metal-organic compounds
catena-Poly[[tetraaquazinc(II)]-μ-1,3,4-thiadiazol-2,5-diyldithiodiacetato-κ2O:O′]
aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, bSchool of Resources and Safety Engineering, China University of Mining and Techology (Beijing Campus), Beijing 100083, People's Republic of China, and cDepartment of Food and Environmental Engineering, Heilongjiang East College, Harbin 150086, People's Republic of China
*Correspondence e-mail: hgf1000@163.com
In the title linear coordination polymer, [Zn(C6H4N2O4S3)(H2O)4]n, the ZnII atom is coordinated by four O atoms from four water molecules and two O atoms from two [5-(carboxylatomethylsulfanyl)-1,3,4-thiadiazol-2-ylsulfanyl]acetate units in an octahedral coordination environment. The chains are linked into a three-dimensional supramolecular network via O—H⋯O and O—H⋯N hydrogen bonds.
Related literature
For the structure of other metal 1,3,4-thiadiazolyl-2,5-dithioacetates, see Gao et al. (2005, 2006); Zhang et al. (2006).
Experimental
Crystal data
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808013251/ng2446sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808013251/ng2446Isup2.hkl
1,3,4-Thiadiazolyl-2,5-dithioacetic acid was prepared from 2,5-dimercapto-1,3,4-thiadiazole, using the method for synthesis of benzene-1,2-dioxyacetic acid reported by us (Gao et al., 2006). The colorless zinc complex was obtained from the reaction of zinc dichloride hexahydrate (0.244 g, 1 mmol) and 1,3,4-Thiadiazolyl-2,5-dithioacetic acid (0.532 g, 2 mmol) in hot water (20 ml), and then the pH was adjusted to about 6 with 0.2 M sodium hydroxide. The resulting solution was filtered and allowed to stand in a desiccator at room temperature for several days.
H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.97 Å (methylene) and with Uiso(H) = 1.2Ueq(C). Water H atoms were initially located in a difference Fourier map but they were treated as riding on their parent atoms with O—H = 0.85 Å, and with Uiso(H) = 1.5Ueq(O).
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms. | |
Fig. 2. One-dimensional chain structure of the title complex. H atoms have been omitted for clarity. | |
Fig. 3. A partial packing view, showing the three-dimensional hydrogen-bonding network. Dashed lines indicate the hydrogen-bonding interactions. H atoms not involved in hydrogen bonds have been omitted for clarity. |
[Zn(C6H4N2O4S3)(H2O)4] | F(000) = 408 |
Mr = 401.73 | Dx = 2.005 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 6179 reflections |
a = 5.1554 (10) Å | θ = 3.0–27.5° |
b = 9.5043 (19) Å | µ = 2.35 mm−1 |
c = 13.627 (3) Å | T = 291 K |
β = 94.82 (3)° | Block, colorless |
V = 665.3 (2) Å3 | 0.42 × 0.18 × 0.18 mm |
Z = 2 |
Rigaku R-AXIS RAPID diffractometer | 2774 independent reflections |
Radiation source: fine-focus sealed tube | 2624 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ω scans | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −6→6 |
Tmin = 0.439, Tmax = 0.675 | k = −11→12 |
6408 measured reflections | l = −17→17 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.046 | w = 1/[σ2(Fo2) + (0.0189P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
2774 reflections | Δρmax = 0.26 e Å−3 |
181 parameters | Δρmin = −0.33 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1151 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.014 (8) |
[Zn(C6H4N2O4S3)(H2O)4] | V = 665.3 (2) Å3 |
Mr = 401.73 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 5.1554 (10) Å | µ = 2.35 mm−1 |
b = 9.5043 (19) Å | T = 291 K |
c = 13.627 (3) Å | 0.42 × 0.18 × 0.18 mm |
β = 94.82 (3)° |
Rigaku R-AXIS RAPID diffractometer | 2774 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2624 reflections with I > 2σ(I) |
Tmin = 0.439, Tmax = 0.675 | Rint = 0.022 |
6408 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.046 | Δρmax = 0.26 e Å−3 |
S = 1.06 | Δρmin = −0.33 e Å−3 |
2774 reflections | Absolute structure: Flack (1983), 1151 Friedel pairs |
181 parameters | Absolute structure parameter: 0.014 (8) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.1447 (4) | 0.4252 (3) | 1.17156 (18) | 0.0201 (5) | |
C2 | −0.3790 (4) | 0.4114 (3) | 1.09577 (18) | 0.0218 (5) | |
H1 | −0.5359 | 0.4172 | 1.1301 | 0.026* | |
H2 | −0.3749 | 0.3184 | 1.0665 | 0.026* | |
C3 | −0.1709 (4) | 0.4813 (2) | 0.92174 (18) | 0.0199 (5) | |
C4 | 0.1357 (4) | 0.3689 (2) | 0.82727 (18) | 0.0213 (5) | |
C5 | 0.4372 (4) | 0.3491 (3) | 0.67199 (16) | 0.0211 (4) | |
H3 | 0.4337 | 0.4499 | 0.6833 | 0.025* | |
H4 | 0.6113 | 0.3248 | 0.6558 | 0.025* | |
C6 | 0.2476 (4) | 0.3147 (2) | 0.58475 (18) | 0.0207 (5) | |
N1 | −0.1311 (4) | 0.5509 (2) | 0.84268 (16) | 0.0278 (5) | |
N2 | 0.0486 (4) | 0.4848 (2) | 0.78684 (16) | 0.0280 (5) | |
O1 | −0.1686 (3) | 0.3552 (2) | 1.24944 (12) | 0.0262 (4) | |
O2 | 0.0419 (3) | 0.5006 (2) | 1.15424 (13) | 0.0272 (4) | |
O3 | 0.0336 (3) | 0.2622 (2) | 0.59581 (14) | 0.0328 (4) | |
O4 | 0.3282 (3) | 0.3463 (3) | 0.50187 (11) | 0.0275 (3) | |
O5 | −0.0626 (3) | 0.14243 (19) | 0.39464 (14) | 0.0290 (4) | |
H5 | −0.0598 | 0.0891 | 0.3447 | 0.044* | |
H6 | 0.0049 | 0.1028 | 0.4466 | 0.044* | |
O6 | −0.2103 (3) | 0.45593 (19) | 0.44603 (14) | 0.0279 (4) | |
H7 | −0.3137 | 0.5040 | 0.4074 | 0.042* | |
H8 | −0.3032 | 0.3988 | 0.4759 | 0.042* | |
O7 | 0.2564 (3) | 0.54165 (19) | 0.33802 (14) | 0.0274 (4) | |
H9 | 0.2034 | 0.5402 | 0.2772 | 0.041* | |
H10 | 0.1894 | 0.6112 | 0.3658 | 0.041* | |
O8 | 0.3690 (3) | 0.2453 (2) | 0.29289 (14) | 0.0291 (4) | |
H11 | 0.5185 | 0.2761 | 0.2817 | 0.044* | |
H12 | 0.3081 | 0.1896 | 0.2479 | 0.044* | |
S1 | −0.40220 (11) | 0.53897 (6) | 0.99806 (5) | 0.02380 (13) | |
S2 | 0.00595 (10) | 0.32704 (7) | 0.93689 (4) | 0.02359 (12) | |
S3 | 0.37405 (12) | 0.26074 (7) | 0.78411 (5) | 0.02603 (14) | |
Zn1 | 0.09545 (4) | 0.34105 (3) | 0.374965 (19) | 0.02112 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0183 (10) | 0.0232 (12) | 0.0194 (14) | 0.0027 (9) | 0.0046 (9) | −0.0024 (10) |
C2 | 0.0213 (10) | 0.0259 (12) | 0.0183 (13) | −0.0012 (9) | 0.0025 (9) | 0.0012 (10) |
C3 | 0.0216 (11) | 0.0202 (12) | 0.0177 (13) | 0.0025 (9) | 0.0008 (8) | −0.0002 (9) |
C4 | 0.0243 (10) | 0.0253 (14) | 0.0143 (12) | 0.0034 (9) | 0.0026 (8) | 0.0016 (9) |
C5 | 0.0212 (9) | 0.0246 (11) | 0.0180 (11) | 0.0037 (11) | 0.0039 (8) | 0.0002 (12) |
C6 | 0.0219 (10) | 0.0218 (13) | 0.0187 (12) | 0.0012 (9) | 0.0043 (8) | −0.0012 (9) |
N1 | 0.0349 (11) | 0.0273 (11) | 0.0222 (12) | 0.0108 (9) | 0.0086 (9) | 0.0074 (9) |
N2 | 0.0352 (11) | 0.0306 (12) | 0.0193 (12) | 0.0100 (9) | 0.0089 (9) | 0.0079 (9) |
O1 | 0.0229 (7) | 0.0355 (10) | 0.0199 (9) | −0.0069 (8) | −0.0007 (6) | 0.0066 (9) |
O2 | 0.0226 (8) | 0.0360 (10) | 0.0233 (10) | −0.0072 (7) | 0.0047 (7) | 0.0047 (8) |
O3 | 0.0296 (9) | 0.0432 (11) | 0.0261 (11) | −0.0132 (8) | 0.0053 (8) | 0.0036 (9) |
O4 | 0.0249 (7) | 0.0422 (9) | 0.0159 (8) | −0.0072 (9) | 0.0044 (6) | −0.0006 (10) |
O5 | 0.0394 (10) | 0.0293 (9) | 0.0182 (10) | −0.0110 (8) | 0.0016 (7) | −0.0012 (8) |
O6 | 0.0249 (8) | 0.0308 (10) | 0.0291 (11) | −0.0037 (7) | 0.0088 (7) | 0.0034 (8) |
O7 | 0.0337 (9) | 0.0244 (9) | 0.0250 (10) | −0.0053 (7) | 0.0079 (7) | −0.0032 (8) |
O8 | 0.0223 (8) | 0.0364 (11) | 0.0296 (11) | −0.0093 (7) | 0.0075 (7) | −0.0132 (8) |
S1 | 0.0246 (3) | 0.0267 (3) | 0.0207 (3) | 0.0070 (2) | 0.0053 (2) | 0.0032 (2) |
S2 | 0.0284 (2) | 0.0245 (3) | 0.0185 (3) | 0.0081 (3) | 0.0058 (2) | 0.0065 (3) |
S3 | 0.0302 (3) | 0.0303 (3) | 0.0183 (3) | 0.0106 (3) | 0.0058 (2) | 0.0043 (3) |
Zn1 | 0.02055 (11) | 0.02492 (14) | 0.01799 (14) | −0.00523 (11) | 0.00214 (9) | −0.00268 (13) |
C1—O2 | 1.238 (3) | C6—O4 | 1.272 (3) |
C1—O1 | 1.267 (3) | N1—N2 | 1.397 (3) |
C1—C2 | 1.527 (3) | O1—Zn1i | 2.0989 (17) |
C2—S1 | 1.797 (2) | O4—Zn1 | 2.0209 (17) |
C2—H1 | 0.9700 | O5—Zn1 | 2.0824 (18) |
C2—H2 | 0.9700 | O5—H5 | 0.8500 |
C3—N1 | 1.295 (3) | O5—H6 | 0.8500 |
C3—S2 | 1.730 (2) | O6—Zn1 | 2.2072 (17) |
C3—S1 | 1.736 (2) | O6—H7 | 0.8500 |
C4—N2 | 1.295 (3) | O6—H8 | 0.8500 |
C4—S2 | 1.734 (2) | O7—Zn1 | 2.1557 (18) |
C4—S3 | 1.742 (2) | O7—H9 | 0.8501 |
C5—C6 | 1.510 (3) | O7—H10 | 0.8500 |
C5—S3 | 1.797 (2) | O8—Zn1 | 2.0815 (17) |
C5—H3 | 0.9700 | O8—H11 | 0.8500 |
C5—H4 | 0.9700 | O8—H12 | 0.8500 |
C6—O3 | 1.231 (3) | Zn1—O1ii | 2.0989 (17) |
O2—C1—O1 | 126.5 (2) | Zn1—O5—H6 | 111.8 |
O2—C1—C2 | 120.2 (2) | H5—O5—H6 | 111.7 |
O1—C1—C2 | 113.2 (2) | Zn1—O6—H7 | 115.4 |
C1—C2—S1 | 116.27 (17) | Zn1—O6—H8 | 110.2 |
C1—C2—H1 | 108.2 | H7—O6—H8 | 106.9 |
S1—C2—H1 | 108.2 | Zn1—O7—H9 | 96.6 |
C1—C2—H2 | 108.2 | Zn1—O7—H10 | 113.9 |
S1—C2—H2 | 108.2 | H9—O7—H10 | 109.7 |
H1—C2—H2 | 107.4 | Zn1—O8—H11 | 127.7 |
N1—C3—S2 | 114.44 (18) | Zn1—O8—H12 | 115.7 |
N1—C3—S1 | 120.11 (17) | H11—O8—H12 | 111.7 |
S2—C3—S1 | 125.31 (14) | C3—S1—C2 | 102.97 (11) |
N2—C4—S2 | 114.60 (17) | C3—S2—C4 | 86.59 (11) |
N2—C4—S3 | 125.98 (19) | C4—S3—C5 | 101.23 (12) |
S2—C4—S3 | 119.35 (13) | O4—Zn1—O8 | 95.17 (7) |
C6—C5—S3 | 114.60 (17) | O4—Zn1—O5 | 97.06 (8) |
C6—C5—H3 | 108.6 | O8—Zn1—O5 | 87.88 (7) |
S3—C5—H3 | 108.6 | O4—Zn1—O1ii | 173.48 (9) |
C6—C5—H4 | 108.6 | O8—Zn1—O1ii | 90.71 (7) |
S3—C5—H4 | 108.6 | O5—Zn1—O1ii | 85.94 (7) |
H3—C5—H4 | 107.6 | O4—Zn1—O7 | 88.02 (8) |
O3—C6—O4 | 124.6 (2) | O8—Zn1—O7 | 88.26 (7) |
O3—C6—C5 | 121.2 (2) | O5—Zn1—O7 | 173.88 (8) |
O4—C6—C5 | 114.17 (19) | O1ii—Zn1—O7 | 89.36 (7) |
C3—N1—N2 | 112.4 (2) | O4—Zn1—O6 | 90.40 (7) |
C4—N2—N1 | 111.9 (2) | O8—Zn1—O6 | 173.27 (8) |
C1—O1—Zn1i | 127.90 (15) | O5—Zn1—O6 | 95.18 (7) |
C6—O4—Zn1 | 122.62 (14) | O1ii—Zn1—O6 | 83.55 (7) |
Zn1—O5—H5 | 113.8 | O7—Zn1—O6 | 88.17 (6) |
Symmetry codes: (i) x, y, z+1; (ii) x, y, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H6···O3 | 0.85 | 2.53 | 2.971 (3) | 113 |
O5—H6···O6iii | 0.85 | 2.23 | 3.053 (3) | 165 |
O5—H5···N2iii | 0.85 | 2.05 | 2.897 (3) | 172 |
O6—H8···O4iv | 0.85 | 2.02 | 2.762 (2) | 145 |
O6—H7···O7iv | 0.85 | 2.36 | 3.116 (3) | 148 |
O7—H10···O3v | 0.85 | 1.94 | 2.770 (3) | 166 |
O7—H9···O1ii | 0.85 | 2.61 | 2.992 (2) | 109 |
O7—H9···O2ii | 0.85 | 1.85 | 2.680 (3) | 166 |
O8—H12···N1iii | 0.85 | 1.98 | 2.819 (3) | 172 |
O8—H11···O1vi | 0.85 | 1.87 | 2.713 (2) | 175 |
Symmetry codes: (ii) x, y, z−1; (iii) −x, y−1/2, −z+1; (iv) x−1, y, z; (v) −x, y+1/2, −z+1; (vi) x+1, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C6H4N2O4S3)(H2O)4] |
Mr | 401.73 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 291 |
a, b, c (Å) | 5.1554 (10), 9.5043 (19), 13.627 (3) |
β (°) | 94.82 (3) |
V (Å3) | 665.3 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.35 |
Crystal size (mm) | 0.42 × 0.18 × 0.18 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.439, 0.675 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6408, 2774, 2624 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.046, 1.06 |
No. of reflections | 2774 |
No. of parameters | 181 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.33 |
Absolute structure | Flack (1983), 1151 Friedel pairs |
Absolute structure parameter | 0.014 (8) |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H6···O3 | 0.85 | 2.53 | 2.971 (3) | 113.3 |
O5—H6···O6i | 0.85 | 2.23 | 3.053 (3) | 164.7 |
O5—H5···N2i | 0.85 | 2.05 | 2.897 (3) | 172.3 |
O6—H8···O4ii | 0.85 | 2.02 | 2.762 (2) | 144.7 |
O6—H7···O7ii | 0.85 | 2.36 | 3.116 (3) | 147.9 |
O7—H10···O3iii | 0.85 | 1.94 | 2.770 (3) | 165.7 |
O7—H9···O1iv | 0.85 | 2.61 | 2.992 (2) | 109.0 |
O7—H9···O2iv | 0.85 | 1.85 | 2.680 (3) | 166.2 |
O8—H12···N1i | 0.85 | 1.98 | 2.819 (3) | 171.6 |
O8—H11···O1v | 0.85 | 1.87 | 2.713 (2) | 174.9 |
Symmetry codes: (i) −x, y−1/2, −z+1; (ii) x−1, y, z; (iii) −x, y+1/2, −z+1; (iv) x, y, z−1; (v) x+1, y, z−1. |
Acknowledgements
The authors thank Heilongjiang University for supporting this study.
References
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gao, J.-S., Hou, G.-F., Yu, Y.-H., Hou, Y.-J. & Yan, P.-F. (2006). Acta Cryst. E62, m2913–m2915. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gao, S., Huo, L.-H., Zhao, H. & Ng, S. W. (2005). Acta Cryst. E61, m126–m128. Web of Science CSD CrossRef IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, X.-F., Gao, S., Huo, L.-H. & Gao, J.-S. (2006). Acta Cryst. E62, m39–m41. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,3,4-Thiadiazolyl-2,5-dithioacetic acid is a multidentate flexible aromatic carboxylic acid having two —S—CH2CO2H arms, and its N atoms can be considered as a potential coordinate candidate which also would coordinate with metal atoms fomed a supramolecular complexes. The structure of 1,3,4-Thiadiazolyl-2,5-dithioacetic acid was reported by Gao et al. (2005) and Zhang et al., (2006). In this paper, we reporte a new one-dimensional title compound crystal structure, synthesized by the reaction of 1,3,4-Thiadiazolyl-2,5-dithioacetic acid and zinc dichloride in aqueous solution.
Complex (I) consists of molecules of tetraaquazinc(II)-1,3,4-thiadiazol-2,5-diyldithiodiacetato. The zinc atom is six-coordinated in an octahedron environment (Figure 1), each zinc atom connect with two 1,3,4-Thiadiazolyl-2,5-dithioacetic acid ligand and four water molecules formed a one-dimensional chain structure along c axis (Figure 2).
There are eight symmetry-independent 'active' H atoms in the crystal structure; all of them participate in hydrogen bonds, which link the one-dimensional chain structure into an infinite three-dimensional network (Table 1, Figure 3).