organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,4-Di­chloro­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 25 April 2008; accepted 28 April 2008; online 3 May 2008)

The conformations of the N—H and C=O bonds in the structure of the title compound, C13H9Cl2NO, are anti to each other, similar to that observed in N-phenyl­benzamide, N-(2-chloro­phen­yl)benzamide, N-(4-chloro­phen­yl)benzamide, N-(2,3-dichloro­phen­yl)benzamide, N-(2,6-dichloro­phen­yl)benzamide and other benzanilides. The amide –NHCO– group forms a dihedral angle of 33.0 (2)° with the benzoyl ring, while the rings are almost coplanar, making a dihedral angle of 2.6 (2)°). The mol­ecules are linked by N—H⋯O hydrogen bonds into infinite chains running along the b axis.

Related literature

For related literature, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.], 2007a[Gowda, B. T., Sowmya, B. P., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007a). Acta Cryst. E63, o2906.],b[Gowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007b). Acta Cryst. E63, o3326.], 2008a[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o540.],b[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o769.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9Cl2NO

  • Mr = 266.11

  • Monoclinic, P 21 /c

  • a = 11.7388 (6) Å

  • b = 4.7475 (2) Å

  • c = 22.8630 (11) Å

  • β = 106.360 (4)°

  • V = 1222.56 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 295 (2) K

  • 0.33 × 0.06 × 0.03 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.905, Tmax = 0.987

  • 11465 measured reflections

  • 2311 independent reflections

  • 1209 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.089

  • S = 1.06

  • 2311 reflections

  • 157 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.805 (16) 2.178 (19) 2.899 (2) 149 (2)
Symmetry code: (i) x, y-1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the present work, the structure of N-(2,4-dichlorophenyl)-benzamide (N24DCPBA) has been determined to study the effect of substituents on the structures of benzanilides (Gowda et al., 2003, 2007a,b, 2008a,b). The conformations of the N—H and C=O bonds in the structure of N24DCPBA (Fig.1) are anti to each other, similar to that observed in N-(phenyl)-benzamide (NPBA) (Gowda et al., 2003), N-(2-chlorophenyl)-benzamide (N2CPBA), N-(4-chlorophenyl)-benzamide (N4CPBA), N-(2,3-dichlorophenyl)-benzamide(N23DCPBA), N-(2,6-dichlorophenyl)-benzamide (N26DCPBA) and other benzanilides (Gowda et al., 2007a,b, 2008a,b). The bond parameters in N24DCPBA are similar to those in NPBA, N2CPBA, N4CPBA, N23DCPBA, N26DCPBA and other benzanilides. The amide group –NHCO– forms the dihedral angle of 33.0 (2)° with the benzoyl ring, while the benzoyl and aniline rings are almost coplanar, with the dihedral angle of 2.6 (2)°). Part of the crystal structure of the title compound with infinite molecular chains running in the [010] direction is shown in Fig. 2. The chains are generated by N—H···O(i) hydrogen bonds (Table 1) [symmetry operation (i): x,y - 1,z].

Related literature top

For related literature, see: Gowda et al. (2003, 2007a,b, 2008a,b).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

H atoms attached to C atoms were placed in calculated positions and subsequently treated as riding with C–H distance 0.93 Å. H atom of the amide group was refined with the N—H distance restrained to 0.81 (2) Å. The Uiso(H) values were set at 1.2 Ueq(C,N).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound with infinite molecular chains running in the [010] direction. The chains are generated by N—H···O(i) hydrogen bonds.[Symmetry operation (i): x,y - 1,z]. H atoms not involved in intermolecular bonding have been omitted.
N-(2,4-Dichlorophenyl)benzamide top
Crystal data top
C13H9Cl2NOF(000) = 544
Mr = 266.11Dx = 1.446 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2675 reflections
a = 11.7388 (6) Åθ = 3.5–29.1°
b = 4.7475 (2) ŵ = 0.51 mm1
c = 22.8630 (11) ÅT = 295 K
β = 106.360 (4)°Needle, colorless
V = 1222.56 (10) Å30.33 × 0.06 × 0.03 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2311 independent reflections
Graphite monochromator1209 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.060
ω scans with κ offsetsθmax = 25.7°, θmin = 5.1°
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2007), based on expressions derived by Clark & Reid (1995)]
h = 1414
Tmin = 0.905, Tmax = 0.987k = 55
11465 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.06 [exp(3(sinθ/λ)2)]/ [σ2(Fo2) + (0.0389P)2]
where P = 0.33333Fo2 + 0.66667Fc2
2311 reflections(Δ/σ)max = 0.002
157 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C13H9Cl2NOV = 1222.56 (10) Å3
Mr = 266.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7388 (6) ŵ = 0.51 mm1
b = 4.7475 (2) ÅT = 295 K
c = 22.8630 (11) Å0.33 × 0.06 × 0.03 mm
β = 106.360 (4)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2311 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2007), based on expressions derived by Clark & Reid (1995)]
1209 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.987Rint = 0.060
11465 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.21 e Å3
2311 reflectionsΔρmin = 0.16 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0522 (2)0.6218 (5)0.12848 (10)0.0496 (6)
C21.1434 (2)0.5105 (5)0.18272 (10)0.0528 (6)
C31.2566 (3)0.6149 (6)0.19551 (12)0.0702 (7)
H31.27430.75240.17040.084*
C41.3453 (3)0.5182 (7)0.24537 (14)0.0849 (9)
H41.42230.58740.25330.102*
C51.3184 (4)0.3218 (8)0.28242 (14)0.0893 (10)
H51.37740.25670.3160.107*
C61.2056 (4)0.2184 (6)0.27103 (12)0.0877 (10)
H61.18820.08490.2970.105*
C71.1172 (3)0.3122 (5)0.22083 (11)0.0677 (7)
H71.04050.24130.2130.081*
C80.8686 (2)0.4974 (4)0.04960 (9)0.0457 (6)
C90.8747 (2)0.6864 (4)0.00429 (10)0.0518 (6)
H90.94620.77620.00640.062*
C100.7767 (2)0.7427 (5)0.04370 (10)0.0597 (7)
H100.78140.87080.07370.072*
C110.6721 (2)0.6086 (6)0.04695 (11)0.0611 (7)
C120.6630 (2)0.4146 (5)0.00389 (11)0.0610 (7)
H120.59190.32080.00710.073*
C130.7617 (2)0.3632 (5)0.04400 (10)0.0510 (6)
N10.96721 (19)0.4383 (4)0.09966 (8)0.0513 (5)
H1N0.972 (2)0.276 (4)0.1100 (10)0.062*
O11.05520 (15)0.8645 (3)0.11131 (7)0.0687 (5)
Cl10.75028 (6)0.12644 (14)0.09989 (3)0.0705 (2)
Cl20.54660 (7)0.6883 (2)0.10654 (3)0.1010 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0601 (15)0.0357 (14)0.0511 (13)0.0050 (13)0.0128 (12)0.0020 (11)
C20.0646 (18)0.0412 (13)0.0492 (13)0.0076 (13)0.0102 (12)0.0042 (11)
C30.0695 (19)0.0686 (18)0.0653 (17)0.0051 (16)0.0073 (14)0.0003 (13)
C40.071 (2)0.099 (2)0.073 (2)0.0125 (19)0.0002 (17)0.0152 (19)
C50.100 (3)0.089 (2)0.0600 (19)0.036 (2)0.0077 (18)0.0101 (17)
C60.131 (3)0.072 (2)0.0491 (16)0.016 (2)0.0083 (18)0.0054 (14)
C70.093 (2)0.0550 (17)0.0504 (14)0.0032 (15)0.0121 (14)0.0012 (12)
C80.0541 (16)0.0349 (12)0.0482 (13)0.0057 (12)0.0146 (11)0.0021 (11)
C90.0556 (15)0.0437 (14)0.0557 (14)0.0016 (12)0.0150 (12)0.0043 (11)
C100.0700 (19)0.0588 (15)0.0510 (14)0.0114 (14)0.0184 (13)0.0099 (12)
C110.0547 (17)0.0721 (17)0.0526 (14)0.0143 (15)0.0086 (12)0.0020 (14)
C120.0549 (16)0.0659 (17)0.0645 (16)0.0021 (13)0.0205 (13)0.0069 (14)
C130.0566 (16)0.0454 (13)0.0541 (14)0.0010 (13)0.0204 (12)0.0024 (11)
N10.0636 (13)0.0342 (11)0.0531 (11)0.0008 (11)0.0117 (10)0.0065 (9)
O10.0800 (12)0.0347 (10)0.0776 (11)0.0009 (9)0.0003 (9)0.0063 (8)
Cl10.0783 (5)0.0633 (4)0.0772 (4)0.0034 (4)0.0339 (4)0.0109 (3)
Cl20.0706 (5)0.1426 (8)0.0752 (5)0.0183 (5)0.0033 (4)0.0119 (4)
Geometric parameters (Å, º) top
C1—O11.221 (2)C8—C131.380 (3)
C1—N11.348 (3)C8—C91.388 (3)
C1—C21.488 (3)C8—N11.408 (3)
C2—C31.371 (3)C9—C101.374 (3)
C2—C71.375 (3)C9—H90.93
C3—C41.387 (4)C10—C111.366 (3)
C3—H30.93C10—H100.93
C4—C51.356 (4)C11—C121.374 (3)
C4—H40.93C11—Cl21.743 (2)
C5—C61.366 (5)C12—C131.374 (3)
C5—H50.93C12—H120.93
C6—C71.387 (4)C13—Cl11.735 (2)
C6—H60.93N1—H1N0.805 (16)
C7—H70.93
O1—C1—N1122.5 (2)C13—C8—C9117.8 (2)
O1—C1—C2121.6 (2)C13—C8—N1120.1 (2)
N1—C1—C2115.9 (2)C9—C8—N1122.2 (2)
C3—C2—C7119.3 (2)C10—C9—C8120.9 (2)
C3—C2—C1118.4 (2)C10—C9—H9119.5
C7—C2—C1122.3 (2)C8—C9—H9119.5
C2—C3—C4120.9 (3)C11—C10—C9119.4 (2)
C2—C3—H3119.6C11—C10—H10120.3
C4—C3—H3119.6C9—C10—H10120.3
C5—C4—C3119.2 (3)C10—C11—C12121.6 (2)
C5—C4—H4120.4C10—C11—Cl2119.3 (2)
C3—C4—H4120.4C12—C11—Cl2119.1 (2)
C4—C5—C6120.8 (3)C13—C12—C11118.1 (2)
C4—C5—H5119.6C13—C12—H12120.9
C6—C5—H5119.6C11—C12—H12120.9
C5—C6—C7120.1 (3)C12—C13—C8122.2 (2)
C5—C6—H6119.9C12—C13—Cl1118.62 (19)
C7—C6—H6119.9C8—C13—Cl1119.18 (17)
C2—C7—C6119.7 (3)C1—N1—C8126.45 (18)
C2—C7—H7120.2C1—N1—H1N119.5 (18)
C6—C7—H7120.2C8—N1—H1N114.0 (18)
O1—C1—C2—C331.9 (3)C9—C10—C11—C121.2 (4)
N1—C1—C2—C3147.8 (2)C9—C10—C11—Cl2178.01 (17)
O1—C1—C2—C7146.7 (2)C10—C11—C12—C131.7 (4)
N1—C1—C2—C733.6 (3)Cl2—C11—C12—C13177.46 (18)
C7—C2—C3—C41.6 (4)C11—C12—C13—C80.6 (3)
C1—C2—C3—C4179.8 (2)C11—C12—C13—Cl1178.13 (19)
C2—C3—C4—C51.3 (4)C9—C8—C13—C121.0 (3)
C3—C4—C5—C60.2 (4)N1—C8—C13—C12179.8 (2)
C4—C5—C6—C70.5 (4)C9—C8—C13—Cl1179.73 (16)
C3—C2—C7—C60.8 (4)N1—C8—C13—Cl11.0 (3)
C1—C2—C7—C6179.4 (2)O1—C1—N1—C83.9 (4)
C5—C6—C7—C20.2 (4)C2—C1—N1—C8176.4 (2)
C13—C8—C9—C101.6 (3)C13—C8—N1—C1145.5 (2)
N1—C8—C9—C10179.2 (2)C9—C8—N1—C135.3 (3)
C8—C9—C10—C110.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.81 (2)2.18 (2)2.899 (2)149 (2)
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC13H9Cl2NO
Mr266.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.7388 (6), 4.7475 (2), 22.8630 (11)
β (°) 106.360 (4)
V3)1222.56 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.33 × 0.06 × 0.03
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionAnalytical
[CrysAlis RED (Oxford Diffraction, 2007), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.905, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
11465, 2311, 1209
Rint0.060
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.089, 1.06
No. of reflections2311
No. of parameters157
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.16

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.805 (16)2.178 (19)2.899 (2)149 (2)
Symmetry code: (i) x, y1, z.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (grant No. VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Sowmya, B. P., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007a). Acta Cryst. E63, o2906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007b). Acta Cryst. E63, o3326.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o540.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o769.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds