metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tetra­aqua­zinc(II)]-μ-1,3,4-thia­diazol-2,5-diyldi­thio­di­acetato-κ2O:O′]

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, bSchool of Resources and Safety Engineering, China University of Mining and Techology (Beijing Campus), Beijing 100083, People's Republic of China, and cDepartment of Food and Environmental Engineering, Heilongjiang East College, Harbin 150086, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 12 April 2008; accepted 5 May 2008; online 10 May 2008)

In the title linear coordination polymer, [Zn(C6H4N2O4S3)(H2O)4]n, the ZnII atom is coordinated by four O atoms from four water mol­ecules and two O atoms from two [5-(carb­oxyl­atomethyl­sulfan­yl)-1,3,4-thia­diazol-2-ylsulfan­yl]acetate units in an octa­hedral coordination environment. The chains are linked into a three-dimensional supra­molecular network via O—H⋯O and O—H⋯N hydrogen bonds.

Related literature

For the structure of other metal 1,3,4-thia­diazolyl-2,5-dithio­acetates, see Gao et al. (2005[Gao, S., Huo, L.-H., Zhao, H. & Ng, S. W. (2005). Acta Cryst. E61, m126-m128.], 2006[Gao, J.-S., Hou, G.-F., Yu, Y.-H., Hou, Y.-J. & Yan, P.-F. (2006). Acta Cryst. E62, m2913-m2915.]); Zhang et al. (2006[Zhang, X.-F., Gao, S., Huo, L.-H. & Gao, J.-S. (2006). Acta Cryst. E62, m39-m41.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C6H4N2O4S3)(H2O)4]

  • Mr = 401.73

  • Monoclinic, P 21

  • a = 5.1554 (10) Å

  • b = 9.5043 (19) Å

  • c = 13.627 (3) Å

  • β = 94.82 (3)°

  • V = 665.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.35 mm−1

  • T = 291 (2) K

  • 0.42 × 0.18 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.439, Tmax = 0.675

  • 6408 measured reflections

  • 2774 independent reflections

  • 2624 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.046

  • S = 1.06

  • 2774 reflections

  • 181 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1151 Friedel pairs

  • Flack parameter: 0.014 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H6⋯O3 0.85 2.53 2.971 (3) 113
O5—H6⋯O6i 0.85 2.23 3.053 (3) 165
O5—H5⋯N2i 0.85 2.05 2.897 (3) 172
O6—H8⋯O4ii 0.85 2.02 2.762 (2) 145
O6—H7⋯O7ii 0.85 2.36 3.116 (3) 148
O7—H10⋯O3iii 0.85 1.94 2.770 (3) 166
O7—H9⋯O1iv 0.85 2.61 2.992 (2) 109
O7—H9⋯O2iv 0.85 1.85 2.680 (3) 166
O8—H12⋯N1i 0.85 1.98 2.819 (3) 172
O8—H11⋯O1v 0.85 1.87 2.713 (2) 175
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) x-1, y, z; (iii) [-x, y+{\script{1\over 2}}, -z+1]; (iv) x, y, z-1; (v) x+1, y, z-1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,4-Thiadiazolyl-2,5-dithioacetic acid is a multidentate flexible aromatic carboxylic acid having two —S—CH2CO2H arms, and its N atoms can be considered as a potential coordinate candidate which also would coordinate with metal atoms fomed a supramolecular complexes. The structure of 1,3,4-Thiadiazolyl-2,5-dithioacetic acid was reported by Gao et al. (2005) and Zhang et al., (2006). In this paper, we reporte a new one-dimensional title compound crystal structure, synthesized by the reaction of 1,3,4-Thiadiazolyl-2,5-dithioacetic acid and zinc dichloride in aqueous solution.

Complex (I) consists of molecules of tetraaquazinc(II)-1,3,4-thiadiazol-2,5-diyldithiodiacetato. The zinc atom is six-coordinated in an octahedron environment (Figure 1), each zinc atom connect with two 1,3,4-Thiadiazolyl-2,5-dithioacetic acid ligand and four water molecules formed a one-dimensional chain structure along c axis (Figure 2).

There are eight symmetry-independent 'active' H atoms in the crystal structure; all of them participate in hydrogen bonds, which link the one-dimensional chain structure into an infinite three-dimensional network (Table 1, Figure 3).

Related literature top

For the structure of other metal 1,3,4-thiadiazolyl-2,5-dithioacetates, see Gao et al. (2005, 2006); Zhang et al. (2006).

Experimental top

1,3,4-Thiadiazolyl-2,5-dithioacetic acid was prepared from 2,5-dimercapto-1,3,4-thiadiazole, using the method for synthesis of benzene-1,2-dioxyacetic acid reported by us (Gao et al., 2006). The colorless zinc complex was obtained from the reaction of zinc dichloride hexahydrate (0.244 g, 1 mmol) and 1,3,4-Thiadiazolyl-2,5-dithioacetic acid (0.532 g, 2 mmol) in hot water (20 ml), and then the pH was adjusted to about 6 with 0.2 M sodium hydroxide. The resulting solution was filtered and allowed to stand in a desiccator at room temperature for several days.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.97 Å (methylene) and with Uiso(H) = 1.2Ueq(C). Water H atoms were initially located in a difference Fourier map but they were treated as riding on their parent atoms with O—H = 0.85 Å, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. One-dimensional chain structure of the title complex. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A partial packing view, showing the three-dimensional hydrogen-bonding network. Dashed lines indicate the hydrogen-bonding interactions. H atoms not involved in hydrogen bonds have been omitted for clarity.
catena-Poly[[tetraaquazinc(II)]-µ-1,3,4-thiadiazol-2,5-diyldithiodiacetato-κ2O:O'] top
Crystal data top
[Zn(C6H4N2O4S3)(H2O)4]F(000) = 408
Mr = 401.73Dx = 2.005 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6179 reflections
a = 5.1554 (10) Åθ = 3.0–27.5°
b = 9.5043 (19) ŵ = 2.35 mm1
c = 13.627 (3) ÅT = 291 K
β = 94.82 (3)°Block, colorless
V = 665.3 (2) Å30.42 × 0.18 × 0.18 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2774 independent reflections
Radiation source: fine-focus sealed tube2624 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 66
Tmin = 0.439, Tmax = 0.675k = 1112
6408 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.046 w = 1/[σ2(Fo2) + (0.0189P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2774 reflectionsΔρmax = 0.26 e Å3
181 parametersΔρmin = 0.33 e Å3
1 restraintAbsolute structure: Flack (1983), 1151 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.014 (8)
Crystal data top
[Zn(C6H4N2O4S3)(H2O)4]V = 665.3 (2) Å3
Mr = 401.73Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.1554 (10) ŵ = 2.35 mm1
b = 9.5043 (19) ÅT = 291 K
c = 13.627 (3) Å0.42 × 0.18 × 0.18 mm
β = 94.82 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2774 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2624 reflections with I > 2σ(I)
Tmin = 0.439, Tmax = 0.675Rint = 0.022
6408 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.046Δρmax = 0.26 e Å3
S = 1.06Δρmin = 0.33 e Å3
2774 reflectionsAbsolute structure: Flack (1983), 1151 Friedel pairs
181 parametersAbsolute structure parameter: 0.014 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1447 (4)0.4252 (3)1.17156 (18)0.0201 (5)
C20.3790 (4)0.4114 (3)1.09577 (18)0.0218 (5)
H10.53590.41721.13010.026*
H20.37490.31841.06650.026*
C30.1709 (4)0.4813 (2)0.92174 (18)0.0199 (5)
C40.1357 (4)0.3689 (2)0.82727 (18)0.0213 (5)
C50.4372 (4)0.3491 (3)0.67199 (16)0.0211 (4)
H30.43370.44990.68330.025*
H40.61130.32480.65580.025*
C60.2476 (4)0.3147 (2)0.58475 (18)0.0207 (5)
N10.1311 (4)0.5509 (2)0.84268 (16)0.0278 (5)
N20.0486 (4)0.4848 (2)0.78684 (16)0.0280 (5)
O10.1686 (3)0.3552 (2)1.24944 (12)0.0262 (4)
O20.0419 (3)0.5006 (2)1.15424 (13)0.0272 (4)
O30.0336 (3)0.2622 (2)0.59581 (14)0.0328 (4)
O40.3282 (3)0.3463 (3)0.50187 (11)0.0275 (3)
O50.0626 (3)0.14243 (19)0.39464 (14)0.0290 (4)
H50.05980.08910.34470.044*
H60.00490.10280.44660.044*
O60.2103 (3)0.45593 (19)0.44603 (14)0.0279 (4)
H70.31370.50400.40740.042*
H80.30320.39880.47590.042*
O70.2564 (3)0.54165 (19)0.33802 (14)0.0274 (4)
H90.20340.54020.27720.041*
H100.18940.61120.36580.041*
O80.3690 (3)0.2453 (2)0.29289 (14)0.0291 (4)
H110.51850.27610.28170.044*
H120.30810.18960.24790.044*
S10.40220 (11)0.53897 (6)0.99806 (5)0.02380 (13)
S20.00595 (10)0.32704 (7)0.93689 (4)0.02359 (12)
S30.37405 (12)0.26074 (7)0.78411 (5)0.02603 (14)
Zn10.09545 (4)0.34105 (3)0.374965 (19)0.02112 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0183 (10)0.0232 (12)0.0194 (14)0.0027 (9)0.0046 (9)0.0024 (10)
C20.0213 (10)0.0259 (12)0.0183 (13)0.0012 (9)0.0025 (9)0.0012 (10)
C30.0216 (11)0.0202 (12)0.0177 (13)0.0025 (9)0.0008 (8)0.0002 (9)
C40.0243 (10)0.0253 (14)0.0143 (12)0.0034 (9)0.0026 (8)0.0016 (9)
C50.0212 (9)0.0246 (11)0.0180 (11)0.0037 (11)0.0039 (8)0.0002 (12)
C60.0219 (10)0.0218 (13)0.0187 (12)0.0012 (9)0.0043 (8)0.0012 (9)
N10.0349 (11)0.0273 (11)0.0222 (12)0.0108 (9)0.0086 (9)0.0074 (9)
N20.0352 (11)0.0306 (12)0.0193 (12)0.0100 (9)0.0089 (9)0.0079 (9)
O10.0229 (7)0.0355 (10)0.0199 (9)0.0069 (8)0.0007 (6)0.0066 (9)
O20.0226 (8)0.0360 (10)0.0233 (10)0.0072 (7)0.0047 (7)0.0047 (8)
O30.0296 (9)0.0432 (11)0.0261 (11)0.0132 (8)0.0053 (8)0.0036 (9)
O40.0249 (7)0.0422 (9)0.0159 (8)0.0072 (9)0.0044 (6)0.0006 (10)
O50.0394 (10)0.0293 (9)0.0182 (10)0.0110 (8)0.0016 (7)0.0012 (8)
O60.0249 (8)0.0308 (10)0.0291 (11)0.0037 (7)0.0088 (7)0.0034 (8)
O70.0337 (9)0.0244 (9)0.0250 (10)0.0053 (7)0.0079 (7)0.0032 (8)
O80.0223 (8)0.0364 (11)0.0296 (11)0.0093 (7)0.0075 (7)0.0132 (8)
S10.0246 (3)0.0267 (3)0.0207 (3)0.0070 (2)0.0053 (2)0.0032 (2)
S20.0284 (2)0.0245 (3)0.0185 (3)0.0081 (3)0.0058 (2)0.0065 (3)
S30.0302 (3)0.0303 (3)0.0183 (3)0.0106 (3)0.0058 (2)0.0043 (3)
Zn10.02055 (11)0.02492 (14)0.01799 (14)0.00523 (11)0.00214 (9)0.00268 (13)
Geometric parameters (Å, º) top
C1—O21.238 (3)C6—O41.272 (3)
C1—O11.267 (3)N1—N21.397 (3)
C1—C21.527 (3)O1—Zn1i2.0989 (17)
C2—S11.797 (2)O4—Zn12.0209 (17)
C2—H10.9700O5—Zn12.0824 (18)
C2—H20.9700O5—H50.8500
C3—N11.295 (3)O5—H60.8500
C3—S21.730 (2)O6—Zn12.2072 (17)
C3—S11.736 (2)O6—H70.8500
C4—N21.295 (3)O6—H80.8500
C4—S21.734 (2)O7—Zn12.1557 (18)
C4—S31.742 (2)O7—H90.8501
C5—C61.510 (3)O7—H100.8500
C5—S31.797 (2)O8—Zn12.0815 (17)
C5—H30.9700O8—H110.8500
C5—H40.9700O8—H120.8500
C6—O31.231 (3)Zn1—O1ii2.0989 (17)
O2—C1—O1126.5 (2)Zn1—O5—H6111.8
O2—C1—C2120.2 (2)H5—O5—H6111.7
O1—C1—C2113.2 (2)Zn1—O6—H7115.4
C1—C2—S1116.27 (17)Zn1—O6—H8110.2
C1—C2—H1108.2H7—O6—H8106.9
S1—C2—H1108.2Zn1—O7—H996.6
C1—C2—H2108.2Zn1—O7—H10113.9
S1—C2—H2108.2H9—O7—H10109.7
H1—C2—H2107.4Zn1—O8—H11127.7
N1—C3—S2114.44 (18)Zn1—O8—H12115.7
N1—C3—S1120.11 (17)H11—O8—H12111.7
S2—C3—S1125.31 (14)C3—S1—C2102.97 (11)
N2—C4—S2114.60 (17)C3—S2—C486.59 (11)
N2—C4—S3125.98 (19)C4—S3—C5101.23 (12)
S2—C4—S3119.35 (13)O4—Zn1—O895.17 (7)
C6—C5—S3114.60 (17)O4—Zn1—O597.06 (8)
C6—C5—H3108.6O8—Zn1—O587.88 (7)
S3—C5—H3108.6O4—Zn1—O1ii173.48 (9)
C6—C5—H4108.6O8—Zn1—O1ii90.71 (7)
S3—C5—H4108.6O5—Zn1—O1ii85.94 (7)
H3—C5—H4107.6O4—Zn1—O788.02 (8)
O3—C6—O4124.6 (2)O8—Zn1—O788.26 (7)
O3—C6—C5121.2 (2)O5—Zn1—O7173.88 (8)
O4—C6—C5114.17 (19)O1ii—Zn1—O789.36 (7)
C3—N1—N2112.4 (2)O4—Zn1—O690.40 (7)
C4—N2—N1111.9 (2)O8—Zn1—O6173.27 (8)
C1—O1—Zn1i127.90 (15)O5—Zn1—O695.18 (7)
C6—O4—Zn1122.62 (14)O1ii—Zn1—O683.55 (7)
Zn1—O5—H5113.8O7—Zn1—O688.17 (6)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H6···O30.852.532.971 (3)113
O5—H6···O6iii0.852.233.053 (3)165
O5—H5···N2iii0.852.052.897 (3)172
O6—H8···O4iv0.852.022.762 (2)145
O6—H7···O7iv0.852.363.116 (3)148
O7—H10···O3v0.851.942.770 (3)166
O7—H9···O1ii0.852.612.992 (2)109
O7—H9···O2ii0.851.852.680 (3)166
O8—H12···N1iii0.851.982.819 (3)172
O8—H11···O1vi0.851.872.713 (2)175
Symmetry codes: (ii) x, y, z1; (iii) x, y1/2, z+1; (iv) x1, y, z; (v) x, y+1/2, z+1; (vi) x+1, y, z1.

Experimental details

Crystal data
Chemical formula[Zn(C6H4N2O4S3)(H2O)4]
Mr401.73
Crystal system, space groupMonoclinic, P21
Temperature (K)291
a, b, c (Å)5.1554 (10), 9.5043 (19), 13.627 (3)
β (°) 94.82 (3)
V3)665.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.35
Crystal size (mm)0.42 × 0.18 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.439, 0.675
No. of measured, independent and
observed [I > 2σ(I)] reflections
6408, 2774, 2624
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.046, 1.06
No. of reflections2774
No. of parameters181
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.33
Absolute structureFlack (1983), 1151 Friedel pairs
Absolute structure parameter0.014 (8)

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H6···O30.852.532.971 (3)113.3
O5—H6···O6i0.852.233.053 (3)164.7
O5—H5···N2i0.852.052.897 (3)172.3
O6—H8···O4ii0.852.022.762 (2)144.7
O6—H7···O7ii0.852.363.116 (3)147.9
O7—H10···O3iii0.851.942.770 (3)165.7
O7—H9···O1iv0.852.612.992 (2)109.0
O7—H9···O2iv0.851.852.680 (3)166.2
O8—H12···N1i0.851.982.819 (3)171.6
O8—H11···O1v0.851.872.713 (2)174.9
Symmetry codes: (i) x, y1/2, z+1; (ii) x1, y, z; (iii) x, y+1/2, z+1; (iv) x, y, z1; (v) x+1, y, z1.
 

Acknowledgements

The authors thank Heilongjiang University for supporting this study.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGao, J.-S., Hou, G.-F., Yu, Y.-H., Hou, Y.-J. & Yan, P.-F. (2006). Acta Cryst. E62, m2913–m2915.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGao, S., Huo, L.-H., Zhao, H. & Ng, S. W. (2005). Acta Cryst. E61, m126–m128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X.-F., Gao, S., Huo, L.-H. & Gao, J.-S. (2006). Acta Cryst. E62, m39–m41.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds