metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[aqua­[3-(3-pyrid­yl)acrylato]gadolinium(III)]-bis­­[μ-3-(3-pyrid­yl)acrylato]]

aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China, bFaculty of Earth Sciences, China University of Geosciences, Wuhan 430074, People's Republic of China, and cDepartment of Resources and Environmental Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
*Correspondence e-mail: fupeiliang@yahoo.cn

(Received 3 April 2008; accepted 2 May 2008; online 10 May 2008)

In the title compound, [Gd(C8H6NO2)3(H2O)]n, the gadolinium(III) ion is coordinated by eight carboxyl­ate O atoms and one water mol­ecule. The carboxyl­ate ligands bridge pairs of gadolinium(III) ions, forming a zigzag chain along [100]. Hydrogen bonds link the chains into sheets parallel to (001).

Related literature

For related literature, see: Ayyappan et al. (2001[Ayyappan, P., Evans, O. R. & Lin, W.-B. (2001). Inorg. Chem. 40, 4627-4632.]); Gunning & Cahill (2005[Gunning, N. S. & Cahill, C. L. (2005). J. Chem. Soc. Dalton Trans. pp. 2788-2792.]); Zhang et al. (2000[Zhang, J., Xiong, R.-G., Zuo, J.-L., Che, C.-M. & You, X.-Z. (2000). J. Chem. Soc. Dalton Trans. pp. 2898-2900.]). For related structures, see: Liu et al. (2004[Liu, Y.-J., Xiong, R.-G., You, X.-Z. & Che, C.-M. (2004). Z. Anorg. Allg. Chem. 630, 2761-2764.], 2006[Liu, C.-B., Nie, X.-L., Ding, L., Xie, M.-Y. & Wen, H.-L. (2006). Acta Cryst. E62, m2319-m2320.]); Zhou et al. (2004[Zhou, Q.-X., Wang, Y.-J., Zhao, X.-Q. & Yue, L. (2004). Chin. J. Struct. Chem. 23, 570-573.]).

[Scheme 1]

Experimental

Crystal data
  • [Gd(C8H6NO2)3(H2O)]

  • Mr = 619.68

  • Triclinic, [P \overline 1]

  • a = 6.2118 (7) Å

  • b = 12.7222 (14) Å

  • c = 15.6601 (18) Å

  • α = 111.741 (2)°

  • β = 90.309 (2)°

  • γ = 95.260 (2)°

  • V = 1143.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.95 mm−1

  • T = 294 (2) K

  • 0.24 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART , SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.538, Tmax = 0.757

  • 5840 measured reflections

  • 3998 independent reflections

  • 3745 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.070

  • S = 1.04

  • 3998 reflections

  • 324 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.46 e Å−3

  • Δρmin = −2.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯N1i 0.853 (10) 1.891 (18) 2.727 (4) 166 (5)
O7—H7B⋯O3ii 0.850 (10) 1.908 (13) 2.752 (3) 172 (4)
Symmetry codes: (i) -x, -y, -z; (ii) x+1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART , SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART , SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Bruker, 2007[Bruker (2007). SMART , SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The bifunctional ligand 3-pyridylacrylic acid (HTPA) is a potential multidentate ligand,and several types of complexes of HTPA have been studied (Ayyappan et al. ,2001; Gunning & Cahill, 2005; Zhang et al., 2000). Until now, however, only a few crystallographic studies of 4f-block metal complexes of HTPA have been reported (Liu et al., 2006; Liu et al., 2004; Zhou et al., 2004).

Here, we reported the synthesis and structure of the title complex, [Gd(TPA)3(H2O)]n (Fig.1), whose structure consists of a repeating unit of formula [Gd(TPA)3(H2O)]. Each GdIII centre is coordinated by eight carboxylate O atoms and one water molecule. The gadolinium(III) ions are joined into a coordination polymer chain along [100] (Fig.2), reinforced by O—H···O hydrogen bonds. Adjacent [100] chains are linked by O—H···N hydrogen bonds, forming sheets parallel to (001) (Fig.3).

Related literature top

For related literature, see: Ayyappan et al. (2001); Gunning & Cahill (2005); Zhang et al. (2000). For related structures, see: Liu et al. (2004, 2006); Zhou et al. (2004).

Experimental top

A mixture of Gd(NO3)3.6H2O (0.25 mmol, 0.110 g), 3-pyridylacrylic acid (1.25 mmol,0.186 g), H2O (14 ml) was sealed in a 25 ml Teflon-lined stainless reactor and heated at 438 K for four days under autogenous pressure, then followed by slow cooling to room temperature, when a few colourless crystals were obtained. Analysis:found C 46.55, H 3.28, N 6.85%; C24H20GdN3O7 requires C 46.48, H 3.23, N 6.78%.

Refinement top

H atoms of the water molecules were located in a difference map and freely refined. H atoms bonded to C atoms were placed at calculated positions and treated using a riding-model approximation [C—H = 0.93Å and Uiso(H)= 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2007); software used to prepare material for publication: SHELXTL (Bruker, 2007).

Figures top
[Figure 1] Fig. 1. A portion of the structure showing the coordination environment of the GdIII ion, with displacement ellipsoids at the 50% probability level. H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (a) -x,1-y,-z; (b)1-x,1-y,-z.]
[Figure 2] Fig. 2. Part of a chain structure along the a axis. All H atoms are omitted.
[Figure 3] Fig. 3. A packing diagram viewed along the a axis.
catena-Poly[[aqua[3-(3-pyridyl)acrylato]gadolinium(III)]- bis[µ-3-(3-pyridyl)acrylato]] top
Crystal data top
[Gd(C8H6NO2)3(H2O)]Z = 2
Mr = 619.68F(000) = 610
Triclinic, P1Dx = 1.799 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2118 (7) ÅCell parameters from 5157 reflections
b = 12.7222 (14) Åθ = 2.7–25.9°
c = 15.6601 (18) ŵ = 2.95 mm1
α = 111.741 (2)°T = 294 K
β = 90.309 (2)°Block, colourless
γ = 95.260 (2)°0.24 × 0.16 × 0.10 mm
V = 1143.7 (2) Å3
Data collection top
Bruker SMART 1000
diffractometer
3998 independent reflections
Radiation source: fine-focus sealed tube3745 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 37
Tmin = 0.538, Tmax = 0.757k = 1514
5840 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0466P)2]
where P = (Fo2 + 2Fc2)/3
3998 reflections(Δ/σ)max = 0.001
324 parametersΔρmax = 1.46 e Å3
3 restraintsΔρmin = 2.22 e Å3
Crystal data top
[Gd(C8H6NO2)3(H2O)]γ = 95.260 (2)°
Mr = 619.68V = 1143.7 (2) Å3
Triclinic, P1Z = 2
a = 6.2118 (7) ÅMo Kα radiation
b = 12.7222 (14) ŵ = 2.95 mm1
c = 15.6601 (18) ÅT = 294 K
α = 111.741 (2)°0.24 × 0.16 × 0.10 mm
β = 90.309 (2)°
Data collection top
Bruker SMART 1000
diffractometer
3998 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3745 reflections with I > 2σ(I)
Tmin = 0.538, Tmax = 0.757Rint = 0.024
5840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0273 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.46 e Å3
3998 reflectionsΔρmin = 2.22 e Å3
324 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Gd10.24371 (2)0.472144 (12)0.075317 (10)0.01434 (8)
O10.0775 (4)0.2748 (2)0.01956 (19)0.0278 (6)
O20.0886 (4)0.38753 (19)0.03041 (16)0.0186 (5)
O30.0667 (4)0.5066 (2)0.17142 (16)0.0234 (5)
O40.1965 (4)0.4402 (2)0.22361 (19)0.0347 (7)
O50.4079 (4)0.6447 (2)0.19685 (17)0.0253 (6)
O60.5959 (4)0.59101 (19)0.07279 (15)0.0192 (5)
O70.5409 (4)0.3842 (2)0.10173 (19)0.0235 (5)
H7A0.534 (8)0.319 (2)0.106 (4)0.09 (2)*
H7B0.657 (4)0.428 (3)0.122 (3)0.060 (17)*
N10.5448 (6)0.1952 (3)0.1445 (3)0.0363 (9)
N20.6805 (6)0.6840 (3)0.5098 (3)0.0473 (10)
N31.2920 (6)0.9676 (4)0.3726 (3)0.0581 (13)
C10.0758 (6)0.2899 (3)0.0247 (2)0.0202 (7)
C20.2482 (6)0.1977 (3)0.0705 (3)0.0270 (8)
H20.36450.21400.09950.032*
C30.2458 (6)0.0938 (3)0.0724 (3)0.0281 (8)
H30.12400.07770.04660.034*
C40.4190 (6)0.0005 (3)0.1120 (3)0.0263 (8)
C50.6180 (8)0.0145 (4)0.1449 (4)0.0452 (12)
H50.64480.08520.14500.054*
C60.7752 (7)0.0755 (4)0.1773 (3)0.0431 (11)
H60.90800.06690.20030.052*
C70.7328 (7)0.1786 (3)0.1750 (3)0.0374 (10)
H70.84050.23910.19590.045*
C80.3917 (7)0.1075 (3)0.1140 (3)0.0321 (9)
H80.25930.11940.09300.039*
C90.0238 (6)0.4859 (3)0.2362 (3)0.0224 (8)
C100.0715 (6)0.5192 (3)0.3273 (3)0.0279 (8)
H100.00130.50530.37410.033*
C110.2553 (6)0.5686 (3)0.3448 (3)0.0274 (8)
H110.32500.57760.29560.033*
C120.3588 (6)0.6102 (3)0.4332 (3)0.0273 (8)
C130.2705 (7)0.6138 (4)0.5164 (3)0.0357 (9)
H130.13300.59150.51930.043*
C140.3881 (8)0.6504 (4)0.5937 (3)0.0455 (11)
H140.33190.65340.64980.055*
C150.5910 (8)0.6829 (4)0.5871 (3)0.0507 (13)
H150.67070.70560.63990.061*
C160.5622 (7)0.6482 (3)0.4349 (3)0.0351 (9)
H160.62030.64880.38020.042*
C170.5793 (6)0.6546 (3)0.1569 (2)0.0180 (7)
C180.7606 (6)0.7385 (3)0.2060 (3)0.0228 (8)
H180.89650.73080.18110.027*
C190.7388 (6)0.8243 (3)0.2838 (3)0.0257 (8)
H190.60230.82980.30830.031*
C200.9125 (6)0.9118 (3)0.3352 (3)0.0283 (8)
C210.8659 (7)1.0191 (3)0.3920 (3)0.0363 (10)
H210.72331.03660.39890.044*
C221.0313 (7)1.0991 (4)0.4378 (3)0.0458 (12)
H221.00291.17180.47600.055*
C231.2396 (8)1.0707 (5)0.4266 (4)0.0546 (14)
H231.35081.12590.45810.066*
C241.1281 (7)0.8911 (4)0.3285 (3)0.0426 (11)
H241.16050.81890.29080.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.01095 (11)0.01488 (11)0.01579 (12)0.00058 (7)0.00181 (7)0.00424 (8)
O10.0259 (14)0.0208 (14)0.0372 (16)0.0015 (11)0.0083 (12)0.0124 (12)
O20.0159 (12)0.0158 (12)0.0231 (13)0.0012 (9)0.0005 (10)0.0065 (10)
O30.0171 (12)0.0325 (14)0.0211 (13)0.0011 (10)0.0028 (10)0.0109 (11)
O40.0255 (14)0.0538 (19)0.0321 (15)0.0163 (13)0.0089 (12)0.0217 (14)
O50.0185 (13)0.0281 (14)0.0229 (13)0.0029 (11)0.0045 (10)0.0031 (11)
O60.0182 (12)0.0216 (13)0.0139 (12)0.0015 (10)0.0024 (9)0.0023 (10)
O70.0142 (12)0.0223 (14)0.0372 (15)0.0032 (10)0.0010 (11)0.0146 (12)
N10.043 (2)0.0181 (17)0.047 (2)0.0042 (15)0.0030 (18)0.0124 (16)
N20.035 (2)0.049 (2)0.045 (2)0.0078 (18)0.0182 (18)0.0026 (19)
N30.0234 (19)0.050 (3)0.067 (3)0.0048 (18)0.0035 (19)0.015 (2)
C10.0186 (18)0.0181 (18)0.0231 (19)0.0018 (14)0.0052 (15)0.0069 (15)
C20.0251 (19)0.021 (2)0.034 (2)0.0027 (15)0.0062 (17)0.0105 (17)
C30.0260 (19)0.022 (2)0.033 (2)0.0007 (15)0.0018 (16)0.0066 (16)
C40.031 (2)0.0178 (18)0.028 (2)0.0019 (15)0.0004 (16)0.0072 (15)
C50.045 (3)0.027 (2)0.069 (3)0.0043 (19)0.016 (2)0.026 (2)
C60.037 (2)0.035 (2)0.058 (3)0.0075 (19)0.016 (2)0.021 (2)
C70.040 (2)0.030 (2)0.035 (2)0.0119 (18)0.0007 (19)0.0070 (18)
C80.031 (2)0.024 (2)0.042 (2)0.0014 (17)0.0012 (18)0.0132 (18)
C90.0168 (17)0.0264 (19)0.0230 (19)0.0014 (15)0.0026 (14)0.0088 (16)
C100.027 (2)0.038 (2)0.0214 (19)0.0061 (17)0.0027 (15)0.0128 (17)
C110.0258 (19)0.032 (2)0.024 (2)0.0024 (16)0.0057 (16)0.0098 (17)
C120.028 (2)0.027 (2)0.024 (2)0.0011 (16)0.0069 (16)0.0054 (16)
C130.037 (2)0.039 (2)0.031 (2)0.0079 (18)0.0056 (18)0.0119 (19)
C140.061 (3)0.051 (3)0.022 (2)0.002 (2)0.007 (2)0.011 (2)
C150.054 (3)0.047 (3)0.036 (3)0.001 (2)0.024 (2)0.000 (2)
C160.028 (2)0.040 (2)0.032 (2)0.0078 (18)0.0064 (17)0.0066 (19)
C170.0181 (17)0.0150 (17)0.0187 (18)0.0030 (13)0.0004 (14)0.0034 (14)
C180.0191 (18)0.0217 (19)0.025 (2)0.0000 (14)0.0040 (15)0.0059 (16)
C190.0176 (17)0.027 (2)0.027 (2)0.0020 (15)0.0016 (15)0.0039 (16)
C200.0223 (19)0.024 (2)0.029 (2)0.0014 (15)0.0008 (16)0.0001 (16)
C210.028 (2)0.027 (2)0.039 (2)0.0052 (17)0.0007 (18)0.0059 (18)
C220.042 (3)0.024 (2)0.051 (3)0.0021 (19)0.000 (2)0.008 (2)
C230.034 (3)0.039 (3)0.062 (4)0.012 (2)0.001 (2)0.011 (2)
C240.026 (2)0.033 (2)0.047 (3)0.0035 (18)0.0005 (19)0.011 (2)
Geometric parameters (Å, º) top
Gd1—O72.354 (2)C5—C61.371 (6)
Gd1—O6i2.410 (2)C5—H50.9300
Gd1—O2ii2.418 (2)C6—C71.373 (6)
Gd1—O32.424 (2)C6—H60.9300
Gd1—O52.440 (2)C7—H70.9300
Gd1—O12.454 (2)C8—H80.9300
Gd1—O42.515 (3)C9—C101.474 (5)
Gd1—O22.529 (2)C10—C111.335 (5)
Gd1—O62.552 (2)C10—H100.9300
O1—C11.245 (5)C11—C121.462 (5)
O2—C11.287 (4)C11—H110.9300
O2—Gd1ii2.418 (2)C12—C161.390 (6)
O3—C91.278 (4)C12—C131.394 (6)
O4—C91.249 (4)C13—C141.367 (6)
O5—C171.258 (4)C13—H130.9300
O6—C171.276 (4)C14—C151.377 (7)
O6—Gd1i2.410 (2)C14—H140.9300
O7—H7A0.853 (10)C15—H150.9300
O7—H7B0.850 (10)C16—H160.9300
N1—C71.323 (6)C17—C181.470 (5)
N1—C81.336 (5)C18—C191.319 (5)
N2—C151.334 (7)C18—H180.9300
N2—C161.341 (5)C19—C201.469 (5)
N3—C241.331 (6)C19—H190.9300
N3—C231.342 (7)C20—C211.384 (5)
C1—C21.475 (5)C20—C241.385 (6)
C2—C31.313 (5)C21—C221.366 (6)
C2—H20.9300C21—H210.9300
C3—C41.471 (5)C22—C231.370 (7)
C3—H30.9300C22—H220.9300
C4—C81.388 (5)C23—H230.9300
C4—C51.388 (6)C24—H240.9300
O7—Gd1—O6i77.79 (9)O2—C1—C2118.4 (3)
O7—Gd1—O2ii151.90 (8)O1—C1—Gd158.48 (19)
O6i—Gd1—O2ii86.86 (8)O2—C1—Gd162.02 (18)
O7—Gd1—O3123.56 (9)C2—C1—Gd1176.2 (3)
O6i—Gd1—O3151.93 (8)C3—C2—C1123.3 (4)
O2ii—Gd1—O379.63 (8)C3—C2—H2118.3
O7—Gd1—O586.21 (9)C1—C2—H2118.3
O6i—Gd1—O5118.78 (8)C2—C3—C4125.7 (4)
O2ii—Gd1—O580.71 (8)C2—C3—H3117.2
O3—Gd1—O583.35 (8)C4—C3—H3117.2
O7—Gd1—O181.11 (9)C8—C4—C5116.4 (4)
O6i—Gd1—O182.79 (9)C8—C4—C3120.0 (4)
O2ii—Gd1—O1120.49 (8)C5—C4—C3123.5 (3)
O3—Gd1—O183.09 (9)C6—C5—C4120.2 (4)
O5—Gd1—O1152.02 (9)C6—C5—H5119.9
O7—Gd1—O471.15 (9)C4—C5—H5119.9
O6i—Gd1—O4145.74 (8)C5—C6—C7118.8 (4)
O2ii—Gd1—O4127.39 (8)C5—C6—H6120.6
O3—Gd1—O452.65 (8)C7—C6—H6120.6
O5—Gd1—O473.78 (9)N1—C7—C6122.7 (4)
O1—Gd1—O478.53 (10)N1—C7—H7118.7
O7—Gd1—O2129.92 (8)C6—C7—H7118.7
O6i—Gd1—O279.03 (8)N1—C8—C4123.7 (4)
O2ii—Gd1—O268.19 (8)N1—C8—H8118.2
O3—Gd1—O273.13 (8)C4—C8—H8118.2
O5—Gd1—O2143.61 (8)O4—C9—O3120.4 (3)
O1—Gd1—O252.30 (8)O4—C9—C10119.5 (3)
O4—Gd1—O2110.31 (8)O3—C9—C10120.1 (3)
O7—Gd1—O670.08 (8)O4—C9—Gd162.80 (19)
O6i—Gd1—O667.09 (9)O3—C9—Gd158.70 (17)
O2ii—Gd1—O682.33 (8)C10—C9—Gd1167.6 (3)
O3—Gd1—O6133.93 (8)C11—C10—C9122.2 (4)
O5—Gd1—O651.95 (8)C11—C10—H10118.9
O1—Gd1—O6141.65 (8)C9—C10—H10118.9
O4—Gd1—O6113.50 (8)C10—C11—C12126.9 (4)
O2—Gd1—O6136.03 (7)C10—C11—H11116.5
O7—Gd1—C997.34 (10)C12—C11—H11116.5
O6i—Gd1—C9165.27 (10)C16—C12—C13117.0 (4)
O2ii—Gd1—C9102.81 (9)C16—C12—C11117.9 (4)
O3—Gd1—C926.77 (9)C13—C12—C11125.1 (4)
O5—Gd1—C974.26 (9)C14—C13—C12119.3 (4)
O1—Gd1—C982.72 (10)C14—C13—H13120.4
O4—Gd1—C926.20 (9)C12—C13—H13120.4
O2—Gd1—C994.12 (9)C13—C14—C15119.0 (5)
O6—Gd1—C9124.69 (9)C13—C14—H14120.5
O7—Gd1—C1105.52 (10)C15—C14—H14120.5
O6i—Gd1—C180.75 (9)N2—C15—C14124.1 (4)
O2ii—Gd1—C194.88 (9)N2—C15—H15117.9
O3—Gd1—C176.07 (9)C14—C15—H15117.9
O5—Gd1—C1159.42 (9)N2—C16—C12124.6 (4)
O1—Gd1—C125.62 (10)N2—C16—H16117.7
O4—Gd1—C193.74 (10)C12—C16—H16117.7
O2—Gd1—C126.71 (9)O5—C17—O6119.6 (3)
O6—Gd1—C1147.81 (9)O5—C17—C18120.8 (3)
O7—Gd1—C1774.94 (9)O6—C17—C18119.7 (3)
O6i—Gd1—C1793.45 (9)O5—C17—Gd157.52 (18)
O2ii—Gd1—C1782.75 (9)O6—C17—Gd162.64 (17)
O3—Gd1—C17108.93 (9)C18—C17—Gd1171.9 (3)
O5—Gd1—C1725.77 (9)C19—C18—C17122.8 (3)
O1—Gd1—C17156.00 (9)C19—C18—H18118.6
O4—Gd1—C1792.19 (10)C17—C18—H18118.6
O2—Gd1—C17150.21 (9)C18—C19—C20125.4 (3)
O6—Gd1—C1726.36 (8)C18—C19—H19117.3
C1—O1—Gd195.9 (2)C20—C19—H19117.3
C1—O2—Gd1ii156.8 (2)C21—C20—C24117.4 (4)
C1—O2—Gd191.3 (2)C21—C20—C19120.8 (3)
Gd1ii—O2—Gd1111.81 (8)C24—C20—C19121.8 (3)
C9—O3—Gd194.5 (2)C22—C21—C20119.3 (4)
C9—O4—Gd191.0 (2)C22—C21—H21120.3
C17—O5—Gd196.7 (2)C20—C21—H21120.3
C17—O6—Gd1i156.1 (2)C21—C22—C23119.0 (4)
C17—O6—Gd191.0 (2)C21—C22—H22120.5
Gd1i—O6—Gd1112.91 (9)C23—C22—H22120.5
Gd1—O7—H7A126 (3)N3—C23—C22123.6 (4)
Gd1—O7—H7B116 (3)N3—C23—H23118.2
C7—N1—C8118.2 (4)C22—C23—H23118.2
C15—N2—C16116.0 (4)N3—C24—C20124.3 (4)
C24—N3—C23116.3 (4)N3—C24—H24117.8
O1—C1—O2120.4 (3)C20—C24—H24117.8
O1—C1—C2121.2 (3)
O7—Gd1—O1—C1162.3 (2)O4—Gd1—C1—O2130.10 (19)
O6i—Gd1—O1—C183.6 (2)O6—Gd1—C1—O281.3 (2)
O2ii—Gd1—O1—C11.6 (2)C9—Gd1—C1—O2104.69 (19)
O3—Gd1—O1—C172.0 (2)O1—C1—C2—C34.1 (6)
O5—Gd1—O1—C1133.6 (2)O2—C1—C2—C3176.8 (4)
O4—Gd1—O1—C1125.2 (2)C1—C2—C3—C4176.0 (4)
O2—Gd1—O1—C11.9 (2)C2—C3—C4—C8176.6 (4)
O6—Gd1—O1—C1121.2 (2)C2—C3—C4—C56.4 (7)
C9—Gd1—O1—C199.0 (2)C8—C4—C5—C60.1 (7)
C17—Gd1—O1—C1165.9 (2)C3—C4—C5—C6177.2 (4)
O7—Gd1—O2—C127.5 (2)C4—C5—C6—C71.0 (8)
O6i—Gd1—O2—C191.20 (19)C8—N1—C7—C60.6 (7)
O2ii—Gd1—O2—C1177.8 (2)C5—C6—C7—N11.3 (8)
O3—Gd1—O2—C192.5 (2)C7—N1—C8—C40.5 (6)
O5—Gd1—O2—C1144.5 (2)C5—C4—C8—N10.7 (6)
O1—Gd1—O2—C11.87 (19)C3—C4—C8—N1176.6 (4)
O4—Gd1—O2—C154.5 (2)Gd1—O4—C9—O312.0 (3)
O6—Gd1—O2—C1130.66 (19)Gd1—O4—C9—C10166.1 (3)
C9—Gd1—O2—C175.6 (2)Gd1—O3—C9—O412.5 (4)
C17—Gd1—O2—C1168.76 (19)Gd1—O3—C9—C10165.6 (3)
O7—Gd1—O2—Gd1ii154.70 (9)O7—Gd1—C9—O41.2 (2)
O6i—Gd1—O2—Gd1ii91.00 (10)O6i—Gd1—C9—O468.4 (4)
O2ii—Gd1—O2—Gd1ii0.0O2ii—Gd1—C9—O4161.5 (2)
O3—Gd1—O2—Gd1ii85.33 (10)O3—Gd1—C9—O4167.9 (4)
O5—Gd1—O2—Gd1ii33.30 (17)O5—Gd1—C9—O485.2 (2)
O1—Gd1—O2—Gd1ii179.67 (14)O1—Gd1—C9—O478.8 (2)
O4—Gd1—O2—Gd1ii123.32 (10)O2—Gd1—C9—O4129.9 (2)
O6—Gd1—O2—Gd1ii51.55 (14)O6—Gd1—C9—O472.0 (2)
C9—Gd1—O2—Gd1ii102.16 (11)C1—Gd1—C9—O4104.1 (2)
C1—Gd1—O2—Gd1ii177.8 (2)C17—Gd1—C9—O477.0 (2)
C17—Gd1—O2—Gd1ii13.4 (2)O7—Gd1—C9—O3169.1 (2)
O7—Gd1—O3—C913.0 (2)O6i—Gd1—C9—O399.5 (4)
O6i—Gd1—O3—C9147.8 (2)O2ii—Gd1—C9—O330.6 (2)
O2ii—Gd1—O3—C9149.7 (2)O5—Gd1—C9—O3107.0 (2)
O5—Gd1—O3—C968.0 (2)O1—Gd1—C9—O389.1 (2)
O1—Gd1—O3—C987.5 (2)O4—Gd1—C9—O3167.9 (4)
O4—Gd1—O3—C96.7 (2)O2—Gd1—C9—O337.9 (2)
O2—Gd1—O3—C9140.1 (2)O6—Gd1—C9—O3120.1 (2)
O6—Gd1—O3—C981.1 (2)C1—Gd1—C9—O363.8 (2)
C1—Gd1—O3—C9112.6 (2)C17—Gd1—C9—O3115.1 (2)
C17—Gd1—O3—C971.1 (2)O7—Gd1—C9—C10102.6 (12)
O7—Gd1—O4—C9178.7 (2)O6i—Gd1—C9—C10172.3 (11)
O6i—Gd1—O4—C9155.2 (2)O2ii—Gd1—C9—C1057.6 (12)
O2ii—Gd1—O4—C922.9 (3)O3—Gd1—C9—C1088.3 (13)
O3—Gd1—O4—C96.8 (2)O5—Gd1—C9—C1018.7 (12)
O5—Gd1—O4—C987.2 (2)O1—Gd1—C9—C10177.4 (12)
O1—Gd1—O4—C996.9 (2)O4—Gd1—C9—C10103.9 (13)
O2—Gd1—O4—C954.6 (2)O2—Gd1—C9—C10126.2 (12)
O6—Gd1—O4—C9121.5 (2)O6—Gd1—C9—C1031.8 (13)
C1—Gd1—O4—C976.1 (2)C1—Gd1—C9—C10152.0 (12)
C17—Gd1—O4—C9105.5 (2)C17—Gd1—C9—C1026.8 (12)
O7—Gd1—O5—C1762.5 (2)O4—C9—C10—C11179.8 (4)
O6i—Gd1—O5—C1711.4 (2)O3—C9—C10—C111.7 (6)
O2ii—Gd1—O5—C1792.5 (2)Gd1—C9—C10—C1182.6 (13)
O3—Gd1—O5—C17173.1 (2)C9—C10—C11—C12176.8 (4)
O1—Gd1—O5—C17125.4 (2)C10—C11—C12—C16173.3 (4)
O4—Gd1—O5—C17134.0 (2)C10—C11—C12—C136.1 (7)
O2—Gd1—O5—C17123.6 (2)C16—C12—C13—C142.0 (6)
O6—Gd1—O5—C175.1 (2)C11—C12—C13—C14177.4 (4)
C9—Gd1—O5—C17161.2 (2)C12—C13—C14—C150.1 (7)
C1—Gd1—O5—C17171.6 (2)C16—N2—C15—C141.5 (7)
O7—Gd1—O6—C1796.3 (2)C13—C14—C15—N21.8 (8)
O6i—Gd1—O6—C17179.0 (2)C15—N2—C16—C120.6 (7)
O2ii—Gd1—O6—C1789.1 (2)C13—C12—C16—N22.4 (6)
O3—Gd1—O6—C1721.6 (2)C11—C12—C16—N2177.0 (4)
O5—Gd1—O6—C174.95 (19)Gd1—O5—C17—O69.2 (4)
O1—Gd1—O6—C17139.9 (2)Gd1—O5—C17—C18170.7 (3)
O4—Gd1—O6—C1738.4 (2)Gd1i—O6—C17—O5168.9 (4)
O2—Gd1—O6—C17136.33 (19)Gd1—O6—C17—O58.7 (3)
C9—Gd1—O6—C1711.2 (2)Gd1i—O6—C17—C1811.2 (8)
C1—Gd1—O6—C17176.11 (18)Gd1—O6—C17—C18171.2 (3)
O7—Gd1—O6—Gd1i84.78 (11)Gd1i—O6—C17—Gd1177.6 (6)
O6i—Gd1—O6—Gd1i0.0O7—Gd1—C17—O5113.6 (2)
O2ii—Gd1—O6—Gd1i89.82 (10)O6i—Gd1—C17—O5170.0 (2)
O3—Gd1—O6—Gd1i157.36 (9)O2ii—Gd1—C17—O583.7 (2)
O5—Gd1—O6—Gd1i174.01 (14)O3—Gd1—C17—O57.3 (2)
O1—Gd1—O6—Gd1i41.09 (17)O1—Gd1—C17—O5110.0 (3)
O4—Gd1—O6—Gd1i142.62 (9)O4—Gd1—C17—O543.8 (2)
O2—Gd1—O6—Gd1i42.63 (14)O2—Gd1—C17—O596.2 (3)
C9—Gd1—O6—Gd1i169.87 (10)O6—Gd1—C17—O5171.0 (3)
C1—Gd1—O6—Gd1i2.8 (2)C9—Gd1—C17—O518.3 (2)
C17—Gd1—O6—Gd1i179.0 (2)O7—Gd1—C17—O675.42 (19)
Gd1—O1—C1—O23.5 (4)O6i—Gd1—C17—O61.0 (2)
Gd1—O1—C1—C2175.5 (3)O2ii—Gd1—C17—O687.35 (19)
Gd1ii—O2—C1—O1178.2 (4)O3—Gd1—C17—O6163.73 (18)
Gd1—O2—C1—O13.4 (3)O5—Gd1—C17—O6171.0 (3)
Gd1ii—O2—C1—C20.9 (8)O1—Gd1—C17—O679.0 (3)
Gd1—O2—C1—C2175.7 (3)O4—Gd1—C17—O6145.23 (19)
Gd1ii—O2—C1—Gd1174.8 (6)O2—Gd1—C17—O674.8 (3)
O7—Gd1—C1—O118.1 (2)C9—Gd1—C17—O6170.73 (19)
O6i—Gd1—C1—O192.6 (2)O5—C17—C18—C1916.9 (6)
O2ii—Gd1—C1—O1178.6 (2)O6—C17—C18—C19163.2 (4)
O3—Gd1—C1—O1103.3 (2)C17—C18—C19—C20178.9 (4)
O5—Gd1—C1—O1104.9 (3)C18—C19—C20—C21153.6 (4)
O4—Gd1—C1—O153.3 (2)C18—C19—C20—C2426.0 (7)
O2—Gd1—C1—O1176.6 (3)C24—C20—C21—C220.5 (7)
O6—Gd1—C1—O195.3 (3)C19—C20—C21—C22179.1 (4)
C9—Gd1—C1—O178.7 (2)C20—C21—C22—C230.3 (8)
O7—Gd1—C1—O2158.44 (18)C24—N3—C23—C220.1 (9)
O6i—Gd1—C1—O283.95 (19)C21—C22—C23—N30.1 (10)
O2ii—Gd1—C1—O22.1 (2)C23—N3—C24—C200.1 (9)
O3—Gd1—C1—O280.09 (19)C21—C20—C24—N30.4 (8)
O5—Gd1—C1—O278.6 (3)C19—C20—C24—N3179.2 (5)
O1—Gd1—C1—O2176.6 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···N1iii0.85 (1)1.89 (2)2.727 (4)166 (5)
O7—H7B···O3iv0.85 (1)1.91 (1)2.752 (3)172 (4)
Symmetry codes: (iii) x, y, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Gd(C8H6NO2)3(H2O)]
Mr619.68
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)6.2118 (7), 12.7222 (14), 15.6601 (18)
α, β, γ (°)111.741 (2), 90.309 (2), 95.260 (2)
V3)1143.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.95
Crystal size (mm)0.24 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.538, 0.757
No. of measured, independent and
observed [I > 2σ(I)] reflections
5840, 3998, 3745
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.04
No. of reflections3998
No. of parameters324
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.46, 2.22

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···N1i0.853 (10)1.891 (18)2.727 (4)166 (5)
O7—H7B···O3ii0.850 (10)1.908 (13)2.752 (3)172 (4)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Guangxi (GKJ0639031), People's Republic of China.

References

First citationAyyappan, P., Evans, O. R. & Lin, W.-B. (2001). Inorg. Chem. 40, 4627–4632.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). SMART , SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGunning, N. S. & Cahill, C. L. (2005). J. Chem. Soc. Dalton Trans. pp. 2788–2792.  CSD CrossRef Google Scholar
First citationLiu, C.-B., Nie, X.-L., Ding, L., Xie, M.-Y. & Wen, H.-L. (2006). Acta Cryst. E62, m2319–m2320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y.-J., Xiong, R.-G., You, X.-Z. & Che, C.-M. (2004). Z. Anorg. Allg. Chem. 630, 2761–2764.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J., Xiong, R.-G., Zuo, J.-L., Che, C.-M. & You, X.-Z. (2000). J. Chem. Soc. Dalton Trans. pp. 2898–2900.  Web of Science CSD CrossRef Google Scholar
First citationZhou, Q.-X., Wang, Y.-J., Zhao, X.-Q. & Yue, L. (2004). Chin. J. Struct. Chem. 23, 570–573.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds