metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(1,1,1-tri­fluoro­acetyl­acetonato-κ2O,O′)zirconium(IV) toluene solvate

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: steylg.sci@ufs.ac.za

(Received 12 May 2008; accepted 14 May 2008; online 21 May 2008)

In the title compound, [Zr(C5H4F3O2)4]·C7H8, the Zr atom is in a square-anti­prismatic coordination geometry that comprises four O,O′-bidentate trifluoro­acetyl­acetonate ligands. The O—Zr—O bite angles of the acetonate ligands range from 75.27 (5) to 75.41 (5)°. The Zr atom is located on a twofold rotation axis.

Related literature

For β-diketone complexes of zirconium, see: Allard (1976[Allard, B. (1976). J. Inorg. Nucl. Chem. 38, 2109-2115.]); Clegg (1987[Clegg, W. (1987). Acta Cryst. C43, 789-791.]); Calderazzo et al. (1998[Calderazzo, F., Englert, U., Maichle-Mössmer, C., Marchetti, F., Pampaloni, G., Petroni, D., Pinzino, C., Strähle, J. & Tripepi, G. (1998). Inorg Chim. Acta, 270, 177-188.]); Davis & Einstein (1978[Davis, A. R. & Einstein, F. W. B. (1978). Acta Cryst. B34, 2110-2115.]); Elder (1969[Elder, M. (1969). Inorg. Chem. 8, 2103-2109.]); Silverton & Hoard (1963[Silverton, J. V. & Hoard, J. L. (1963). Inorg. Chem. 2, 243-249.]). For the unsolvated title complex, see: Kurat'eva et al. (2007[Kurat'eva, N. V., Baidina, I. A., Stabnikov, O. A. & Igumenov, I. K. (2007). J. Struct. Chem. 48, 513-522.]). For a comparison with the isomorphous hafnium complex, see: Viljoen et al. (2008[Viljoen, J. A., Roodt, A. & Muller, A. J. (2008). Acta Cryst. E64, m838-m839.]).

[Scheme 1]

Experimental

Crystal data
  • [Zr(C5H4F3O2)4]·C7H8

  • Mr = 887.82

  • Monoclinic, C 2/c

  • a = 22.537 (5) Å

  • b = 8.054 (5) Å

  • c = 22.786 (5) Å

  • β = 118.383 (5)°

  • V = 3639 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 100 (2) K

  • 0.33 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.876, Tmax = 0.922

  • 14897 measured reflections

  • 3975 independent reflections

  • 3559 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.070

  • S = 1.05

  • 3975 reflections

  • 259 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zr—O01 2.1633 (13)
Zr—O11 2.1679 (13)
Zr—O02 2.1973 (15)
Zr—O12 2.2079 (15)
O01i—Zr—O01 142.07 (7)
O01—Zr—O11 80.66 (5)
O11—Zr—O11i 142.56 (7)
O01—Zr—O02 75.41 (5)
O11—Zr—O02 76.85 (5)
O01—Zr—O12 76.90 (5)
O11—Zr—O12 75.27 (5)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Zirconium complexes containing diketonato ligands have been reported in the past (Silverton & Hoard, 1963; Allard, 1976; Clegg, 1987; Elder et al., 1969; Calderazzo et al., 1998; Davis & Einstein, 1978). The following diketonato ligand complexes have been reported; acetylacetone (acacH), hexafluoroacetylacetone (hfaaH), tropolone (tropH) and trifluoroacetylacetone (tfaaH). Our research group's interest is in the solvated form of trifluoroacetylacetonato-zirconium(IV) complexes. The title compound is presented as an example of a toluene solvated species.

The title compound is composed of an eight-coordinate zirconium metal centre in which the four O,O-donating bidentate tfaa-ligands are arranged around the metal centre to give a distorted square antiprismatic geometry. The molecule has an inversion centre on the metal with two bidentate ligands on either side including a non-disordered toluene solvate molecule found in a 1:1 ratio to the zirconium complex. The bidentate ligands are coordinated in an alternating configuration with respect to the CF3 groups. This ligand interchange can be visualized as four fins or propellar blades around the metal centre. The distorted square antiprism is defined by the intersection of the two planes formed by the ligand-backbone (O—C—C—C—O) and the O—Zr—O bite angle, which bend inward at an angle of 19.84 - 20.23°. Within the bidentate ligand structural representation, the Zr—O1 (CF3-side bond) and Zr—O2 (CH3-side bond) bond distances are unequal, varying by 0.034 - 0.040 Å. The bite angles of the bidentate ligands to the metal centre are 75.27 (5) and 75.41 (5)°, respectively.

π-π Stacking is observed between the two toluene solvate molecules C100—C106 and C100—C106 (-1/2 + x, 0.5 - y, -1/2 + z) with an interplanar distance of 3.548 Å and a centroid-to-centroid distance of 4.933 Å. Weak C—H-π intermolecular interactions are observed between the toluene solvate and the tfaa-moiety: C105—H105 to C12 (3.786 Å, 172.96 °) and C106—H10D to C14 (3.702 Å, 67.74 °), respectively.

Compared to a recently published structure (Kurat'eva et al., 2007) of the unsolvated complex the deviation in characteristics between the solvated and unsolvated species are minimal. The Zr—O bond length on the CF3-side of the acetylacetonato group, is shorter than the CH3-side bond by an average of 0.035 Å. The angles at which the ligands bend out of the O—Zr—O plane show the most notable difference, with the steric interaction of the toluene molecule distorting the two fins formed on the zirconium complex. This observation is further clarified by an overlay of the solvated and unsolvated zirconium complexes, which has an RMS overlay error of less than 1 Å (excluding H and CF3) indicating the distortion impact of the toluene solvate.

Related literature top

For β-diketone complexes of zirconium, see: Allard (1976); Clegg (1987); Calderazzo et al. (1998); Davis & Einstein (1978); Elder (1969); Silverton & Hoard (1963). For the unsolvated complex of the title compound, see: Kurat'eva, et al. (2007). For a comparison with the hafnium complex, see: Viljoen et al. (2008).

Experimental top

Chemicals were purchased from Sigma-Aldrich and used as received except for toluene which was dried by passage over alumina. Synthesis of [Zr(Tfaa)4] was done under Schlenk conditions. ZrCl4 (218.8 mg, 0.9389 mmol) was added to TfaaNa (663.4 mg, 3.768 mmol, 4eq) in dry toluene (50 ml). This slurry was refluxed for 16 h at 80°C before filtration of the remaining precipitates. The filtrate was recrystalized at -23°C to yield crystals suitable for data collection. Spectroscopic data: 19F NMR (C6D6, 564.77 MHz, p.p.m.): -75.3; IR (ATR) ν(CO): 1533 cm-1.

Refinement top

The aromatic, methine, and methyl H atoms were placed in geometrically idealized positions (C—H = 0.93–0.98) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for aromatic and methine, and Uiso(H) = 1.5Ueq(C) for methyl protons. Torsion angles for methyl protons were refined from electron density.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Representation of the title compound (I), showing the numbering scheme and displacement ellipsoids (50% probability). For the carbon atoms, first digit refers to acetonato backbone moiety, second digit to atom on this backbone. Hydrogen and fluorine atoms are labeled in accordance with specific carbon attached to on acetylacetonato backbone. Hydrogen atoms are omitted for clarity.
Tetrakis(1,1,1-trifluoroacetylacetonato-κ2O,O')zirconium(IV) toluene solvate top
Crystal data top
[Zr(C5H4F3O2)4]·C7H8F(000) = 1792
Mr = 887.82Dx = 1.621 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7203 reflections
a = 22.537 (5) Åθ = 2.7–28.3°
b = 8.054 (5) ŵ = 0.41 mm1
c = 22.786 (5) ÅT = 100 K
β = 118.383 (5)°Cuboid, colourless
V = 3639 (3) Å30.33 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3975 independent reflections
Radiation source: fine-focus sealed tube3559 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 2825
Tmin = 0.876, Tmax = 0.922k = 107
14897 measured reflectionsl = 2829
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0265P)2 + 6.0538P]
where P = (Fo2 + 2Fc2)/3
3975 reflections(Δ/σ)max = 0.001
259 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Zr(C5H4F3O2)4]·C7H8V = 3639 (3) Å3
Mr = 887.82Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.537 (5) ŵ = 0.41 mm1
b = 8.054 (5) ÅT = 100 K
c = 22.786 (5) Å0.33 × 0.22 × 0.20 mm
β = 118.383 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3975 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3559 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 0.922Rint = 0.029
14897 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.50 e Å3
3975 reflectionsΔρmin = 0.45 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zr0.50000.16714 (3)0.75000.01245 (7)
F130.26810 (6)0.05226 (14)0.66176 (6)0.0295 (3)
F110.31909 (6)0.06998 (14)0.76862 (6)0.0287 (3)
F030.51411 (7)0.40573 (15)0.95310 (6)0.0340 (3)
F020.45468 (7)0.22014 (15)0.96764 (6)0.0368 (3)
O110.39952 (6)0.08075 (15)0.72452 (6)0.0158 (3)
O020.51936 (6)0.05446 (15)0.81277 (6)0.0166 (3)
O010.49399 (6)0.25443 (15)0.83681 (6)0.0169 (3)
F120.24250 (6)0.11472 (15)0.71971 (7)0.0366 (3)
O120.43558 (6)0.38983 (15)0.71261 (6)0.0171 (3)
F010.40934 (7)0.38633 (18)0.88399 (6)0.0431 (4)
C130.33615 (9)0.3227 (2)0.71690 (10)0.0200 (4)
C020.48042 (9)0.1790 (2)0.87851 (9)0.0174 (4)
C050.50748 (11)0.2801 (2)0.87225 (10)0.0244 (4)
H05A0.50850.34400.83720.037*
H05B0.46930.31290.87740.037*
H05C0.54810.29940.91320.037*
C120.34797 (9)0.1566 (2)0.72089 (8)0.0160 (3)
C010.46413 (10)0.2976 (2)0.92118 (9)0.0230 (4)
C110.29404 (9)0.0373 (2)0.71787 (10)0.0214 (4)
C140.38103 (9)0.4351 (2)0.70992 (9)0.0182 (4)
C030.47956 (10)0.0124 (2)0.88819 (9)0.0200 (4)
C040.50208 (9)0.1001 (2)0.85506 (9)0.0174 (4)
C1020.67683 (12)0.0133 (3)1.07100 (11)0.0402 (6)
H1020.68030.01341.11220.048*
C150.36143 (10)0.6138 (2)0.69579 (11)0.0257 (4)
H15A0.40030.67860.70360.039*
H15B0.34400.65170.72460.039*
H15C0.32740.62600.65010.039*
C1050.66546 (11)0.0938 (4)0.94967 (11)0.0403 (6)
H1050.66120.11950.90800.048*
C1040.67351 (12)0.0692 (3)0.96984 (12)0.0428 (6)
H1040.67480.15190.94200.051*
C1000.66358 (10)0.2198 (3)0.98939 (11)0.0337 (5)
C1010.66888 (11)0.1768 (3)1.05052 (11)0.0352 (5)
H1010.66710.25931.07820.042*
C1030.67966 (12)0.1103 (3)1.03094 (13)0.0411 (6)
H1030.68570.22031.04500.049*
C1060.65652 (13)0.3975 (4)0.96634 (16)0.0586 (8)
H10A0.65610.46910.99980.088*0.50
H10B0.61510.41030.92550.088*0.50
H10C0.69380.42620.95900.088*0.50
H10D0.65400.40130.92310.088*0.50
H10E0.69490.46010.99740.088*0.50
H10F0.61620.44420.96390.088*0.50
H030.4677 (11)0.027 (3)0.9208 (10)0.024 (6)*
H130.2975 (12)0.361 (3)0.7144 (11)0.028 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr0.01529 (12)0.00880 (12)0.01714 (12)0.0000.01087 (9)0.000
F130.0252 (6)0.0253 (6)0.0364 (6)0.0084 (5)0.0133 (5)0.0067 (5)
F110.0325 (6)0.0214 (6)0.0384 (7)0.0030 (5)0.0221 (6)0.0069 (5)
F030.0518 (8)0.0227 (6)0.0398 (7)0.0104 (6)0.0318 (6)0.0121 (5)
F020.0681 (9)0.0251 (6)0.0407 (7)0.0054 (6)0.0450 (7)0.0025 (5)
O110.0164 (6)0.0125 (6)0.0217 (6)0.0012 (5)0.0116 (5)0.0004 (5)
O020.0188 (6)0.0140 (6)0.0206 (6)0.0007 (5)0.0123 (5)0.0025 (5)
O010.0222 (6)0.0131 (6)0.0199 (6)0.0008 (5)0.0136 (5)0.0003 (5)
F120.0295 (7)0.0204 (6)0.0776 (10)0.0012 (5)0.0399 (7)0.0000 (6)
O120.0193 (6)0.0134 (6)0.0231 (6)0.0016 (5)0.0136 (5)0.0024 (5)
F010.0451 (8)0.0518 (9)0.0367 (7)0.0246 (7)0.0229 (6)0.0001 (6)
C130.0184 (9)0.0161 (9)0.0311 (10)0.0030 (7)0.0163 (8)0.0012 (8)
C020.0192 (9)0.0182 (9)0.0173 (8)0.0009 (7)0.0106 (7)0.0008 (7)
C050.0343 (11)0.0156 (9)0.0300 (10)0.0006 (8)0.0208 (9)0.0034 (8)
C120.0164 (8)0.0158 (9)0.0192 (8)0.0001 (7)0.0113 (7)0.0005 (7)
C010.0319 (11)0.0205 (10)0.0228 (9)0.0012 (8)0.0180 (8)0.0014 (7)
C110.0203 (9)0.0160 (9)0.0342 (10)0.0017 (7)0.0180 (8)0.0001 (8)
C140.0217 (9)0.0146 (9)0.0202 (9)0.0034 (7)0.0115 (7)0.0012 (7)
C030.0260 (10)0.0186 (9)0.0212 (9)0.0010 (7)0.0159 (8)0.0023 (7)
C040.0163 (9)0.0164 (9)0.0194 (8)0.0018 (7)0.0084 (7)0.0020 (7)
C1020.0378 (13)0.0551 (16)0.0294 (11)0.0099 (11)0.0174 (10)0.0037 (11)
C150.0268 (10)0.0148 (9)0.0406 (11)0.0043 (8)0.0202 (9)0.0043 (8)
C1050.0264 (11)0.0699 (18)0.0234 (10)0.0085 (11)0.0108 (9)0.0024 (11)
C1040.0286 (12)0.0546 (17)0.0453 (14)0.0078 (11)0.0177 (11)0.0252 (12)
C1000.0176 (10)0.0387 (13)0.0346 (11)0.0053 (9)0.0040 (9)0.0047 (10)
C1010.0305 (12)0.0414 (14)0.0330 (11)0.0061 (10)0.0145 (9)0.0128 (10)
C1030.0284 (12)0.0329 (13)0.0552 (15)0.0059 (10)0.0144 (11)0.0016 (11)
C1060.0288 (13)0.0518 (17)0.0718 (19)0.0054 (12)0.0048 (13)0.0233 (15)
Geometric parameters (Å, º) top
Zr—O01i2.1633 (13)C05—H05C0.9600
Zr—O012.1633 (13)C12—C111.525 (3)
Zr—O112.1679 (13)C14—C151.496 (3)
Zr—O11i2.1679 (13)C03—C041.419 (3)
Zr—O02i2.1973 (15)C03—H030.95 (2)
Zr—O022.1973 (15)C102—C1031.372 (4)
Zr—O12i2.2079 (15)C102—C1011.381 (4)
Zr—O122.2079 (15)C102—H1020.9300
F13—C111.336 (2)C15—H15A0.9600
F11—C111.335 (2)C15—H15B0.9600
F03—C011.333 (2)C15—H15C0.9600
F02—C011.330 (2)C105—C1041.374 (4)
O11—C121.280 (2)C105—C1001.374 (4)
O02—C041.254 (2)C105—H1050.9300
O01—C021.281 (2)C104—C1031.373 (4)
F12—C111.337 (2)C104—H1040.9300
O12—C141.256 (2)C100—C1011.384 (3)
F01—C011.326 (2)C100—C1061.506 (4)
C13—C121.359 (3)C101—H1010.9300
C13—C141.421 (3)C103—H1030.9300
C13—H130.90 (2)C106—H10A0.9600
C02—C031.362 (3)C106—H10B0.9600
C02—C011.527 (3)C106—H10C0.9600
C05—C041.492 (3)C106—H10D0.9600
C05—H05A0.9600C106—H10E0.9600
C05—H05B0.9600C106—H10F0.9600
O01i—Zr—O01142.07 (7)F13—C11—C12111.10 (15)
O01i—Zr—O11111.77 (5)F12—C11—C12112.97 (15)
O01—Zr—O1180.66 (5)O12—C14—C13122.83 (16)
O01i—Zr—O11i80.66 (5)O12—C14—C15118.18 (16)
O01—Zr—O11i111.77 (5)C13—C14—C15118.94 (17)
O11—Zr—O11i142.56 (7)C02—C03—C04120.48 (17)
O01i—Zr—O02i75.41 (5)C02—C03—H03118.7 (13)
O01—Zr—O02i141.24 (5)C04—C03—H03120.5 (13)
O11—Zr—O02i72.91 (5)O02—C04—C03122.81 (17)
O11i—Zr—O02i76.85 (5)O02—C04—C05118.06 (16)
O01i—Zr—O02141.24 (5)C03—C04—C05119.11 (16)
O01—Zr—O0275.41 (5)C103—C102—C101120.5 (2)
O11—Zr—O0276.85 (5)C103—C102—H102119.8
O11i—Zr—O0272.91 (5)C101—C102—H102119.8
O02i—Zr—O0271.36 (7)C14—C15—H15A109.5
O01i—Zr—O12i76.90 (5)C14—C15—H15B109.5
O01—Zr—O12i72.46 (5)H15A—C15—H15B109.5
O11—Zr—O12i140.87 (5)C14—C15—H15C109.5
O11i—Zr—O12i75.27 (5)H15A—C15—H15C109.5
O02i—Zr—O12i143.29 (5)H15B—C15—H15C109.5
O02—Zr—O12i121.20 (5)C104—C105—C100121.7 (2)
O01i—Zr—O1272.46 (5)C104—C105—H105119.1
O01—Zr—O1276.90 (5)C100—C105—H105119.1
O11—Zr—O1275.27 (5)C103—C104—C105120.2 (2)
O11i—Zr—O12140.87 (5)C103—C104—H104119.9
O02i—Zr—O12121.20 (5)C105—C104—H104119.9
O02—Zr—O12143.29 (5)C105—C100—C101117.6 (2)
O12i—Zr—O1271.35 (7)C105—C100—C106120.2 (2)
C12—O11—Zr131.65 (12)C101—C100—C106122.2 (2)
C04—O02—Zr134.45 (12)C102—C101—C100120.9 (2)
C02—O01—Zr131.67 (12)C102—C101—H101119.5
C14—O12—Zr134.72 (12)C100—C101—H101119.5
C12—C13—C14120.47 (17)C102—C103—C104119.1 (2)
C12—C13—H13119.8 (15)C102—C103—H103120.5
C14—C13—H13119.4 (15)C104—C103—H103120.5
O01—C02—C03127.88 (17)C100—C106—H10A109.5
O01—C02—C01112.97 (16)C100—C106—H10B109.5
C03—C02—C01119.15 (16)H10A—C106—H10B109.5
C04—C05—H05A109.5C100—C106—H10C109.5
C04—C05—H05B109.5H10A—C106—H10C109.5
H05A—C05—H05B109.5H10B—C106—H10C109.5
C04—C05—H05C109.5C100—C106—H10D109.5
H05A—C05—H05C109.5H10A—C106—H10D141.1
H05B—C05—H05C109.5H10B—C106—H10D56.3
O11—C12—C13128.12 (17)H10C—C106—H10D56.3
O11—C12—C11112.42 (15)C100—C106—H10E109.5
C13—C12—C11119.40 (16)H10A—C106—H10E56.3
F01—C01—F02107.98 (17)H10B—C106—H10E141.1
F01—C01—F03106.60 (17)H10C—C106—H10E56.3
F02—C01—F03106.60 (15)H10D—C106—H10E109.5
F01—C01—C02111.26 (16)C100—C106—H10F109.5
F02—C01—C02113.01 (16)H10A—C106—H10F56.3
F03—C01—C02111.06 (16)H10B—C106—H10F56.3
F11—C11—F13106.99 (15)H10C—C106—H10F141.1
F11—C11—F12106.91 (15)H10D—C106—H10F109.5
F13—C11—F12106.87 (15)H10E—C106—H10F109.5
F11—C11—C12111.66 (15)
O01i—Zr—O11—C1289.06 (15)C14—C13—C12—O116.1 (3)
O01—Zr—O11—C1253.60 (14)C14—C13—C12—C11170.90 (17)
O11i—Zr—O11—C12167.40 (15)O01—C02—C01—F0162.8 (2)
O02i—Zr—O11—C12155.08 (15)C03—C02—C01—F01117.6 (2)
O02—Zr—O11—C12130.68 (15)O01—C02—C01—F02175.56 (16)
O12i—Zr—O11—C126.91 (18)C03—C02—C01—F024.1 (3)
O12—Zr—O11—C1225.20 (14)O01—C02—C01—F0355.8 (2)
O01i—Zr—O02—C04163.83 (14)C03—C02—C01—F03123.82 (19)
O01—Zr—O02—C0428.28 (16)O11—C12—C11—F1154.2 (2)
O11—Zr—O02—C0455.32 (16)C13—C12—C11—F11128.38 (18)
O11i—Zr—O02—C04147.03 (17)O11—C12—C11—F1365.2 (2)
O02i—Zr—O02—C04131.45 (18)C13—C12—C11—F13112.26 (19)
O12i—Zr—O02—C0486.84 (17)O11—C12—C11—F12174.73 (15)
O12—Zr—O02—C0413.9 (2)C13—C12—C11—F127.8 (3)
O01i—Zr—O01—C02167.64 (16)Zr—O12—C14—C1317.5 (3)
O11—Zr—O01—C0254.03 (15)Zr—O12—C14—C15165.24 (13)
O11i—Zr—O01—C0289.17 (15)C12—C13—C14—O126.0 (3)
O02i—Zr—O01—C026.93 (19)C12—C13—C14—C15171.22 (18)
O02—Zr—O01—C0224.70 (15)O01—C02—C03—C047.0 (3)
O12i—Zr—O01—C02154.76 (16)C01—C02—C03—C04172.56 (17)
O12—Zr—O01—C02130.96 (16)Zr—O02—C04—C0320.3 (3)
O01i—Zr—O12—C14145.52 (17)Zr—O02—C04—C05161.44 (13)
O01—Zr—O12—C1457.13 (16)C02—C03—C04—O024.8 (3)
O11—Zr—O12—C1426.49 (16)C02—C03—C04—C05173.47 (18)
O11i—Zr—O12—C14165.63 (15)C100—C105—C104—C1030.3 (4)
O02i—Zr—O12—C1485.53 (17)C104—C105—C100—C1011.1 (3)
O02—Zr—O12—C1415.3 (2)C104—C105—C100—C106178.4 (2)
O12i—Zr—O12—C14132.77 (19)C103—C102—C101—C1000.0 (4)
Zr—O01—C02—C0315.3 (3)C105—C100—C101—C1021.0 (3)
Zr—O01—C02—C01165.07 (12)C106—C100—C101—C102178.5 (2)
Zr—O11—C12—C1317.1 (3)C101—C102—C103—C1040.9 (4)
Zr—O11—C12—C11165.74 (11)C105—C104—C103—C1020.8 (4)
Symmetry code: (i) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Zr(C5H4F3O2)4]·C7H8
Mr887.82
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)22.537 (5), 8.054 (5), 22.786 (5)
β (°) 118.383 (5)
V3)3639 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.33 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.876, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
14897, 3975, 3559
Rint0.029
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.070, 1.05
No. of reflections3975
No. of parameters259
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.45

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Selected geometric parameters (Å, º) top
Zr—O012.1633 (13)Zr—O022.1973 (15)
Zr—O112.1679 (13)Zr—O122.2079 (15)
O01i—Zr—O01142.07 (7)O11—Zr—O0276.85 (5)
O01—Zr—O1180.66 (5)O01—Zr—O1276.90 (5)
O11—Zr—O11i142.56 (7)O11—Zr—O1275.27 (5)
O01—Zr—O0275.41 (5)
Symmetry code: (i) x+1, y, z+3/2.
 

Acknowledgements

Financial assistance from the Advanced Metals Initiative (AMI), the Department of Science and Technology (DST) of South Africa, the New Metals Development Network (NMDN) and the South African Nuclear Energy Corporation Limited (Necsa) is gratefully acknowledged. Dr R. Meijboom is acknowledged for his kind assistance in the use of modified Shlenck techniques.

References

First citationAllard, B. (1976). J. Inorg. Nucl. Chem. 38, 2109–2115.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalderazzo, F., Englert, U., Maichle-Mössmer, C., Marchetti, F., Pampaloni, G., Petroni, D., Pinzino, C., Strähle, J. & Tripepi, G. (1998). Inorg Chim. Acta, 270, 177–188.  Web of Science CSD CrossRef CAS Google Scholar
First citationClegg, W. (1987). Acta Cryst. C43, 789–791.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDavis, A. R. & Einstein, F. W. B. (1978). Acta Cryst. B34, 2110–2115.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationElder, M. (1969). Inorg. Chem. 8, 2103–2109.  CSD CrossRef CAS Web of Science Google Scholar
First citationKurat'eva, N. V., Baidina, I. A., Stabnikov, O. A. & Igumenov, I. K. (2007). J. Struct. Chem. 48, 513–522.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilverton, J. V. & Hoard, J. L. (1963). Inorg. Chem. 2, 243–249.  CSD CrossRef CAS Web of Science Google Scholar
First citationViljoen, J. A., Roodt, A. & Muller, A. J. (2008). Acta Cryst. E64, m838–m839.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds