) x, y+1, z.
 

References

First citationBärnighausen, H., Brauer, G. & Schultz, N. (1965). Z. Anorg. Allg. Chem. 338, 250–265.  Google Scholar
First citationBell, A. M. T. & Smith, A. J. (1990). Acta Cryst. C46, 960–962.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBurns, J. H. & Peterson, J. R. (1971). Inorg. Chem. 10, 147–151.  CrossRef CAS Web of Science Google Scholar
First citationDemyanets, L. N., Bukin, V. I., Emelyanova, E. N. & Ivanov, V. I. (1974). Sov. Phys. Cystallogr. 18, 806–808.  Google Scholar
First citationDuhlev, R., Brown, I. D. & Faggiani, R. (1988). Acta Cryst. C44, 1693–1696.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFinger, L. W., Kroeker, M. & Toby, B. H. (2007). J. Appl. Cryst. 40, 188–192.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGraeber, E. J., Conrad, G. H. & Duliere, S. F. (1966). Acta Cryst. 21, 1012–1013.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHabenschuss, A. & Spedding, F. H. (1980). Cryst. Struct. Commun. 9, 71–75.  CAS Google Scholar
First citationJunk, P. C., Semenova, L. I., Skelton, B. W. & White, A. H. (1999). Austr. J. Chem. 52, 531–538.  CAS Google Scholar
First citationKolitsch, U. (2006). Acta Cryst. E62, i122–i123.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMarezio, M., Plettinger, H. A. & Zachariasen, W. H. (1961). Acta Cryst. 14, 234–236.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationReuter, G., Fink, H. & Seifert, H. J. (1994). Z. Anorg. Allg. Chem. 620, 665–671.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1999). X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2006). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTegenfeldt, J., Tellgren, R., Pedersen, B. & Olovsson, I. (1979). Acta Cryst. B35, 1679–1682.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWickleder, M. S. & Meyer, G. (1995). Z. Anorg. Allg. Chem. 621, 457–463.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds