organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-5-(4-Chloro­phen­yl)-N-cyclo­hexyl-4-methyl-2-oxo-1,3-thia­zolidine-3-carboxamide

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 24 April 2008; accepted 30 April 2008; online 7 May 2008)

The title pesticide, C17H21ClN2O2S, has a trans arrangement of the 4-chloro­phenyl and 4-methyl substituents of the thia­zolidine ring; the structure features an intra­molecular amide–ring carbonyl N—H⋯O hydrogen bond. The thia­zolidine ring is almost planar, the largest deviation being 0.199 (1) Å for the methyl-substitued C atom, and the cyclohexane ring has a chair conformation.

Related literature

For the synthesis of the pesticide Hexythia­zox, see: Iwataki et al. (1981[Iwataki, I., Kaeriyama, M., Matsui, N. & Yamada, T. (1981). German Patent 3 037 105.]); Yamada et al. (1983[Yamada, T., Kaeriyama, M., Matsui, N. & Yoneda, H. (1983). Japan Patent 58 110 577.]).

[Scheme 1]

Experimental

Crystal data
  • C17H21ClN2O2S

  • Mr = 352.88

  • Monoclinic, P 21 /c

  • a = 10.284 (4) Å

  • b = 11.799 (5) Å

  • c = 15.902 (5) Å

  • β = 111.830 (14)°

  • V = 1791.2 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 291 (2) K

  • 0.27 × 0.26 × 0.25 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.913, Tmax = 0.918

  • 17194 measured reflections

  • 4088 independent reflections

  • 3066 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.109

  • S = 1.06

  • 4088 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H10⋯O1 0.84 2.03 2.706 (2) 137
C2—H1⋯O2i 0.93 2.47 3.386 (2) 170
C5—H3⋯S1 0.93 2.79 3.168 (2) 105
C12—H11⋯O2 0.98 2.44 2.831 (2) 103
Symmetry code: (i) -x+1, -y+2, -z+2.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hexythiazox, chemically named trans-5-(4-chlorophenyl)- N-cyclohexyl-4-methyl-2-oxo-3-thiazolidinecarboxamide, is known as a high efficiency of pesticide. In this paper, we first report the crystal structure of hexythiazox (I).

The title compound (I), consists of a planar phenyl ring (A), a S-contained five-numbers ring (B) and a cyclohexane ring (C). The S-contained five-numbers ring is alomst coplanar, with the largest deviation being 0.199 (1) Å for atom C8, and the cyclohexane ring is chair forms. The three rings make the following dihedral angles: A/B 82.20 (0.06)°, A/C 54.22 (0.07)° and B/C 81.70 (0.06)°.

In the crystal structure, an extensive network of intramolecular N—H···O and intermolecular C—H···O hydrogen bonds stabilizes the packing (Table 1; Fig. 2).

Related literature top

For the synthesis of the pesticide Hexythiazox, see: Iwataki et al. (1981); Yamada et al. (1983). For related literature, see: Oxazolidone (1981); Soda (1983).

Experimental top

Hexythiazox was synthesized by the reaction of 5-(4-chlorophenyl)-4-methylthiazolidin-2-one and isocyanatocyclohexane in toluene solution in the patent litearture. Crystals suitable for X-ray experiments were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic), C—H = 0.98 Å (methine), C—H = 0.97 Å (methylene), C—H = 0.96 Å (methyl) and with Uiso(H) = 1.2Ueq(C). N-H atoms were initially located in a difference Fourier map but they were treated as riding on their parent atoms with N—H = 0.85 Å, and with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. A partial packing view, showing the three-dimensional hydrogen-bonding network. Dashed lines indicate the hydrogen-bonding interactions. H atoms not involved in hydrogen bonds have been omitted for clarity.
trans-5-(4-Chlorophenyl)-N-cyclohexyl-4-methyl-2-oxo-1,3- thiazolidine-3-carboxamide top
Crystal data top
C17H21ClN2O2SF(000) = 744
Mr = 352.88Dx = 1.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12810 reflections
a = 10.284 (4) Åθ = 3.3–27.5°
b = 11.799 (5) ŵ = 0.34 mm1
c = 15.902 (5) ÅT = 291 K
β = 111.830 (14)°Block, colorless
V = 1791.2 (12) Å30.27 × 0.26 × 0.25 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4088 independent reflections
Radiation source: fine-focus sealed tube3066 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1311
Tmin = 0.913, Tmax = 0.918k = 1515
17194 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.331P]
where P = (Fo2 + 2Fc2)/3
4088 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C17H21ClN2O2SV = 1791.2 (12) Å3
Mr = 352.88Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.284 (4) ŵ = 0.34 mm1
b = 11.799 (5) ÅT = 291 K
c = 15.902 (5) Å0.27 × 0.26 × 0.25 mm
β = 111.830 (14)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4088 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3066 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.918Rint = 0.033
17194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.06Δρmax = 0.27 e Å3
4088 reflectionsΔρmin = 0.27 e Å3
209 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5475 (2)1.00752 (16)0.78248 (11)0.0503 (4)
C20.5027 (2)1.07700 (16)0.83577 (12)0.0564 (5)
H10.55441.14050.86370.068*
C30.3794 (2)1.05051 (15)0.84691 (12)0.0540 (5)
H20.34801.09760.88230.065*
C40.30034 (18)0.95543 (13)0.80670 (10)0.0426 (4)
C50.3492 (2)0.88779 (15)0.75323 (11)0.0509 (4)
H30.29850.82390.72530.061*
C60.4717 (2)0.91368 (16)0.74085 (12)0.0547 (5)
H40.50270.86790.70450.066*
C70.17090 (18)0.93163 (14)0.82722 (12)0.0460 (4)
H50.12811.00460.83130.055*
C80.20030 (17)0.86779 (12)0.91720 (11)0.0392 (4)
H60.29820.88020.95670.047*
C90.1069 (2)0.90648 (17)0.96633 (16)0.0638 (5)
H70.01060.90160.92620.096*
H80.12890.98350.98590.096*
H90.12200.85881.01810.096*
C100.08671 (16)0.72176 (14)0.80822 (11)0.0418 (4)
C110.24351 (16)0.66650 (13)0.96508 (10)0.0382 (3)
C120.27713 (17)0.46582 (13)1.00756 (11)0.0426 (4)
H110.35000.49751.06150.051*
C130.34475 (19)0.37870 (16)0.96687 (12)0.0506 (4)
H120.42160.41340.95480.061*
H130.27670.35190.90980.061*
C140.3994 (2)0.27909 (16)1.03110 (15)0.0640 (6)
H140.43870.22271.00290.077*
H150.47340.30491.08610.077*
C150.2844 (3)0.22642 (17)1.05453 (16)0.0745 (7)
H160.32180.16371.09590.089*
H170.21270.19691.00000.089*
C160.2203 (2)0.3122 (2)1.09784 (15)0.0721 (6)
H180.29020.33711.15490.087*
H190.14410.27721.11050.087*
C170.1650 (2)0.41410 (18)1.03619 (13)0.0561 (5)
H200.08630.39080.98280.067*
H210.13180.47071.06770.067*
Cl10.70303 (6)1.03996 (6)0.76763 (4)0.07627 (19)
N10.18010 (13)0.74624 (10)0.89396 (8)0.0369 (3)
N20.21922 (17)0.55814 (12)0.94286 (10)0.0558 (4)
H100.16480.54220.88960.067*
O10.04055 (13)0.62916 (10)0.77874 (8)0.0545 (3)
O20.31689 (14)0.70170 (10)1.03933 (7)0.0520 (3)
S10.03912 (5)0.84657 (4)0.74263 (3)0.06226 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0621 (11)0.0475 (10)0.0381 (8)0.0070 (8)0.0149 (8)0.0067 (7)
C20.0721 (12)0.0442 (10)0.0500 (10)0.0206 (9)0.0192 (9)0.0081 (8)
C30.0723 (12)0.0393 (9)0.0511 (10)0.0112 (8)0.0238 (9)0.0112 (8)
C40.0533 (9)0.0299 (8)0.0347 (7)0.0024 (7)0.0048 (7)0.0050 (6)
C50.0650 (11)0.0354 (9)0.0431 (9)0.0083 (8)0.0092 (8)0.0059 (7)
C60.0706 (12)0.0479 (11)0.0434 (9)0.0012 (9)0.0187 (9)0.0042 (8)
C70.0457 (9)0.0291 (8)0.0518 (9)0.0032 (7)0.0047 (7)0.0046 (7)
C80.0427 (8)0.0263 (7)0.0462 (8)0.0002 (6)0.0137 (7)0.0025 (6)
C90.0720 (13)0.0448 (11)0.0865 (15)0.0026 (9)0.0431 (12)0.0134 (10)
C100.0359 (8)0.0384 (9)0.0428 (8)0.0002 (6)0.0049 (7)0.0003 (7)
C110.0430 (8)0.0312 (8)0.0389 (8)0.0008 (6)0.0137 (7)0.0006 (6)
C120.0500 (9)0.0285 (8)0.0398 (8)0.0008 (6)0.0058 (7)0.0011 (6)
C130.0475 (9)0.0485 (10)0.0537 (10)0.0018 (8)0.0164 (8)0.0029 (8)
C140.0599 (12)0.0448 (11)0.0698 (12)0.0186 (9)0.0039 (10)0.0057 (9)
C150.0853 (15)0.0351 (10)0.0751 (13)0.0044 (10)0.0026 (12)0.0133 (9)
C160.0732 (13)0.0748 (15)0.0641 (12)0.0126 (12)0.0206 (11)0.0223 (11)
C170.0517 (10)0.0593 (12)0.0569 (10)0.0086 (9)0.0197 (9)0.0045 (9)
Cl10.0787 (4)0.0850 (4)0.0734 (3)0.0163 (3)0.0380 (3)0.0019 (3)
N10.0414 (7)0.0269 (6)0.0374 (6)0.0017 (5)0.0087 (5)0.0016 (5)
N20.0764 (10)0.0290 (7)0.0418 (7)0.0011 (7)0.0013 (7)0.0002 (6)
O10.0542 (7)0.0403 (7)0.0520 (7)0.0077 (5)0.0001 (6)0.0066 (5)
O20.0719 (8)0.0352 (6)0.0370 (6)0.0045 (6)0.0066 (6)0.0013 (5)
S10.0508 (3)0.0494 (3)0.0583 (3)0.0045 (2)0.0125 (2)0.0140 (2)
Geometric parameters (Å, º) top
C1—C61.374 (3)C10—S11.7655 (18)
C1—C21.376 (3)C11—O21.2139 (19)
C1—Cl11.744 (2)C11—N21.325 (2)
C2—C31.380 (3)C11—N11.4286 (19)
C2—H10.9300C12—N21.464 (2)
C3—C41.393 (2)C12—C131.514 (2)
C3—H20.9300C12—C171.517 (3)
C4—C51.389 (3)C12—H110.9800
C4—C71.510 (3)C13—C141.521 (3)
C5—C61.379 (3)C13—H120.9700
C5—H30.9300C13—H130.9700
C6—H40.9300C14—C151.501 (3)
C7—C81.544 (2)C14—H140.9700
C7—S11.8159 (17)C14—H150.9700
C7—H50.9800C15—C161.507 (4)
C8—N11.4763 (19)C15—H160.9700
C8—C91.517 (3)C15—H170.9700
C8—H60.9800C16—C171.522 (3)
C9—H70.9600C16—H180.9700
C9—H80.9600C16—H190.9700
C9—H90.9600C17—H200.9700
C10—O11.214 (2)C17—H210.9700
C10—N11.375 (2)N2—H100.8445
C6—C1—C2121.10 (19)N2—C12—C17110.75 (15)
C6—C1—Cl1119.77 (16)C13—C12—C17112.11 (15)
C2—C1—Cl1119.14 (15)N2—C12—H11108.1
C1—C2—C3118.59 (17)C13—C12—H11108.1
C1—C2—H1120.7C17—C12—H11108.1
C3—C2—H1120.7C12—C13—C14110.57 (16)
C2—C3—C4122.04 (18)C12—C13—H12109.5
C2—C3—H2119.0C14—C13—H12109.5
C4—C3—H2119.0C12—C13—H13109.5
C5—C4—C3117.47 (18)C14—C13—H13109.5
C5—C4—C7125.03 (15)H12—C13—H13108.1
C3—C4—C7117.46 (16)C15—C14—C13110.99 (16)
C6—C5—C4121.16 (16)C15—C14—H14109.4
C6—C5—H3119.4C13—C14—H14109.4
C4—C5—H3119.4C15—C14—H15109.4
C1—C6—C5119.64 (18)C13—C14—H15109.4
C1—C6—H4120.2H14—C14—H15108.0
C5—C6—H4120.2C14—C15—C16110.77 (17)
C4—C7—C8113.97 (13)C14—C15—H16109.5
C4—C7—S1114.69 (13)C16—C15—H16109.5
C8—C7—S1104.59 (11)C14—C15—H17109.5
C4—C7—H5107.8C16—C15—H17109.5
C8—C7—H5107.8H16—C15—H17108.1
S1—C7—H5107.8C15—C16—C17111.00 (18)
N1—C8—C9111.37 (14)C15—C16—H18109.4
N1—C8—C7106.33 (13)C17—C16—H18109.4
C9—C8—C7112.78 (15)C15—C16—H19109.4
N1—C8—H6108.8C17—C16—H19109.4
C9—C8—H6108.8H18—C16—H19108.0
C7—C8—H6108.8C12—C17—C16111.58 (16)
C8—C9—H7109.5C12—C17—H20109.3
C8—C9—H8109.5C16—C17—H20109.3
H7—C9—H8109.5C12—C17—H21109.3
C8—C9—H9109.5C16—C17—H21109.3
H7—C9—H9109.5H20—C17—H21108.0
H8—C9—H9109.5C10—N1—C11126.26 (13)
O1—C10—N1126.92 (15)C10—N1—C8115.70 (12)
O1—C10—S1122.68 (12)C11—N1—C8117.47 (12)
N1—C10—S1110.40 (11)C11—N2—C12122.90 (14)
O2—C11—N2125.23 (15)C11—N2—H10118.1
O2—C11—N1118.71 (14)C12—N2—H10118.9
N2—C11—N1116.04 (13)C10—S1—C793.26 (8)
N2—C12—C13109.64 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H10···O10.842.032.706 (2)137
C2—H1···O2i0.932.473.386 (2)170
C5—H3···S10.932.793.168 (2)105
C12—H11···O20.982.442.831 (2)103
Symmetry code: (i) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC17H21ClN2O2S
Mr352.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)10.284 (4), 11.799 (5), 15.902 (5)
β (°) 111.830 (14)
V3)1791.2 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.27 × 0.26 × 0.25
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.913, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
17194, 4088, 3066
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.109, 1.06
No. of reflections4088
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.27

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H10···O10.842.032.706 (2)136.6
C2—H1···O2i0.932.473.386 (2)170.2
C5—H3···S10.932.793.168 (2)105.2
C12—H11···O20.982.442.831 (2)103.3
Symmetry code: (i) x+1, y+2, z+2.
 

Acknowledgements

The authors thank Heilongjiang University for supporting this study.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIwataki, I., Kaeriyama, M., Matsui, N. & Yamada, T. (1981). German Patent 3 037 105.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamada, T., Kaeriyama, M., Matsui, N. & Yoneda, H. (1983). Japan Patent 58 110 577.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds