organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-methyl­pyridinium 4-amino­benzoate

aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 14 May 2008; accepted 16 May 2008; online 21 May 2008)

In the structure of the title salt, C6H9N2+·C7H6NO2, the 4-amino­benzoate anions are linked to adjacent anions and 2-amino-4-methyl­pyridinium cations via N—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular structure. The crystal structure also shows a weak C—H⋯O hydrogen bond between adjacent anions. Within the 4-amino­benzoate anion, the carboxyl­ate group is twisted by 14.0 (4)° with respect to the benz­ene ring.

Related literature

For general background, see: Choudhury et al. (2007[Choudhury, S. R., Jana, A. D., Colacio, E., Lee, H. M., Mostafa, G. & Mukhopadhyay, S. (2007). Cryst. Growth Des. 7, 212-214.]); Halvorson et al. (1987[Halvorson, K. E., Grigereit, T. & Willett, R. D. (1987). Inorg. Chem. 26, 1716-1720.]); Geiser et al. (1986[Geiser, U., Gaura, R. M., Willett, R. D. & West, D. X. (1986). Inorg. Chem. 25, 4203-4212.]); Geiser & Willett (1984[Geiser, U. & Willett, R. D. (1984). J. Appl. Phys. 55, 2407-2409.]). For related structures, see: Kaabi & Khedhiri (2004[Kaabi, K. & Khedhiri, L. (2004). Z. Kristallogr. New Cryst. Struct. 219, 255-256.]); Chtioui et al. (2006[Chtioui, A., Benhamada, L. & Jouini, A. (2006). Mater. Res. Bull. 40, 2243-2255.]). For a description of the Cambridge Structural Database, see Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C7H6NO2

  • Mr = 245.28

  • Orthorhombic, P 21 21 21

  • a = 5.5734 (14) Å

  • b = 8.8154 (16) Å

  • c = 25.374 (5) Å

  • V = 1246.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 (2) K

  • 0.46 × 0.38 × 0.30 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: none

  • 14099 measured reflections

  • 1451 independent reflections

  • 1126 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.095

  • S = 1.04

  • 1451 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.89 2.19 3.021 (3) 157
N2—H2N⋯O2 0.92 1.69 2.606 (3) 174
N3—H3A⋯O1ii 0.93 1.95 2.844 (3) 160
N3—H3B⋯O1 0.92 1.95 2.872 (3) 174
C3—H3⋯O2i 0.93 2.52 3.301 (3) 142
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The presence of the outside lone-pair electrons on the pyridine-N atom suggests that 2-amino-4-methyl-pyridine is an appropriate ligand for preparing metal complexes. However a search of the Cambridge Structure Database (November 2007 update; Allen, 2002) shows that in the most cases the 2-amino-4-methyl-pyridine presents as a counter cation but does not coordinate to the metal ion (Choudhury et al., 2007; Halvorson et al., 1987; Geiser et al., 1986; Geiser & Willett, 1984). This implies that the 2-amino-4-methyl-pyridine, as a weak base, is easy to be protonated in acid condition. The crystal structures of two inorganic salt of 2-amino-4-methyl-pyridine, 2-amino-4-methyl-pyridinium phosphate (Kaabi & Khedhiri, 2004) and 2-amino-4-methyl-pyridinium arsenate (Chtioui et al., 2006), have been reported previously. Recently we prepared the title organic salt of 2-amino-4-methyl-pyridine, and its crystal structure is reported here.

The crystal of the title compound consists of 2-amino-4-methyl-pyridinium cations and amino-benzoate anions (Fig. 1). The smaller difference in C—O bond distances of the carboxyl group (Table 1) indicates the carboxyl group is deprotonated in the crystal. Within the anion the carboxyl group is twisted with respect to the benzene ring by a dihedral angle of 14.0 (4)°. In the crystal, the aminobenzoate anions are linked with both of adjacent aminobenzoate anions and aminomethylpyridinium cations via N—H···O hydrogen bonding, to form the three dimensional supramolecular structure. The crystal structure also contains weak C—H···O hydrogen bonding between adjacent anions.

Related literature top

For general background, see: Choudhury et al. (2007); Halvorson et al. (1987); Geiser et al. (1986); Geiser & Willett (1984). For related structures, see: Kaabi & Khedhiri (2004); Chtioui et al. (2006). For a description of the Cambridge Structural database, see Allen (2002).

Experimental top

2-Amino-4-methyl-pyridine (0.054 g, 0.5 mmol) and 4-amino-benzoic acid (0.069 g, 0.5 mmol) were dissolved in ethanol (5 ml) at room temperature. The solution was filtered and light brown single crystals were obtained from the filtration after 2 weeks.

Refinement top

H atoms bonded to N atoms were located in a difference Fourier map and were refined as riding in as-found relative positions, with Uiso(H) = 1.5Ueq(N). Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and the torsion angle was refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonding.
2-Amino-4-methylpyridinium 4-aminobenzoate top
Crystal data top
C6H9N2+·C7H6NO2F(000) = 520
Mr = 245.28Dx = 1.307 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2654 reflections
a = 5.5734 (14) Åθ = 2.0–25.2°
b = 8.8154 (16) ŵ = 0.09 mm1
c = 25.374 (5) ÅT = 295 K
V = 1246.6 (5) Å3Chunk, light brown
Z = 40.46 × 0.38 × 0.30 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1126 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
Graphite monochromatorθmax = 26.0°, θmin = 1.6°
Detector resolution: 10.00 pixels mm-1h = 66
ω scansk = 1010
14099 measured reflectionsl = 3029
1451 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.1505P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
1451 reflectionsΔρmax = 0.13 e Å3
165 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (3)
Crystal data top
C6H9N2+·C7H6NO2V = 1246.6 (5) Å3
Mr = 245.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.5734 (14) ŵ = 0.09 mm1
b = 8.8154 (16) ÅT = 295 K
c = 25.374 (5) Å0.46 × 0.38 × 0.30 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1126 reflections with I > 2σ(I)
14099 measured reflectionsRint = 0.059
1451 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.04Δρmax = 0.13 e Å3
1451 reflectionsΔρmin = 0.12 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5107 (5)0.2323 (3)0.74214 (9)0.0710 (7)
H1A0.44590.19470.77120.106*
H1B0.63620.19810.72670.106*
N20.5736 (4)0.8834 (2)0.61196 (7)0.0520 (6)
H2N0.45480.82310.62560.078*
N30.4308 (5)0.8308 (3)0.52906 (8)0.0660 (7)
H3A0.44430.85280.49340.099*
H3B0.30980.77660.54540.099*
O10.0737 (4)0.6432 (2)0.57815 (6)0.0692 (6)
O20.2584 (3)0.6999 (2)0.65310 (6)0.0562 (5)
C10.0644 (4)0.5269 (3)0.65687 (9)0.0451 (6)
C20.0117 (4)0.4843 (3)0.70832 (9)0.0497 (6)
H20.12490.52330.72440.060*
C30.1565 (5)0.3857 (3)0.73617 (9)0.0523 (7)
H30.11390.35680.77020.063*
C40.3654 (5)0.3295 (3)0.71361 (9)0.0488 (6)
C50.4210 (5)0.3741 (3)0.66250 (10)0.0581 (7)
H50.56120.33880.64680.070*
C60.2727 (5)0.4694 (3)0.63474 (10)0.0550 (7)
H60.31290.49600.60040.066*
C70.0980 (5)0.6303 (3)0.62688 (9)0.0479 (6)
C80.5886 (5)0.9037 (3)0.55940 (9)0.0482 (6)
C90.7670 (5)1.0014 (3)0.53990 (10)0.0520 (6)
H90.78151.01560.50370.062*
C100.9189 (5)1.0757 (3)0.57306 (10)0.0551 (7)
C110.8960 (6)1.0501 (3)0.62760 (11)0.0668 (8)
H110.99771.09890.65120.080*
C120.7262 (6)0.9547 (3)0.64526 (10)0.0636 (8)
H120.71310.93720.68130.076*
C131.1031 (6)1.1849 (3)0.55251 (12)0.0742 (8)
H13A1.11231.17660.51480.111*
H13B1.25671.16150.56760.111*
H13C1.05821.28650.56190.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0621 (14)0.0843 (17)0.0664 (14)0.0162 (14)0.0039 (12)0.0169 (13)
N20.0637 (14)0.0562 (12)0.0360 (11)0.0004 (12)0.0035 (11)0.0007 (9)
N30.0751 (15)0.0825 (16)0.0403 (11)0.0200 (16)0.0037 (12)0.0003 (11)
O10.0800 (14)0.0940 (14)0.0336 (9)0.0151 (13)0.0001 (10)0.0088 (9)
O20.0660 (11)0.0651 (10)0.0374 (9)0.0093 (11)0.0020 (10)0.0024 (8)
C10.0495 (14)0.0509 (13)0.0350 (12)0.0068 (13)0.0035 (12)0.0009 (10)
C20.0508 (14)0.0590 (14)0.0391 (13)0.0028 (13)0.0028 (11)0.0011 (12)
C30.0537 (16)0.0673 (16)0.0360 (12)0.0002 (14)0.0013 (11)0.0086 (13)
C40.0489 (15)0.0536 (14)0.0440 (14)0.0021 (13)0.0023 (12)0.0017 (12)
C50.0525 (15)0.0734 (18)0.0484 (15)0.0043 (16)0.0046 (14)0.0018 (13)
C60.0599 (17)0.0668 (17)0.0383 (14)0.0070 (16)0.0040 (13)0.0035 (12)
C70.0559 (16)0.0525 (14)0.0354 (13)0.0065 (14)0.0036 (12)0.0021 (11)
C80.0554 (15)0.0498 (13)0.0395 (13)0.0042 (14)0.0032 (12)0.0006 (11)
C90.0635 (16)0.0517 (13)0.0409 (13)0.0048 (15)0.0058 (13)0.0019 (11)
C100.0574 (16)0.0479 (14)0.0598 (16)0.0027 (14)0.0011 (15)0.0004 (12)
C110.076 (2)0.0692 (18)0.0554 (17)0.0099 (18)0.0100 (16)0.0047 (14)
C120.082 (2)0.0698 (18)0.0387 (14)0.0010 (19)0.0040 (15)0.0012 (13)
C130.0708 (19)0.0678 (18)0.084 (2)0.0106 (19)0.0038 (18)0.0001 (16)
Geometric parameters (Å, º) top
N1—C41.384 (3)C3—H30.9300
N1—H1A0.8846C4—C51.390 (3)
N1—H1B0.8568C5—C61.373 (4)
N2—C81.348 (3)C5—H50.9300
N2—C121.354 (3)C6—H60.9300
N2—H2N0.9167C8—C91.405 (4)
N3—C81.334 (3)C9—C101.361 (4)
N3—H3A0.9287C9—H90.9300
N3—H3B0.9252C10—C111.408 (4)
O1—C71.249 (3)C10—C131.501 (4)
O2—C71.272 (3)C11—C121.343 (4)
C1—C61.385 (4)C11—H110.9300
C1—C21.390 (3)C12—H120.9300
C1—C71.494 (3)C13—H13A0.9600
C2—C31.381 (3)C13—H13B0.9600
C2—H20.9300C13—H13C0.9600
C3—C41.389 (3)
C4—N1—H1A115.4C1—C6—H6119.3
C4—N1—H1B117.1O1—C7—O2123.4 (2)
H1A—N1—H1B125.7O1—C7—C1119.6 (2)
C8—N2—C12121.1 (2)O2—C7—C1117.0 (2)
C8—N2—H2N119.7N3—C8—N2117.8 (2)
C12—N2—H2N119.2N3—C8—C9124.0 (2)
C8—N3—H3A114.1N2—C8—C9118.3 (2)
C8—N3—H3B118.1C10—C9—C8121.1 (2)
H3A—N3—H3B127.2C10—C9—H9119.4
C6—C1—C2117.3 (2)C8—C9—H9119.4
C6—C1—C7121.7 (2)C9—C10—C11118.3 (3)
C2—C1—C7121.0 (2)C9—C10—C13121.3 (2)
C3—C2—C1121.8 (2)C11—C10—C13120.4 (3)
C3—C2—H2119.1C12—C11—C10119.5 (3)
C1—C2—H2119.1C12—C11—H11120.3
C2—C3—C4120.2 (2)C10—C11—H11120.3
C2—C3—H3119.9C11—C12—N2121.7 (2)
C4—C3—H3119.9C11—C12—H12119.1
N1—C4—C3119.7 (2)N2—C12—H12119.1
N1—C4—C5122.2 (2)C10—C13—H13A109.5
C3—C4—C5118.1 (2)C10—C13—H13B109.5
C6—C5—C4121.1 (3)H13A—C13—H13B109.5
C6—C5—H5119.4C10—C13—H13C109.5
C4—C5—H5119.4H13A—C13—H13C109.5
C5—C6—C1121.4 (2)H13B—C13—H13C109.5
C5—C6—H6119.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.892.193.021 (3)157
N2—H2N···O20.921.692.606 (3)174
N3—H3A···O1ii0.931.952.844 (3)160
N3—H3B···O10.921.952.872 (3)174
C3—H3···O2i0.932.523.301 (3)142
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C7H6NO2
Mr245.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)5.5734 (14), 8.8154 (16), 25.374 (5)
V3)1246.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.46 × 0.38 × 0.30
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14099, 1451, 1126
Rint0.059
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.095, 1.04
No. of reflections1451
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.12

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
O1—C71.249 (3)O2—C71.272 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.892.193.021 (3)157
N2—H2N···O20.921.692.606 (3)174
N3—H3A···O1ii0.931.952.844 (3)160
N3—H3B···O10.921.952.872 (3)174
C3—H3···O2i0.932.523.301 (3)142
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1/2, y+3/2, z+1.
 

Acknowledgements

The work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationChoudhury, S. R., Jana, A. D., Colacio, E., Lee, H. M., Mostafa, G. & Mukhopadhyay, S. (2007). Cryst. Growth Des. 7, 212–214.  Web of Science CSD CrossRef CAS Google Scholar
First citationChtioui, A., Benhamada, L. & Jouini, A. (2006). Mater. Res. Bull. 40, 2243–2255.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGeiser, U., Gaura, R. M., Willett, R. D. & West, D. X. (1986). Inorg. Chem. 25, 4203–4212.  CSD CrossRef CAS Web of Science Google Scholar
First citationGeiser, U. & Willett, R. D. (1984). J. Appl. Phys. 55, 2407–2409.  CSD CrossRef CAS Web of Science Google Scholar
First citationHalvorson, K. E., Grigereit, T. & Willett, R. D. (1987). Inorg. Chem. 26, 1716–1720.  CSD CrossRef CAS Web of Science Google Scholar
First citationKaabi, K. & Khedhiri, L. (2004). Z. Kristallogr. New Cryst. Struct. 219, 255–256.  CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds