organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-[(E)-1-(4-amino­phen­yl)ethyl­­idene]di­thio­carbazate

aCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, People's Republic of China
*Correspondence e-mail: shanshang@mail.hz.zj.cn

(Received 13 April 2008; accepted 30 April 2008; online 7 May 2008)

The title compound, C10H13N3S2, was obtained from a condensation reaction of methyl dithio­carbazate and 4-amino­acetophenone. In the crystal structure, the nearly planar mol­ecule assumes an E configuration, the benzene ring and dithio­carbazate group being located on opposite sides of the N=C bond. C—H⋯π inter­actions and N—H⋯S hydrogen bonding are present in the crystal structure.

Related literature

For general background, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]); Shan et al. (2003[Shan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, o135-o136.]); Jiang (2007[Jiang, F.-X. (2007). MSc thesis, Zhejiang University of Technology, China.]). For related structures, see: Shan et al. (2006[Shan, S., Zhang, Y.-L. & Xu, D.-J. (2006). Acta Cryst. E62, o1567-o1569.]); Zhang et al. (2005[Zhang, Y.-L., Shan, S. & Xu, D.-J. (2005). Acta Cryst. E61, o1173-o1175.]). For synthesis, see: Hu et al. (2001[Hu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ. 22, 2014-2017.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13N3S2

  • Mr = 239.35

  • Monoclinic, P 21 /n

  • a = 10.8247 (12) Å

  • b = 5.3673 (8) Å

  • c = 20.4549 (14) Å

  • β = 94.756 (12)°

  • V = 1184.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 295 (2) K

  • 0.32 × 0.22 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.870, Tmax = 0.926

  • 10489 measured reflections

  • 2682 independent reflections

  • 1867 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.124

  • S = 1.07

  • 2682 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S2i 0.90 2.83 3.722 (3) 170
N3—H3N⋯S2ii 0.94 2.59 3.483 (2) 159
C10—H10ACgiii 0.96 2.80 3.538 (3) 134
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z+1. Cg is the centroid of the benzene ring.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As some phenylhydrazone derivatives have been shown to be potential DNA-damaging or mutagenic agents (Okabe et al., 1993), a series of new phenylhydrazone derivatives has been synthesized in our laboratory in past years, and several crystal structures of phenylhydrazone compounds have been determined by X-ray diffraction in order to research their structure-bioactivity relationship (Shan et al., 2003). Recent investigation discovered that sulfur-containing hydrazone compounds are benefit to promote the bioactivities of hydrazone (Jiang, 2007). As part of our ongoing investigation on hydrazone compounds, the title compound with dithiocarbazate component has recently been prepared and its crystal structure is reported here.

The structure of the title compound is shown in Fig. 1. The N2—C7 bond distance of 1.281 (3) Å indicates a typical C=N double bond. The molecule adopts an E configuration about the C=N double bond. The molecule has a nearly planar structure. The C8 atom is well co-planar with the benzene ring with a small atomic deviation of 0.028 (4) Å from the phenylmethylene mean plane. The dithiocarbazate moiety is slightly twisted to the phenylmethylene plane with a dihedral angle of 13.4 (1)°. The shorter N3—C9 bond distance of 1.345 (3) Å implies the N3 atom involved in the electron delocalization in the dithiocarbazate moiety.

It is notable that the N3—C9—S1 bond angle of 113.26 (15)° is much smaller than 120° expected for a sp2 hybrid C atom and also much smaller than the corresponding N3—C9—S2 bond angle of 121.66 (16)°, which is similar to that found in related structures reported previously (Shan et al., 2006; Zhang et al., 2005).

Intermolecular C—H···π interaction is observed between C10-methyl group and the benzene ring of the adjacent molecule (Fig. 2), C10—H10aCgi angle being 134° and C10···Cgi and H10a···Cgi separations being 3.538 (3) and 2.80 Å, respectively [where Cg is the centroid of the benzene ring and symmetry code (i) = 1 - x,1 - y,1 - z]. Molecules are also linked by intermolecular C—H···S hydrogen bonding (Table 1) to form the supra-molecular chain.

Related literature top

For general background, see: Okabe et al. (1993); Shan et al. (2003); Jiang (2007). For related structures, see: Shan et al. (2006); Zhang et al. (2005). For synthesis, see: Hu et al. (2001).

Experimental top

Methyl dithiocarbazate was synthesized in the manner reported previously (Hu et al., 2001). Methyl dithiocarbazate (1.24 g, 10 mmol) and 4-aminoacetophenone (1.35 g, 10 mmol) were dissolved in ethanol (10 ml) and refluxed for 6 h. Yellow crystalline product appeared after cooling to room temperature. They were separated and washed with cold water three times. Single crystals of the title compound were obtained by recrystallization from a 2-propanol solution.

Refinement top

H atoms bonded to N atoms were located in a difference Fourier map and refined as riding in their as-found relative positions with Uiso(H) = 1.2Ueq(N). Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and torsion angles were refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
[Figure 2] Fig. 2. A diagram showing C—H···π interaction by dashed lines [symmetry code: (i) = 1 - x,1 - y,1 - z].
Methyl 3-[(E)-1-(4-aminophenyl)ethylidene]dithiocarbazate top
Crystal data top
C10H13N3S2F(000) = 504
Mr = 239.35Dx = 1.342 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4876 reflections
a = 10.8247 (12) Åθ = 3.5–25.0°
b = 5.3673 (8) ŵ = 0.42 mm1
c = 20.4549 (14) ÅT = 295 K
β = 94.756 (12)°Prism, yellow
V = 1184.3 (2) Å30.32 × 0.22 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2682 independent reflections
Radiation source: fine-focus sealed tube1867 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scansh = 1414
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 66
Tmin = 0.870, Tmax = 0.926l = 2626
10489 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.2088P]
where P = (Fo2 + 2Fc2)/3
2682 reflections(Δ/σ)max = 0.001
138 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C10H13N3S2V = 1184.3 (2) Å3
Mr = 239.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8247 (12) ŵ = 0.42 mm1
b = 5.3673 (8) ÅT = 295 K
c = 20.4549 (14) Å0.32 × 0.22 × 0.20 mm
β = 94.756 (12)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2682 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1867 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.926Rint = 0.030
10489 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.07Δρmax = 0.32 e Å3
2682 reflectionsΔρmin = 0.35 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.64254 (5)0.21562 (12)0.48386 (3)0.0615 (2)
S20.88535 (6)0.31459 (16)0.42531 (3)0.0800 (3)
N10.3499 (3)0.7090 (5)0.79285 (13)0.0946 (8)
H1A0.36350.80870.82810.114*
H1B0.30620.57730.80210.114*
N20.72126 (16)0.5566 (3)0.57515 (8)0.0535 (4)
N30.80638 (17)0.5371 (4)0.52873 (9)0.0581 (5)
H3N0.88450.61450.53420.070*
C10.63507 (19)0.7276 (4)0.66547 (10)0.0482 (5)
C20.6266 (2)0.9072 (4)0.71383 (10)0.0597 (6)
H20.68501.03460.71780.072*
C30.5336 (2)0.9013 (5)0.75625 (11)0.0671 (6)
H30.52981.02570.78760.081*
C40.4458 (2)0.7123 (5)0.75263 (11)0.0630 (6)
C50.4553 (2)0.5303 (5)0.70511 (13)0.0691 (6)
H50.39800.40090.70170.083*
C60.5470 (2)0.5376 (4)0.66329 (12)0.0615 (6)
H60.55090.41170.63230.074*
C70.73087 (18)0.7311 (4)0.61800 (10)0.0483 (5)
C80.8278 (2)0.9319 (4)0.62278 (12)0.0641 (6)
H8A0.86930.93570.58310.096*
H8B0.88700.89820.65930.096*
H8C0.78911.09010.62900.096*
C90.78466 (19)0.3662 (4)0.48112 (10)0.0539 (5)
C100.6466 (2)0.0091 (5)0.41878 (12)0.0720 (7)
H10A0.64590.07600.37750.108*
H10B0.57530.11570.41860.108*
H10C0.72060.10740.42550.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0515 (3)0.0747 (4)0.0591 (3)0.0119 (3)0.0090 (2)0.0129 (3)
S20.0592 (4)0.1134 (6)0.0703 (4)0.0144 (4)0.0219 (3)0.0215 (4)
N10.0967 (18)0.0956 (18)0.0979 (17)0.0018 (14)0.0456 (14)0.0022 (15)
N20.0518 (10)0.0545 (10)0.0548 (9)0.0059 (8)0.0083 (8)0.0056 (9)
N30.0511 (10)0.0621 (11)0.0621 (10)0.0118 (8)0.0105 (8)0.0079 (9)
C10.0488 (11)0.0440 (10)0.0508 (10)0.0030 (8)0.0019 (8)0.0002 (9)
C20.0680 (15)0.0529 (12)0.0571 (12)0.0071 (10)0.0020 (10)0.0078 (11)
C30.0838 (17)0.0641 (15)0.0537 (12)0.0034 (13)0.0067 (11)0.0091 (11)
C40.0675 (15)0.0632 (14)0.0598 (13)0.0122 (11)0.0133 (11)0.0077 (12)
C50.0653 (15)0.0559 (13)0.0884 (17)0.0078 (11)0.0197 (12)0.0053 (13)
C60.0618 (14)0.0502 (12)0.0738 (14)0.0067 (10)0.0130 (11)0.0143 (11)
C70.0469 (11)0.0439 (10)0.0526 (11)0.0002 (8)0.0057 (8)0.0021 (9)
C80.0562 (13)0.0563 (13)0.0797 (15)0.0096 (10)0.0048 (11)0.0079 (12)
C90.0477 (11)0.0618 (13)0.0525 (11)0.0013 (9)0.0055 (9)0.0025 (10)
C100.0718 (16)0.0774 (17)0.0662 (14)0.0118 (13)0.0018 (12)0.0185 (13)
Geometric parameters (Å, º) top
S1—C91.743 (2)C2—H20.9300
S1—C101.800 (2)C3—C41.387 (4)
S2—C91.666 (2)C3—H30.9300
N1—C41.378 (3)C4—C51.388 (3)
N1—H1A0.9008C5—C61.364 (3)
N1—H1B0.8793C5—H50.9300
N2—C71.281 (3)C6—H60.9300
N2—N31.381 (2)C7—C81.501 (3)
N3—C91.345 (3)C8—H8A0.9600
N3—H3N0.9399C8—H8B0.9600
C1—C21.390 (3)C8—H8C0.9600
C1—C61.394 (3)C10—H10A0.9600
C1—C71.478 (3)C10—H10B0.9600
C2—C31.383 (3)C10—H10C0.9600
C9—S1—C10102.20 (11)C4—C5—H5119.4
C4—N1—H1A112.9C5—C6—C1122.2 (2)
C4—N1—H1B125.7C5—C6—H6118.9
H1A—N1—H1B111.1C1—C6—H6118.9
C7—N2—N3120.32 (17)N2—C7—C1114.74 (18)
C9—N3—N2117.59 (17)N2—C7—C8125.9 (2)
C9—N3—H3N119.2C1—C7—C8119.40 (18)
N2—N3—H3N122.0C7—C8—H8A109.5
C2—C1—C6116.4 (2)C7—C8—H8B109.5
C2—C1—C7123.35 (19)H8A—C8—H8B109.5
C6—C1—C7120.22 (19)C7—C8—H8C109.5
C3—C2—C1121.6 (2)H8A—C8—H8C109.5
C3—C2—H2119.2H8B—C8—H8C109.5
C1—C2—H2119.2N3—C9—S2121.66 (16)
C2—C3—C4121.0 (2)N3—C9—S1113.26 (15)
C2—C3—H3119.5S2—C9—S1125.07 (14)
C4—C3—H3119.5S1—C10—H10A109.5
N1—C4—C3121.6 (2)S1—C10—H10B109.5
N1—C4—C5120.8 (2)H10A—C10—H10B109.5
C3—C4—C5117.5 (2)S1—C10—H10C109.5
C6—C5—C4121.3 (2)H10A—C10—H10C109.5
C6—C5—H5119.4H10B—C10—H10C109.5
C7—N2—N3—C9173.50 (19)N3—N2—C7—C1178.93 (17)
C6—C1—C2—C31.8 (3)N3—N2—C7—C81.7 (3)
C7—C1—C2—C3178.2 (2)C2—C1—C7—N2177.2 (2)
C1—C2—C3—C41.0 (4)C6—C1—C7—N22.9 (3)
C2—C3—C4—N1177.5 (2)C2—C1—C7—C82.3 (3)
C2—C3—C4—C50.1 (4)C6—C1—C7—C8177.7 (2)
N1—C4—C5—C6177.3 (2)N2—N3—C9—S2176.19 (15)
C3—C4—C5—C60.3 (4)N2—N3—C9—S15.0 (2)
C4—C5—C6—C10.6 (4)C10—S1—C9—N3176.49 (17)
C2—C1—C6—C51.6 (3)C10—S1—C9—S24.73 (19)
C7—C1—C6—C5178.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S2i0.902.833.722 (3)170
N3—H3N···S2ii0.942.593.483 (2)159
C10—H10A···Cgiii0.962.803.538 (3)134
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H13N3S2
Mr239.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)10.8247 (12), 5.3673 (8), 20.4549 (14)
β (°) 94.756 (12)
V3)1184.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.32 × 0.22 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.870, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
10489, 2682, 1867
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.124, 1.07
No. of reflections2682
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.35

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S2i0.902.833.722 (3)170
N3—H3N···S2ii0.942.593.483 (2)159
C10—H10A···Cgiii0.962.803.538 (3)134
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Zhejiang Province, China (grant No. M203027).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ. 22, 2014–2017.  CAS Google Scholar
First citationJiang, F.-X. (2007). MSc thesis, Zhejiang University of Technology, China.  Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationShan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, o135–o136.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationShan, S., Zhang, Y.-L. & Xu, D.-J. (2006). Acta Cryst. E62, o1567–o1569.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-L., Shan, S. & Xu, D.-J. (2005). Acta Cryst. E61, o1173–o1175.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds