metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Di­chloridobis(1,10-phenanthroline-κ2N,N′)manganese(II)–2,6-di­hydroxy­benzoic acid–water (2/1/4)

aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 27 April 2008; accepted 28 April 2008; online 3 May 2008)

In the crystal structure of the title compound, [MnCl2(C12H8N2)2]·0.5C7H6O4·2H2O, the MnII complex assumes a distorted octa­hedral geometry formed by two chloride anions and two phenanthroline (phen) ligands. The 2,6-dihydroxy­benzoic acid mol­ecule is disordered about an inversion center. The face-to-face separations of 3.540 (11) and 3.429 (8) Å between parallel phen ligands indicate the existence of ππ stacking between adjacent MnII complexes. Uncoordinated water mol­ecules are linked with complex and dihydroxy­benzoic acid mol­ecules via O—H⋯Cl and O—H⋯O hydrogen bonds.

Related literature

For general background, see: Su & Xu (2004[Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223-229.]). For related structures, see: McCann et al. (1998[McCann, S., McCann, M., Casey, M. T., Jackman, M., Devereux, M. & McKee, V. (1998). Inorg. Chim. Acta, 279, 24-29.]); Pan & Xu (2005[Pan, T.-T. & Xu, D.-J. (2005). Acta Cryst. E61, m740-m742.]).

[Scheme 1]

Experimental

Crystal data
  • [MnCl2(C12H8N2)2]·0.5C7H6O4·2H2O

  • Mr = 599.34

  • Triclinic, [P \overline 1]

  • a = 9.757 (2) Å

  • b = 11.985 (3) Å

  • c = 13.261 (3) Å

  • α = 63.465 (17)°

  • β = 83.931 (18)°

  • γ = 76.819 (18)°

  • V = 1350.8 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 295 (2) K

  • 0.42 × 0.36 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.735, Tmax = 0.860

  • 14401 measured reflections

  • 4680 independent reflections

  • 3662 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.191

  • S = 1.08

  • 4680 reflections

  • 355 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −1.16 e Å−3

Table 1
Selected bond lengths (Å)

Mn—N1 2.260 (3)
Mn—N2 2.328 (3)
Mn—N3 2.308 (3)
Mn—N4 2.275 (3)
Mn—Cl1 2.440 (2)
Mn—Cl2 2.4387 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O3 0.84 2.06 2.834 (13) 152
O1W—H1B⋯O2Wi 0.80 2.22 2.752 (6) 124
O2W—H2A⋯Cl1ii 0.85 2.09 2.904 (6) 162
O2W—H2B⋯Cl1 0.82 2.14 2.946 (4) 164
O1—H1C⋯O3 0.91 1.73 2.476 (18) 137
O2—H2C⋯O4 0.90 1.69 2.444 (19) 139
O4—H4A⋯O1Wiii 0.88 2.28 2.886 (13) 125
Symmetry codes: (i) x-1, y, z+1; (ii) -x+2, -y, -z; (iii) -x, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our ongoing investigation on the nature of π-π stacking (Su & Xu, 2004), the title compound incorporating 1,10-phenanthroline (phen) ligand has recently prepared and its crystal structure is reported here.

The crystal consists of MnII complex, uncoordinated dihydroxybenzoic acid and lattice water molecules (Fig. 1). The MnII complex assumes a distorted octahedral geometry formed by two Cl- anions and two phen ligands (Table 1), similar to those found in crystal structure of cis-dichloro-bis(1,10-phenanthroline-κ2N,N')manganese(II) (Pan & Xu, 2005; McCann et al., 1998). The two phen ligands of the complex are nearly perpendicular to each other with a dihedral angle of 83.50 (6)°. π-π stacking is observed in the crystal structure (Fig. 2). The face-to-face separation between parallel N2-containing phen and N2i-containing phen ligands is 3.540 (11) Å, while the face-to-face separation between parallel N3-phen and N3ii-phen ligands is 3.429 (8) Å [symmetry codes: (i) 1 - x,1 - y,-z; (ii) 1 - x,-y,1 - z].

The C30—O4 bond distance is significantly longer than C30—O3 bond distance (Table 1), which suggests that dihydroxybenzoic acid is a neutral molecule in the crystal. The uncoordinated dihydroxybenzoic acid molecule is located in a cavity formed by MnII complexes, and is close to an inversion center (Fig. 3). Therefore dihydroxybenzoic acid is disordered in the crystal with different spatial orientations. Lattice water molecules are linked with MnII complex and uncoordinated dihydroxybenzoic acid via O—H···Cl and O—H···O hydrogen bonding, respectively (Table 2 and Fig. 1).

Related literature top

For general background, see: Su & Xu (2004). For related structures, see: McCann et al. (1998); Pan & Xu (2005).

Experimental top

Each reagent was commercially available and of analytical grade. MnCl2.4H2O (0.20 g, 1 mmol), 2,6-dihydroxybenzoic acid (0.15 g 1 mmol), 1,10-phenanthroline (0.39 g, 2 mmol) and Na2CO3 (0.053 g, 0.5 mmol) were dissolved in water-ethanol solution (15 ml, 10:5). The solution was refluxed for 4 h, and filtered after cooling to room temperature. Yellow single crystals were obtained from the filtrate after 2 d.

Refinement top

The dihydroxybenzoic acid is close to an inversion center and was refined with half site occupancy; the benzene ring was refined as a rigid group with the same displacement parameter for C atoms of the benzene ring. H atoms bonded to O atoms were located in a difference Fourier map and refined as riding in as-found relative positions with Uiso(H) = 1.5Ueq(O). Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonding.
[Figure 2] Fig. 2. A diagram showing π-π stacking between phen ligands [symmetry codes: (i) 1 - x,1 - y,-z; (ii) 1 - x,-y,1 - z].
[Figure 3] Fig. 3. A packing diagram of the unit cell, H atoms and one of disordered components of dihydroxybenzoic acid have been omitted for clarity.
cis-Dichloridobis(1,10-phenanthroline- κ2N,N')manganese(II)–2,6-dihydroxybenzoic acid–water (2/1/4) top
Crystal data top
[MnCl2(C12H8N2)2]·0.5C7H6O4·2H2OZ = 2
Mr = 599.34F(000) = 614
Triclinic, P1Dx = 1.474 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.757 (2) ÅCell parameters from 6825 reflections
b = 11.985 (3) Åθ = 1.8–25.0°
c = 13.261 (3) ŵ = 0.73 mm1
α = 63.465 (17)°T = 295 K
β = 83.931 (18)°Prism, yellow
γ = 76.819 (18)°0.42 × 0.36 × 0.20 mm
V = 1350.8 (6) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4680 independent reflections
Radiation source: fine-focus sealed tube3662 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.00 pixels mm-1θmax = 25.0°, θmin = 1.7°
ω scansh = 1011
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1213
Tmin = 0.735, Tmax = 0.860l = 1515
14401 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.115P)2 + 0.6925P]
where P = (Fo2 + 2Fc2)/3
4680 reflections(Δ/σ)max = 0.001
355 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 1.16 e Å3
Crystal data top
[MnCl2(C12H8N2)2]·0.5C7H6O4·2H2Oγ = 76.819 (18)°
Mr = 599.34V = 1350.8 (6) Å3
Triclinic, P1Z = 2
a = 9.757 (2) ÅMo Kα radiation
b = 11.985 (3) ŵ = 0.73 mm1
c = 13.261 (3) ÅT = 295 K
α = 63.465 (17)°0.42 × 0.36 × 0.20 mm
β = 83.931 (18)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4680 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3662 reflections with I > 2σ(I)
Tmin = 0.735, Tmax = 0.860Rint = 0.029
14401 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.09Δρmax = 0.55 e Å3
4680 reflectionsΔρmin = 1.16 e Å3
355 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn0.81692 (6)0.12805 (5)0.21903 (4)0.0452 (2)
Cl10.9994 (2)0.09801 (17)0.08753 (14)0.1086 (6)
Cl20.93733 (10)0.05166 (9)0.38297 (8)0.0543 (3)
N10.8875 (3)0.2844 (3)0.2384 (3)0.0512 (8)
N20.7264 (4)0.3198 (3)0.0676 (3)0.0558 (8)
N30.6117 (3)0.1579 (3)0.3159 (2)0.0467 (7)
N40.6685 (3)0.0238 (3)0.1901 (3)0.0531 (8)
O10.4543 (14)0.3988 (12)0.7173 (9)0.132 (4)0.50
H1C0.37090.37810.71490.197*0.50
O20.4410 (16)0.5884 (14)0.3174 (9)0.146 (4)0.50
H2C0.35510.56900.32740.220*0.50
O30.2390 (11)0.4282 (12)0.6173 (11)0.135 (4)0.50
O40.2332 (11)0.5254 (11)0.4305 (10)0.127 (3)0.50
H4A0.14100.53280.43540.191*0.50
O1W0.0193 (5)0.2911 (4)0.6726 (4)0.1147 (15)
H1A0.06060.35310.64490.172*
H1B0.04220.30810.71160.172*
O2W0.8797 (5)0.1644 (5)0.1317 (3)0.1292 (19)
H2A0.90090.09070.12910.194*
H2B0.91630.16050.07670.194*
C10.9627 (5)0.2673 (5)0.3244 (4)0.0654 (12)
H10.98190.18640.38420.078*
C21.0141 (6)0.3642 (6)0.3295 (6)0.0855 (16)
H21.06530.34830.39150.103*
C30.9875 (6)0.4838 (6)0.2409 (6)0.0879 (17)
H31.02240.54950.24160.105*
C40.9086 (5)0.5059 (4)0.1508 (5)0.0719 (13)
C50.8757 (7)0.6265 (5)0.0563 (6)0.099 (2)
H50.91010.69430.05300.119*
C60.7955 (8)0.6450 (5)0.0291 (6)0.101 (2)
H60.77540.72560.08910.121*
C70.7401 (5)0.5436 (5)0.0299 (4)0.0750 (15)
C80.6572 (7)0.5591 (6)0.1146 (4)0.096 (2)
H80.63440.63840.17580.115*
C90.6079 (6)0.4583 (7)0.1093 (4)0.095 (2)
H90.55030.46940.16610.115*
C100.6453 (5)0.3365 (5)0.0163 (4)0.0746 (14)
H100.61350.26760.01350.089*
C110.7730 (4)0.4222 (4)0.0615 (3)0.0560 (10)
C120.8574 (4)0.4022 (4)0.1523 (3)0.0529 (9)
C130.5854 (4)0.2205 (4)0.3785 (3)0.0559 (10)
H130.65230.26380.38050.067*
C140.4616 (5)0.2253 (4)0.4424 (4)0.0623 (11)
H140.44720.27060.48550.075*
C150.3644 (5)0.1629 (4)0.4398 (3)0.0615 (11)
H150.28210.16440.48200.074*
C160.3863 (4)0.0947 (4)0.3733 (3)0.0530 (10)
C170.2874 (4)0.0270 (4)0.3665 (4)0.0643 (12)
H170.20360.02660.40710.077*
C180.3139 (5)0.0362 (5)0.3023 (4)0.0709 (13)
H180.24690.07800.29800.085*
C190.4431 (4)0.0408 (4)0.2403 (4)0.0608 (11)
C200.4783 (5)0.1079 (5)0.1742 (4)0.0751 (13)
H200.41430.15070.16690.090*
C210.6039 (6)0.1109 (6)0.1212 (5)0.0800 (15)
H210.62770.15750.07940.096*
C220.6973 (5)0.0441 (5)0.1296 (4)0.0664 (12)
H220.78330.04620.09210.080*
C230.5434 (4)0.0246 (4)0.2452 (3)0.0491 (9)
C240.5137 (4)0.0953 (3)0.3123 (3)0.0453 (8)
C300.2957 (16)0.4791 (16)0.5273 (14)0.098 (4)0.50
C310.4417 (8)0.4897 (11)0.5167 (7)0.0936 (16)0.50
C320.5181 (10)0.4401 (9)0.6154 (6)0.0936 (16)0.50
C330.6607 (9)0.4420 (9)0.6100 (7)0.0936 (16)0.50
H330.71190.40880.67610.112*0.50
C340.7267 (8)0.4935 (10)0.5060 (9)0.0936 (16)0.50
H340.82210.49480.50240.112*0.50
C350.6503 (10)0.5431 (9)0.4073 (7)0.0936 (16)0.50
H350.69450.57750.33770.112*0.50
C360.5077 (10)0.5412 (9)0.4127 (6)0.0936 (16)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0442 (4)0.0484 (4)0.0457 (3)0.0130 (3)0.0024 (2)0.0218 (3)
Cl10.1378 (15)0.1000 (12)0.0928 (10)0.0370 (10)0.0080 (9)0.0421 (9)
Cl20.0508 (6)0.0569 (6)0.0510 (5)0.0092 (4)0.0020 (4)0.0203 (4)
N10.0456 (18)0.0515 (19)0.0585 (19)0.0100 (14)0.0004 (14)0.0260 (16)
N20.0507 (19)0.061 (2)0.0484 (17)0.0017 (16)0.0026 (14)0.0216 (16)
N30.0403 (17)0.0464 (17)0.0496 (16)0.0062 (13)0.0019 (13)0.0194 (14)
N40.0447 (18)0.065 (2)0.0572 (18)0.0139 (15)0.0030 (14)0.0323 (17)
O10.140 (10)0.152 (9)0.093 (7)0.070 (8)0.013 (6)0.030 (6)
O20.171 (12)0.210 (13)0.086 (7)0.077 (10)0.002 (7)0.071 (8)
O30.103 (7)0.172 (10)0.165 (10)0.063 (7)0.031 (7)0.095 (9)
O40.095 (7)0.158 (9)0.146 (9)0.001 (6)0.006 (7)0.091 (8)
O1W0.141 (4)0.098 (3)0.126 (4)0.037 (3)0.024 (3)0.068 (3)
O2W0.099 (3)0.146 (4)0.077 (2)0.022 (3)0.002 (2)0.014 (3)
C10.062 (3)0.068 (3)0.078 (3)0.010 (2)0.013 (2)0.041 (2)
C20.070 (3)0.097 (4)0.122 (5)0.007 (3)0.015 (3)0.078 (4)
C30.067 (3)0.089 (4)0.144 (5)0.026 (3)0.008 (3)0.079 (4)
C40.064 (3)0.049 (3)0.105 (4)0.015 (2)0.026 (3)0.040 (3)
C50.099 (5)0.055 (3)0.127 (5)0.027 (3)0.038 (4)0.028 (3)
C60.112 (5)0.047 (3)0.101 (4)0.009 (3)0.040 (4)0.008 (3)
C70.070 (3)0.059 (3)0.061 (3)0.005 (2)0.018 (2)0.007 (2)
C80.098 (4)0.085 (4)0.057 (3)0.019 (3)0.004 (3)0.009 (3)
C90.083 (4)0.128 (5)0.050 (3)0.025 (4)0.018 (2)0.035 (3)
C100.071 (3)0.093 (4)0.052 (2)0.005 (3)0.011 (2)0.032 (2)
C110.053 (2)0.049 (2)0.052 (2)0.0009 (18)0.0151 (18)0.0174 (18)
C120.045 (2)0.047 (2)0.064 (2)0.0090 (17)0.0112 (18)0.0249 (19)
C130.055 (2)0.056 (2)0.058 (2)0.0078 (19)0.0042 (18)0.028 (2)
C140.066 (3)0.059 (3)0.058 (2)0.001 (2)0.007 (2)0.028 (2)
C150.049 (2)0.060 (3)0.056 (2)0.003 (2)0.0095 (18)0.017 (2)
C160.039 (2)0.056 (2)0.047 (2)0.0011 (17)0.0008 (16)0.0113 (18)
C170.042 (2)0.073 (3)0.067 (3)0.013 (2)0.0020 (19)0.021 (2)
C180.047 (2)0.089 (3)0.074 (3)0.025 (2)0.005 (2)0.027 (3)
C190.051 (2)0.070 (3)0.063 (2)0.019 (2)0.0091 (19)0.026 (2)
C200.066 (3)0.093 (4)0.088 (3)0.033 (3)0.004 (2)0.050 (3)
C210.079 (3)0.103 (4)0.091 (3)0.030 (3)0.003 (3)0.066 (3)
C220.065 (3)0.086 (3)0.071 (3)0.025 (2)0.009 (2)0.052 (3)
C230.043 (2)0.055 (2)0.0457 (19)0.0085 (16)0.0057 (15)0.0180 (17)
C240.0361 (19)0.049 (2)0.0396 (17)0.0025 (15)0.0032 (14)0.0116 (16)
C300.076 (8)0.114 (11)0.116 (12)0.018 (8)0.007 (8)0.062 (10)
C310.097 (4)0.090 (3)0.101 (4)0.021 (3)0.013 (3)0.050 (4)
C320.097 (4)0.090 (3)0.101 (4)0.021 (3)0.013 (3)0.050 (4)
C330.097 (4)0.090 (3)0.101 (4)0.021 (3)0.013 (3)0.050 (4)
C340.097 (4)0.090 (3)0.101 (4)0.021 (3)0.013 (3)0.050 (4)
C350.097 (4)0.090 (3)0.101 (4)0.021 (3)0.013 (3)0.050 (4)
C360.097 (4)0.090 (3)0.101 (4)0.021 (3)0.013 (3)0.050 (4)
Geometric parameters (Å, º) top
Mn—N12.260 (3)C7—C111.408 (6)
Mn—N22.328 (3)C8—C91.370 (9)
Mn—N32.308 (3)C8—H80.9300
Mn—N42.275 (3)C9—C101.425 (8)
Mn—Cl12.440 (2)C9—H90.9300
Mn—Cl22.4387 (13)C10—H100.9300
N1—C11.334 (5)C11—C121.430 (6)
N1—C121.351 (5)C13—C141.405 (6)
N2—C101.350 (6)C13—H130.9300
N2—C111.370 (6)C14—C151.348 (7)
N3—C131.319 (5)C14—H140.9300
N3—C241.360 (5)C15—C161.419 (6)
N4—C221.347 (5)C15—H150.9300
N4—C231.355 (5)C16—C241.410 (5)
O1—C321.351 (12)C16—C171.428 (6)
O1—H1C0.9109C17—C181.344 (7)
O2—C361.307 (13)C17—H170.9300
O2—H2C0.9016C18—C191.434 (7)
O3—C301.211 (17)C18—H180.9300
O4—C301.305 (17)C19—C201.405 (7)
O4—H4A0.8817C19—C231.409 (6)
O1W—H1A0.8434C20—C211.348 (7)
O1W—H1B0.8012C20—H200.9300
O2W—H2A0.8461C21—C221.385 (7)
O2W—H2B0.8246C21—H210.9300
C1—C21.396 (7)C22—H220.9300
C1—H10.9300C23—C241.449 (5)
C2—C31.376 (8)C30—C311.445 (15)
C2—H20.9300C31—C321.3900
C3—C41.381 (8)C31—C361.3900
C3—H30.9300C32—C331.3900
C4—C51.421 (8)C33—C341.3900
C4—C121.432 (6)C33—H330.9300
C5—C61.351 (10)C34—C351.3900
C5—H50.9300C34—H340.9300
C6—C71.443 (9)C35—C361.3900
C6—H60.9300C35—H350.9300
C7—C81.373 (8)
N1—Mn—N4158.51 (12)N2—C11—C12117.6 (3)
N1—Mn—N390.22 (12)C7—C11—C12120.3 (5)
N4—Mn—N373.23 (12)N1—C12—C11118.7 (4)
N1—Mn—N272.54 (12)N1—C12—C4121.2 (4)
N4—Mn—N292.82 (13)C11—C12—C4120.1 (4)
N3—Mn—N287.93 (11)N3—C13—C14123.4 (4)
N1—Mn—Cl297.72 (9)N3—C13—H13118.3
N4—Mn—Cl297.17 (9)C14—C13—H13118.3
N3—Mn—Cl294.48 (8)C15—C14—C13118.5 (4)
N2—Mn—Cl2170.00 (10)C15—C14—H14120.7
N1—Mn—Cl198.05 (9)C13—C14—H14120.7
N4—Mn—Cl196.38 (9)C14—C15—C16120.6 (4)
N3—Mn—Cl1167.55 (9)C14—C15—H15119.7
N2—Mn—Cl185.73 (9)C16—C15—H15119.7
Cl2—Mn—Cl193.61 (6)C24—C16—C15116.8 (4)
C1—N1—C12118.4 (4)C24—C16—C17119.8 (4)
C1—N1—Mn125.0 (3)C15—C16—C17123.4 (4)
C12—N1—Mn116.5 (3)C18—C17—C16120.9 (4)
C10—N2—C11118.8 (4)C18—C17—H17119.6
C10—N2—Mn126.9 (3)C16—C17—H17119.6
C11—N2—Mn114.0 (3)C17—C18—C19121.6 (4)
C13—N3—C24118.4 (3)C17—C18—H18119.2
C13—N3—Mn127.1 (3)C19—C18—H18119.2
C24—N3—Mn114.3 (2)C20—C19—C23116.7 (4)
C22—N4—C23117.9 (4)C20—C19—C18124.2 (4)
C22—N4—Mn126.1 (3)C23—C19—C18119.1 (4)
C23—N4—Mn115.9 (3)C21—C20—C19120.6 (4)
C32—O1—H1C111.8C21—C20—H20119.7
C36—O2—H2C111.9C19—C20—H20119.7
C30—O4—H4A114.1C20—C21—C22119.5 (5)
H1A—O1W—H1B105.4C20—C21—H21120.2
H2A—O2W—H2B107.1C22—C21—H21120.2
N1—C1—C2123.5 (5)N4—C22—C21122.5 (4)
N1—C1—H1118.2N4—C22—H22118.7
C2—C1—H1118.2C21—C22—H22118.7
C3—C2—C1118.6 (5)N4—C23—C19122.7 (4)
C3—C2—H2120.7N4—C23—C24117.9 (3)
C1—C2—H2120.7C19—C23—C24119.4 (4)
C2—C3—C4119.7 (5)N3—C24—C16122.3 (4)
C2—C3—H3120.2N3—C24—C23118.6 (3)
C4—C3—H3120.2C16—C24—C23119.2 (4)
C3—C4—C5123.3 (5)O3—C30—O4123.6 (16)
C3—C4—C12118.6 (5)O3—C30—C31123.0 (14)
C5—C4—C12118.1 (6)O4—C30—C31113.3 (14)
C6—C5—C4121.5 (6)C32—C31—C36120.0
C6—C5—H5119.3C32—C31—C30117.6 (8)
C4—C5—H5119.3C36—C31—C30122.4 (8)
C5—C6—C7122.1 (5)O1—C32—C31121.1 (8)
C5—C6—H6119.0O1—C32—C33118.7 (8)
C7—C6—H6119.0C31—C32—C33120.0
C8—C7—C11118.4 (6)C32—C33—C34120.0
C8—C7—C6123.7 (5)C32—C33—H33120.0
C11—C7—C6117.9 (5)C34—C33—H33120.0
C9—C8—C7120.4 (5)C35—C34—C33120.0
C9—C8—H8119.8C35—C34—H34120.0
C7—C8—H8119.8C33—C34—H34120.0
C8—C9—C10119.5 (5)C36—C35—C34120.0
C8—C9—H9120.2C36—C35—H35120.0
C10—C9—H9120.2C34—C35—H35120.0
N2—C10—C9120.8 (6)O2—C36—C35117.5 (9)
N2—C10—H10119.6O2—C36—C31122.5 (9)
C9—C10—H10119.6C35—C36—C31120.0
N2—C11—C7122.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O30.842.062.834 (13)152
O1W—H1B···O2Wi0.802.222.752 (6)124
O2W—H2A···Cl1ii0.852.092.904 (6)162
O2W—H2B···Cl10.822.142.946 (4)164
O1—H1C···O30.911.732.476 (18)137
O2—H2C···O40.901.692.444 (19)139
O4—H4A···O1Wiii0.882.282.886 (13)125
C3—H3···O1Wiv0.932.573.356 (9)143
C5—H5···Cl1v0.932.643.427 (7)143
C9—H9···O1vi0.932.413.275 (15)154
C9—H9···O2vii0.932.393.152 (15)140
C15—H15···Cl2viii0.932.823.674 (5)153
Symmetry codes: (i) x1, y, z+1; (ii) x+2, y, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1; (v) x+2, y+1, z; (vi) x, y, z1; (vii) x+1, y+1, z; (viii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[MnCl2(C12H8N2)2]·0.5C7H6O4·2H2O
Mr599.34
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.757 (2), 11.985 (3), 13.261 (3)
α, β, γ (°)63.465 (17), 83.931 (18), 76.819 (18)
V3)1350.8 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.42 × 0.36 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.735, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
14401, 4680, 3662
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.191, 1.09
No. of reflections4680
No. of parameters355
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 1.16

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Mn—N12.260 (3)Mn—Cl12.440 (2)
Mn—N22.328 (3)Mn—Cl22.4387 (13)
Mn—N32.308 (3)O3—C301.211 (17)
Mn—N42.275 (3)O4—C301.305 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O30.842.062.834 (13)152
O1W—H1B···O2Wi0.802.222.752 (6)124
O2W—H2A···Cl1ii0.852.092.904 (6)162
O2W—H2B···Cl10.822.142.946 (4)164
O1—H1C···O30.911.732.476 (18)137
O2—H2C···O40.901.692.444 (19)139
O4—H4A···O1Wiii0.882.282.886 (13)125
Symmetry codes: (i) x1, y, z+1; (ii) x+2, y, z; (iii) x, y+1, z+1.
 

Acknowledgements

The work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMcCann, S., McCann, M., Casey, M. T., Jackman, M., Devereux, M. & McKee, V. (1998). Inorg. Chim. Acta, 279, 24–29.  Web of Science CSD CrossRef CAS Google Scholar
First citationPan, T.-T. & Xu, D.-J. (2005). Acta Cryst. E61, m740–m742.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds