metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2,6-Bis[1-(phenyl­imino)eth­yl]pyridine-κ3N,N′,N′′}di­chloridocobalt(II)

aDalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian 116012, People's Republic of China, and bInstitute of Coordination Catalysis, Yichun University, Yichun, Jiangxi 336000, People's Republic of China
*Correspondence e-mail: zhong_dichang@yahoo.com.cn

(Received 6 April 2008; accepted 2 May 2008; online 7 May 2008)

In the title complex, [CoCl2(C21H19N3)], the CoII atom is coordinated by one pyridine and two imine N atoms and by two chloride anions in a distorted trigonal bipyramidal geometry. The structure exhibits a pseudo-mirror plane through the metal atom, two chloride anions and the pyridine ring. In the crystal structure, the complexes are connected via inter­molecular C—H⋯Cl hydrogen bonding.

Related literature

For related literature on crystal structures of metal complexes of Schiff bases, see: Reardon et al. (2002[Reardon, D., Aharonian, G., Gambarotta, S. & Yap, G. P. A. (2002). Organometallics, 21, 786-788.]); Pradhan et al. (2003[Pradhan, R., Desplanches, C., Guionneau, P. & Sutter, J.-P. (2003). Inorg. Chem. 42, 6607-6609.]); Gibson et al. (2001[Gibson, V. C., Humphries, M. J., Tellmann, K. P., Wass, D. F., White, A. J. P. & Williams, D. J. (2001). Chem. Commun. 21, 2252-2253. ]); Trivedi et al. (2007[Trivedi, M., Pandey, D. S. & Xu, Q. (2007). Inorg. Chim. Acta, 360, 2492-2498.]); Mentes et al. (2001[Mentes, A., Fawcett, J. & Kemmitt, R. D. W. (2001). Acta Cryst. E57, o424-o425.]); Esteruelas et al. (2003[Esteruelas, M. A., López, A. M., Méndez, L., Olivá, M. & Ońate, E. (2003). Organometallics, 22, 395-406.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C21H19N3)]

  • Mr = 443.22

  • Monoclinic, P 21 /n

  • a = 10.4580 (3) Å

  • b = 15.2575 (4) Å

  • c = 13.1339 (3) Å

  • β = 95.825 (10)°

  • V = 2084.86 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 273 (2) K

  • 0.36 × 0.30 × 0.28 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 11050 measured reflections

  • 3665 independent reflections

  • 2594 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.075

  • S = 1.01

  • 3665 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—N23 2.027 (2)
Co1—N24 2.208 (2)
Co1—N22 2.223 (2)
Co1—Cl2 2.2572 (8)
Co1—Cl1 2.2638 (8)
N23—Co1—N24 75.36 (8)
N23—Co1—N22 75.38 (8)
N24—Co1—N22 150.74 (9)
N23—Co1—Cl2 119.07 (6)
N24—Co1—Cl2 96.11 (6)
N22—Co1—Cl2 98.36 (6)
N23—Co1—Cl1 123.81 (6)
N24—Co1—Cl1 96.23 (6)
N22—Co1—Cl1 99.58 (6)
Cl2—Co1—Cl1 117.03 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl2i 0.93 2.67 3.545 (3) 156
C7—H7A⋯Cl1ii 0.96 2.76 3.663 (3) 158
C18—H18⋯Cl2iii 0.93 2.83 3.714 (3) 160
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x, -y, -z+1; (iii) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, numerous crystal structures of metal-organic complexes with Schiff base ligands derived from 2,6-diacetylpyridine have been reported (Reardon et al., 2002; Esteruelas et al., 2003; Pradhan et al., 2003; Gibson et al., 2002; Trivedi et al., 2007) in last several years. In our ongoing investigations on this topic we report here the crystal structure of the title compound.

In the crystal stucture of the title compound the CoII atom is coordinated by three N atoms from the Schiff base ligand and two Cl atoms within a distorted trigonal-bipyramid geometry (Table 1 and Fig. 1). The pyridyl N atom and the two Cl atoms are located in the equatorial plane and the apical position are occupied by the two imino N atoms.

The molecules are connected by intermolecular nonclassical C—H···Cl hydrogen bonding between the aromatic and methyl H atoms and the Cl atoms (Table 2 and Fig 2).

Related literature top

For related literature on crystal structures of metal complexes of Schiff bases, see: Reardon et al. (2002); Esteruelad et al. (2003); Pradhan et al. (2003); Gibson et al. (2001 or 2002?); Trivedi et al. (2007); Mentes et al. (2001); Esteruelas et al. (2003).

Experimental top

The ligand Plep (2,6-bis[(1-phenylimino)ethyl]pyridine) was prepared in high yield from condensation of two equivalents of aniline with one equivalent of 2,6-diacetylpyridine in methanol according to the literature (Mentes et al., 2001). The title compound was synthesized as follows: To a solution of Plep (1 mmol) in 10 mL methanol, a solution of CoCl2.6H2O (1 mmol) in 10 mL methanol was added dropwise at 333 K. After stirring for half an hour, the mixture was allowed to cool to room temperature and filtered off. On slow evaporation of the solvent from the filtrate at room temperature, red well shaped single crystals of the title compound were obtained in one week.

Refinement top

All H atoms were placed in geometrically idealized positions (,ethyl H atoms allowed to rotate but not to tip) and constrained to ride on their parent atoms, with C—H distances of 0.93 Å (0.96 Å for methyl H atoms) Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms).

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SMART (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with 30% probability displacement ellipsoids and the atom-labeling scheme.
[Figure 2] Fig. 2. Crystal structure of the title compound with C—H···Cl hydrogen bonding shown as dashed lines.
{2,6-Bis[1-(phenylimino)ethyl]pyridine- κ3N,N',N''}dichloridocobalt(II) top
Crystal data top
[CoCl2(C21H19N3)]F(000) = 908
Mr = 443.22Dx = 1.412 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1843 reflections
a = 10.4580 (3) Åθ = 2.1–25.0°
b = 15.2575 (4) ŵ = 1.09 mm1
c = 13.1339 (3) ÅT = 273 K
β = 95.825 (1)°Block, red
V = 2084.86 (9) Å30.36 × 0.30 × 0.28 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2594 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ϕ and ω scansh = 1012
11050 measured reflectionsk = 1518
3665 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0286P)2 + 0.0512P]
where P = (Fo2 + 2Fc2)/3
3665 reflections(Δ/σ)max = 0.003
246 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[CoCl2(C21H19N3)]V = 2084.86 (9) Å3
Mr = 443.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.4580 (3) ŵ = 1.09 mm1
b = 15.2575 (4) ÅT = 273 K
c = 13.1339 (3) Å0.36 × 0.30 × 0.28 mm
β = 95.825 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2594 reflections with I > 2σ(I)
11050 measured reflectionsRint = 0.046
3665 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.01Δρmax = 0.28 e Å3
3665 reflectionsΔρmin = 0.26 e Å3
246 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.24632 (4)0.03924 (2)0.67087 (3)0.03166 (12)
Cl10.09612 (7)0.14576 (5)0.67423 (5)0.0441 (2)
Cl20.45297 (7)0.07827 (5)0.71366 (6)0.0448 (2)
N240.2555 (2)0.04147 (15)0.50369 (15)0.0316 (5)
N220.2133 (2)0.03183 (16)0.81359 (15)0.0343 (6)
C60.2297 (2)0.03113 (19)0.45798 (19)0.0301 (6)
N230.20616 (19)0.08547 (15)0.62497 (16)0.0316 (5)
C140.1919 (3)0.1139 (2)0.8020 (2)0.0353 (7)
C30.1514 (3)0.2543 (2)0.5634 (2)0.0436 (8)
H30.13230.31150.54250.052*
C50.2025 (2)0.10652 (18)0.5251 (2)0.0308 (6)
C10.1845 (2)0.14705 (19)0.6945 (2)0.0331 (7)
C20.1571 (3)0.23215 (19)0.6658 (2)0.0412 (7)
H20.14260.27420.71460.049*
C40.1742 (3)0.19112 (19)0.4923 (2)0.0387 (7)
H40.17050.20520.42310.046*
C70.2247 (3)0.0470 (2)0.34516 (19)0.0423 (8)
H7A0.14070.06770.32000.063*
H7B0.28780.09010.33200.063*
H7C0.24240.00670.31120.063*
C160.2226 (3)0.0074 (2)0.9132 (2)0.0370 (7)
C210.1319 (3)0.0674 (2)0.9352 (2)0.0496 (9)
H210.06440.08120.88620.059*
C80.2866 (3)0.11637 (18)0.44589 (18)0.0310 (7)
C90.4113 (3)0.1313 (2)0.4257 (2)0.0484 (8)
H90.47580.09190.44870.058*
C120.2231 (3)0.2498 (2)0.3586 (2)0.0487 (8)
H120.15950.29000.33620.058*
C130.1924 (3)0.1760 (2)0.41291 (19)0.0406 (8)
H130.10810.16680.42710.049*
C150.1728 (3)0.1794 (2)0.8837 (2)0.0557 (9)
H15A0.24530.21830.89190.084*
H15B0.09610.21260.86450.084*
H15C0.16480.14950.94700.084*
C100.4405 (3)0.2045 (2)0.3714 (2)0.0552 (9)
H100.52480.21400.35720.066*
C200.1406 (3)0.1075 (2)1.0304 (2)0.0615 (10)
H200.07910.14851.04480.074*
C180.3299 (4)0.0281 (2)1.0814 (2)0.0651 (11)
H180.39710.01451.13070.078*
C110.3473 (3)0.2633 (2)0.3383 (2)0.0505 (9)
H110.36810.31260.30180.061*
C170.3232 (3)0.0119 (2)0.9863 (2)0.0546 (9)
H170.38620.05160.97160.065*
C190.2392 (4)0.0873 (3)1.1032 (2)0.0630 (10)
H190.24420.11381.16720.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0368 (2)0.0268 (2)0.0312 (2)0.00071 (18)0.00279 (16)0.00155 (18)
Cl10.0371 (4)0.0479 (5)0.0480 (4)0.0097 (4)0.0080 (3)0.0079 (4)
Cl20.0348 (4)0.0449 (5)0.0538 (5)0.0047 (4)0.0005 (3)0.0052 (4)
N240.0375 (14)0.0279 (14)0.0297 (12)0.0017 (11)0.0045 (10)0.0018 (11)
N220.0395 (14)0.0349 (16)0.0289 (13)0.0041 (12)0.0053 (10)0.0033 (11)
C60.0260 (15)0.0336 (18)0.0310 (15)0.0001 (13)0.0042 (12)0.0003 (14)
N230.0330 (13)0.0288 (14)0.0331 (13)0.0000 (11)0.0040 (10)0.0038 (11)
C140.0356 (17)0.0346 (19)0.0364 (16)0.0044 (14)0.0070 (13)0.0094 (14)
C30.0452 (19)0.0274 (18)0.057 (2)0.0019 (14)0.0012 (16)0.0011 (16)
C50.0261 (15)0.0296 (17)0.0365 (16)0.0010 (13)0.0017 (12)0.0026 (13)
C10.0316 (16)0.0270 (18)0.0409 (17)0.0028 (13)0.0054 (13)0.0065 (14)
C20.0419 (19)0.0287 (19)0.0535 (19)0.0042 (14)0.0065 (15)0.0129 (15)
C40.0373 (17)0.037 (2)0.0413 (17)0.0034 (14)0.0000 (14)0.0058 (15)
C70.052 (2)0.042 (2)0.0339 (16)0.0104 (15)0.0106 (14)0.0066 (14)
C160.0446 (18)0.0403 (19)0.0274 (15)0.0006 (15)0.0099 (14)0.0070 (14)
C210.047 (2)0.059 (2)0.0435 (18)0.0041 (17)0.0103 (15)0.0010 (17)
C80.0398 (17)0.0307 (17)0.0223 (14)0.0041 (14)0.0025 (12)0.0012 (13)
C90.0406 (19)0.048 (2)0.057 (2)0.0016 (16)0.0094 (16)0.0159 (17)
C120.062 (2)0.042 (2)0.0404 (18)0.0053 (17)0.0005 (16)0.0130 (16)
C130.0392 (18)0.044 (2)0.0393 (17)0.0009 (15)0.0049 (14)0.0096 (15)
C150.071 (2)0.051 (2)0.0494 (19)0.0050 (18)0.0240 (17)0.0184 (17)
C100.049 (2)0.058 (3)0.060 (2)0.0134 (18)0.0118 (17)0.0200 (19)
C200.068 (2)0.067 (3)0.054 (2)0.003 (2)0.0279 (19)0.008 (2)
C180.087 (3)0.069 (3)0.0357 (19)0.008 (2)0.0104 (19)0.0108 (18)
C110.071 (2)0.045 (2)0.0363 (17)0.0114 (19)0.0070 (17)0.0135 (16)
C170.069 (2)0.053 (2)0.0396 (19)0.0147 (18)0.0019 (17)0.0086 (17)
C190.095 (3)0.066 (3)0.0295 (18)0.008 (2)0.0150 (19)0.0039 (18)
Geometric parameters (Å, º) top
Co1—N232.027 (2)C16—C211.369 (4)
Co1—N242.208 (2)C16—C171.382 (4)
Co1—N222.223 (2)C21—C201.387 (4)
Co1—Cl22.2572 (8)C21—H210.9300
Co1—Cl12.2638 (8)C8—C91.376 (4)
N24—C61.276 (3)C8—C131.378 (4)
N24—C81.428 (3)C9—C101.377 (4)
N22—C141.278 (3)C9—H90.9300
N22—C161.434 (3)C12—C111.368 (4)
C6—C51.495 (4)C12—C131.388 (4)
C6—C71.497 (3)C12—H120.9300
N23—C11.345 (3)C13—H130.9300
N23—C51.347 (3)C15—H15A0.9600
C14—C11.495 (4)C15—H15B0.9600
C14—C151.495 (4)C15—H15C0.9600
C3—C41.380 (4)C10—C111.363 (4)
C3—C21.382 (4)C10—H100.9300
C3—H30.9300C20—C191.368 (4)
C5—C41.384 (4)C20—H200.9300
C1—C21.374 (4)C18—C191.361 (5)
C2—H20.9300C18—C171.386 (4)
C4—H40.9300C18—H180.9300
C7—H7A0.9600C11—H110.9300
C7—H7B0.9600C17—H170.9300
C7—H7C0.9600C19—H190.9300
N23—Co1—N2475.36 (8)H7A—C7—H7C109.5
N23—Co1—N2275.38 (8)H7B—C7—H7C109.5
N24—Co1—N22150.74 (9)C21—C16—C17119.4 (3)
N23—Co1—Cl2119.07 (6)C21—C16—N22119.2 (3)
N24—Co1—Cl296.11 (6)C17—C16—N22121.4 (3)
N22—Co1—Cl298.36 (6)C16—C21—C20120.1 (3)
N23—Co1—Cl1123.81 (6)C16—C21—H21120.0
N24—Co1—Cl196.23 (6)C20—C21—H21120.0
N22—Co1—Cl199.58 (6)C9—C8—C13119.4 (3)
Cl2—Co1—Cl1117.03 (3)C9—C8—N24120.4 (3)
C6—N24—C8119.6 (2)C13—C8—N24120.1 (2)
C6—N24—Co1115.23 (18)C10—C9—C8119.9 (3)
C8—N24—Co1125.20 (17)C10—C9—H9120.0
C14—N22—C16120.8 (2)C8—C9—H9120.0
C14—N22—Co1114.70 (18)C11—C12—C13119.7 (3)
C16—N22—Co1124.34 (18)C11—C12—H12120.1
N24—C6—C5115.7 (2)C13—C12—H12120.1
N24—C6—C7126.2 (3)C8—C13—C12120.2 (3)
C5—C6—C7118.1 (2)C8—C13—H13119.9
C1—N23—C5120.3 (2)C12—C13—H13119.9
C1—N23—Co1119.86 (18)C14—C15—H15A109.5
C5—N23—Co1119.87 (18)C14—C15—H15B109.5
N22—C14—C1115.8 (2)H15A—C15—H15B109.5
N22—C14—C15127.2 (3)C14—C15—H15C109.5
C1—C14—C15117.0 (3)H15A—C15—H15C109.5
C4—C3—C2119.6 (3)H15B—C15—H15C109.5
C4—C3—H3120.2C11—C10—C9120.7 (3)
C2—C3—H3120.2C11—C10—H10119.7
N23—C5—C4120.7 (3)C9—C10—H10119.7
N23—C5—C6113.7 (2)C19—C20—C21120.4 (3)
C4—C5—C6125.5 (3)C19—C20—H20119.8
N23—C1—C2121.2 (3)C21—C20—H20119.8
N23—C1—C14114.1 (3)C19—C18—C17120.6 (3)
C2—C1—C14124.6 (3)C19—C18—H18119.7
C1—C2—C3119.0 (3)C17—C18—H18119.7
C1—C2—H2120.5C10—C11—C12120.1 (3)
C3—C2—H2120.5C10—C11—H11120.0
C3—C4—C5119.1 (3)C12—C11—H11120.0
C3—C4—H4120.4C16—C17—C18119.8 (3)
C5—C4—H4120.4C16—C17—H17120.1
C6—C7—H7A109.5C18—C17—H17120.1
C6—C7—H7B109.5C18—C19—C20119.7 (3)
H7A—C7—H7B109.5C18—C19—H19120.2
C6—C7—H7C109.5C20—C19—H19120.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl2i0.932.673.545 (3)156
C7—H7A···Cl1ii0.962.763.663 (3)158
C18—H18···Cl2iii0.932.833.714 (3)160
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y, z+1; (iii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[CoCl2(C21H19N3)]
Mr443.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)10.4580 (3), 15.2575 (4), 13.1339 (3)
β (°) 95.825 (1)
V3)2084.86 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.36 × 0.30 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11050, 3665, 2594
Rint0.046
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.075, 1.01
No. of reflections3665
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.26

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—N232.027 (2)Co1—Cl22.2572 (8)
Co1—N242.208 (2)Co1—Cl12.2638 (8)
Co1—N222.223 (2)
N23—Co1—N2475.36 (8)N22—Co1—Cl298.36 (6)
N23—Co1—N2275.38 (8)N23—Co1—Cl1123.81 (6)
N24—Co1—N22150.74 (9)N24—Co1—Cl196.23 (6)
N23—Co1—Cl2119.07 (6)N22—Co1—Cl199.58 (6)
N24—Co1—Cl296.11 (6)Cl2—Co1—Cl1117.03 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl2i0.932.673.545 (3)156
C7—H7A···Cl1ii0.962.763.663 (3)158
C18—H18···Cl2iii0.932.833.714 (3)160
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y, z+1; (iii) x+1, y, z+2.
 

References

First citationBruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEsteruelas, M. A., López, A. M., Méndez, L., Olivá, M. & Ońate, E. (2003). Organometallics, 22, 395–406.  Web of Science CSD CrossRef CAS Google Scholar
First citationGibson, V. C., Humphries, M. J., Tellmann, K. P., Wass, D. F., White, A. J. P. & Williams, D. J. (2001). Chem. Commun. 21, 2252–2253.   Web of Science CSD CrossRef Google Scholar
First citationMentes, A., Fawcett, J. & Kemmitt, R. D. W. (2001). Acta Cryst. E57, o424–o425.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPradhan, R., Desplanches, C., Guionneau, P. & Sutter, J.-P. (2003). Inorg. Chem. 42, 6607–6609.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationReardon, D., Aharonian, G., Gambarotta, S. & Yap, G. P. A. (2002). Organometallics, 21, 786–788.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrivedi, M., Pandey, D. S. & Xu, Q. (2007). Inorg. Chim. Acta, 360, 2492–2498.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds