organic compounds
(E)-2-Furyl methyl ketone 2,4-dinitrophenylhydrazone
aCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, People's Republic of China
*Correspondence e-mail: shanshang@mail.hz.zj.cn
Crystals of the title compound, C12H10N4O5, were obtained from a condensation reaction of 2,4-dinitrophenylhydrazine and 2-furyl methyl ketone. The molecule displays a nearly planar structure, and the furan ring is slightly twisted by a dihedral angle of 12.62 (6)° with respect to the phenylhydrazone plane. The face-to-face separation of 3.287 (7) Å between parallel benzene rings of adjacent molecules indicates the existence of π–π stacking between dinitrophenyl rings in the crystal structure.
Related literature
For general background, see: Okabe et al. (1993); Shan et al. (2003a, 2006). For related structures, see: Vickery et al. (1985); Fan et al. (2004); Shan et al. (2003b).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808015122/om2233sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808015122/om2233Isup2.hkl
2,4-Dinitrophenylhydrazine (0.4 g, 2 mmol) was dissolved in ethanol (10 ml), and H2SO4 solution (98%, 0.5 ml) was slowly added to the ethanol solution with stirring. The solution was heated at 333 K for several min until the solution cleared. 2-Furyl methylketone (0.22 g, 2 mmol) was added to the above solution with continuous stirring, and the mixture was refluxed for 30 min. When the solution had cooled to room temperature brown powder crystals appeared. The powder crystals were separated and washed with water three times. Recrystallization from an absolute ethanol solution yielded well shaped single crystals.
Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and the torsion angle was refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.93 and N—H = 0.86 Å, and refined in riding mode, Uiso(H) = 1.2Ueq(C,N).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C12H10N4O5 | F(000) = 600 |
Mr = 290.24 | Dx = 1.532 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5266 reflections |
a = 9.8917 (8) Å | θ = 3.2–26.0° |
b = 12.8477 (15) Å | µ = 0.12 mm−1 |
c = 10.6549 (12) Å | T = 293 K |
β = 111.63 (2)° | Prism, brown |
V = 1258.7 (3) Å3 | 0.36 × 0.23 × 0.18 mm |
Z = 4 |
Rigaku R-AXIS RAPID IP diffractometer | 1784 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.026 |
Graphite monochromator | θmax = 27.4°, θmin = 3.2° |
Detector resolution: 10.00 pixels mm-1 | h = −12→12 |
ω scans | k = −16→16 |
12121 measured reflections | l = −13→13 |
2858 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.0649P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2858 reflections | Δρmax = 0.21 e Å−3 |
192 parameters | Δρmin = −0.17 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0047 (11) |
C12H10N4O5 | V = 1258.7 (3) Å3 |
Mr = 290.24 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.8917 (8) Å | µ = 0.12 mm−1 |
b = 12.8477 (15) Å | T = 293 K |
c = 10.6549 (12) Å | 0.36 × 0.23 × 0.18 mm |
β = 111.63 (2)° |
Rigaku R-AXIS RAPID IP diffractometer | 1784 reflections with I > 2σ(I) |
12121 measured reflections | Rint = 0.026 |
2858 independent reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.21 e Å−3 |
2858 reflections | Δρmin = −0.17 e Å−3 |
192 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.13582 (13) | 0.43547 (8) | 0.14104 (11) | 0.0648 (4) | |
O2 | 0.15573 (13) | 0.27996 (8) | 0.22020 (12) | 0.0648 (4) | |
O3 | 0.44159 (13) | 0.19704 (8) | 0.66737 (13) | 0.0660 (4) | |
O4 | 0.52296 (15) | 0.31707 (10) | 0.81753 (13) | 0.0742 (4) | |
O5 | 0.09817 (11) | 0.93990 (8) | 0.18361 (12) | 0.0566 (3) | |
N1 | 0.17859 (13) | 0.37357 (9) | 0.23615 (12) | 0.0452 (3) | |
N2 | 0.45693 (14) | 0.28930 (10) | 0.70150 (14) | 0.0498 (3) | |
N3 | 0.21841 (13) | 0.59367 (8) | 0.30483 (12) | 0.0412 (3) | |
H3 | 0.1757 | 0.5753 | 0.2219 | 0.049* | |
N4 | 0.22992 (13) | 0.69747 (8) | 0.33900 (12) | 0.0411 (3) | |
C1 | 0.27421 (13) | 0.52042 (9) | 0.40146 (14) | 0.0349 (3) | |
C2 | 0.25858 (14) | 0.41229 (10) | 0.37100 (14) | 0.0368 (3) | |
C3 | 0.31897 (14) | 0.33809 (10) | 0.46968 (15) | 0.0406 (3) | |
H3A | 0.3085 | 0.2677 | 0.4478 | 0.049* | |
C4 | 0.39417 (14) | 0.36870 (10) | 0.59975 (15) | 0.0403 (3) | |
C5 | 0.40955 (15) | 0.47424 (11) | 0.63469 (15) | 0.0412 (3) | |
H5 | 0.4597 | 0.4940 | 0.7238 | 0.049* | |
C6 | 0.35072 (14) | 0.54818 (10) | 0.53751 (14) | 0.0393 (3) | |
H6 | 0.3613 | 0.6182 | 0.5615 | 0.047* | |
C7 | 0.16518 (14) | 0.76093 (10) | 0.24031 (14) | 0.0395 (3) | |
C8 | 0.18273 (16) | 0.87045 (10) | 0.27796 (16) | 0.0431 (4) | |
C9 | 0.26625 (19) | 0.92158 (12) | 0.38905 (18) | 0.0586 (4) | |
H9 | 0.3329 | 0.8926 | 0.4674 | 0.070* | |
C10 | 0.2326 (2) | 1.02927 (13) | 0.3632 (2) | 0.0691 (5) | |
H10 | 0.2734 | 1.0842 | 0.4218 | 0.083* | |
C11 | 0.1335 (2) | 1.03623 (12) | 0.2414 (2) | 0.0662 (5) | |
H11 | 0.0926 | 1.0983 | 0.1997 | 0.079* | |
C12 | 0.07984 (19) | 0.73130 (12) | 0.09826 (17) | 0.0556 (4) | |
H12A | 0.1447 | 0.7073 | 0.0560 | 0.083* | |
H12B | 0.0268 | 0.7907 | 0.0502 | 0.083* | |
H12C | 0.0130 | 0.6767 | 0.0968 | 0.083* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0920 (9) | 0.0420 (6) | 0.0438 (7) | −0.0007 (6) | 0.0055 (6) | −0.0006 (5) |
O2 | 0.0836 (8) | 0.0323 (6) | 0.0615 (8) | −0.0105 (5) | 0.0068 (6) | −0.0098 (5) |
O3 | 0.0778 (8) | 0.0408 (6) | 0.0728 (9) | 0.0058 (5) | 0.0200 (7) | 0.0147 (5) |
O4 | 0.0884 (9) | 0.0708 (8) | 0.0459 (8) | 0.0053 (7) | 0.0041 (7) | 0.0107 (6) |
O5 | 0.0572 (6) | 0.0371 (6) | 0.0754 (8) | 0.0069 (5) | 0.0242 (6) | 0.0136 (5) |
N1 | 0.0513 (7) | 0.0333 (6) | 0.0443 (8) | −0.0020 (5) | 0.0096 (6) | −0.0035 (5) |
N2 | 0.0510 (7) | 0.0468 (8) | 0.0489 (9) | 0.0030 (6) | 0.0151 (6) | 0.0111 (6) |
N3 | 0.0510 (7) | 0.0272 (5) | 0.0399 (7) | −0.0003 (5) | 0.0103 (5) | −0.0014 (5) |
N4 | 0.0490 (7) | 0.0263 (6) | 0.0468 (7) | −0.0013 (5) | 0.0164 (6) | −0.0013 (5) |
C1 | 0.0349 (7) | 0.0296 (6) | 0.0404 (8) | −0.0010 (5) | 0.0142 (6) | −0.0009 (5) |
C2 | 0.0373 (7) | 0.0305 (6) | 0.0400 (8) | −0.0020 (5) | 0.0112 (6) | −0.0026 (5) |
C3 | 0.0411 (7) | 0.0297 (6) | 0.0492 (9) | −0.0020 (5) | 0.0147 (7) | 0.0013 (6) |
C4 | 0.0395 (7) | 0.0372 (7) | 0.0434 (9) | 0.0017 (6) | 0.0146 (6) | 0.0064 (6) |
C5 | 0.0421 (7) | 0.0439 (8) | 0.0366 (8) | −0.0028 (6) | 0.0132 (6) | −0.0034 (6) |
C6 | 0.0433 (7) | 0.0316 (7) | 0.0448 (9) | −0.0023 (6) | 0.0181 (6) | −0.0047 (6) |
C7 | 0.0428 (7) | 0.0343 (7) | 0.0427 (8) | −0.0003 (6) | 0.0171 (6) | 0.0024 (6) |
C8 | 0.0507 (8) | 0.0319 (7) | 0.0496 (9) | 0.0045 (6) | 0.0220 (7) | 0.0084 (6) |
C9 | 0.0800 (11) | 0.0390 (8) | 0.0549 (10) | −0.0056 (8) | 0.0227 (9) | −0.0049 (7) |
C10 | 0.0959 (14) | 0.0354 (8) | 0.0892 (15) | −0.0106 (8) | 0.0495 (13) | −0.0130 (9) |
C11 | 0.0762 (12) | 0.0289 (8) | 0.1072 (18) | 0.0051 (8) | 0.0499 (13) | 0.0085 (9) |
C12 | 0.0682 (10) | 0.0446 (8) | 0.0471 (10) | 0.0010 (8) | 0.0133 (8) | 0.0036 (7) |
O1—N1 | 1.2338 (16) | C3—H3A | 0.9300 |
O2—N1 | 1.2239 (15) | C4—C5 | 1.3995 (19) |
O3—N2 | 1.2327 (17) | C5—C6 | 1.367 (2) |
O4—N2 | 1.2194 (18) | C5—H5 | 0.9300 |
O5—C11 | 1.369 (2) | C6—H6 | 0.9300 |
O5—C8 | 1.3735 (18) | C7—C8 | 1.4560 (19) |
N1—C2 | 1.4491 (18) | C7—C12 | 1.485 (2) |
N2—C4 | 1.4510 (18) | C8—C9 | 1.339 (2) |
N3—C1 | 1.3533 (17) | C9—C10 | 1.426 (2) |
N3—N4 | 1.3760 (15) | C9—H9 | 0.9300 |
N3—H3 | 0.8600 | C10—C11 | 1.309 (3) |
N4—C7 | 1.2977 (18) | C10—H10 | 0.9300 |
C1—C6 | 1.4115 (19) | C11—H11 | 0.9300 |
C1—C2 | 1.4221 (17) | C12—H12A | 0.9600 |
C2—C3 | 1.3813 (19) | C12—H12B | 0.9600 |
C3—C4 | 1.367 (2) | C12—H12C | 0.9600 |
C11—O5—C8 | 105.81 (13) | C4—C5—H5 | 120.1 |
O2—N1—O1 | 121.97 (13) | C5—C6—C1 | 121.31 (13) |
O2—N1—C2 | 118.71 (12) | C5—C6—H6 | 119.3 |
O1—N1—C2 | 119.32 (11) | C1—C6—H6 | 119.3 |
O4—N2—O3 | 122.83 (14) | N4—C7—C8 | 114.26 (13) |
O4—N2—C4 | 118.26 (13) | N4—C7—C12 | 126.16 (13) |
O3—N2—C4 | 118.91 (14) | C8—C7—C12 | 119.58 (12) |
C1—N3—N4 | 120.13 (12) | C9—C8—O5 | 109.82 (13) |
C1—N3—H3 | 119.9 | C9—C8—C7 | 133.59 (14) |
N4—N3—H3 | 119.9 | O5—C8—C7 | 116.59 (13) |
C7—N4—N3 | 115.25 (12) | C8—C9—C10 | 106.32 (17) |
N3—C1—C6 | 121.30 (12) | C8—C9—H9 | 126.8 |
N3—C1—C2 | 121.75 (13) | C10—C9—H9 | 126.8 |
C6—C1—C2 | 116.95 (12) | C11—C10—C9 | 107.09 (16) |
C3—C2—C1 | 121.36 (13) | C11—C10—H10 | 126.5 |
C3—C2—N1 | 116.28 (12) | C9—C10—H10 | 126.5 |
C1—C2—N1 | 122.37 (12) | C10—C11—O5 | 110.96 (14) |
C4—C3—C2 | 119.62 (13) | C10—C11—H11 | 124.5 |
C4—C3—H3A | 120.2 | O5—C11—H11 | 124.5 |
C2—C3—H3A | 120.2 | C7—C12—H12A | 109.5 |
C3—C4—C5 | 120.90 (13) | C7—C12—H12B | 109.5 |
C3—C4—N2 | 118.57 (13) | H12A—C12—H12B | 109.5 |
C5—C4—N2 | 120.52 (13) | C7—C12—H12C | 109.5 |
C6—C5—C4 | 119.84 (13) | H12A—C12—H12C | 109.5 |
C6—C5—H5 | 120.1 | H12B—C12—H12C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O1 | 0.86 | 1.97 | 2.6063 (15) | 130 |
C9—H9···O4i | 0.93 | 2.41 | 3.334 (2) | 172 |
C11—H11···O2ii | 0.93 | 2.41 | 3.1530 (19) | 137 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C12H10N4O5 |
Mr | 290.24 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 9.8917 (8), 12.8477 (15), 10.6549 (12) |
β (°) | 111.63 (2) |
V (Å3) | 1258.7 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.36 × 0.23 × 0.18 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID IP diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12121, 2858, 1784 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.111, 1.03 |
No. of reflections | 2858 |
No. of parameters | 192 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.17 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O1 | 0.86 | 1.97 | 2.6063 (15) | 130 |
C9—H9···O4i | 0.93 | 2.41 | 3.334 (2) | 172 |
C11—H11···O2ii | 0.93 | 2.41 | 3.1530 (19) | 137 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, y+1, z. |
Acknowledgements
The work was supported by the Natural Science Foundation of Zhejiang Province, China (No. M203027).
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Fan, Z., Shan, S., Hu, W.-X. & Xu, D.-J. (2004). Acta Cryst. E60, o1102–o1104. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Shan, S., Fan, Z. & Xu, D.-J. (2006). Acta Cryst. E62, o1123–o1125. CSD CrossRef IUCr Journals Google Scholar
Shan, S., Xu, D.-J. & Hu, W.-X. (2003b). Acta Cryst. E59, o838–o840. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003a). Acta Cryst. C59, o135–o136. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vickery, B., Willey, G. R. & Drew, M. G. B. (1985). Acta Cryst. C41, 1072–1075. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As some phenylhydrazone derivatives have shown to be potentially DNA damaging and mutagenic agents (Okabe et al., 1993), a series of new phenylhydrazone derivatives have been synthesized in our laboratory (Shan et al., 2003a; Shan et al., 2006). As part of the ongoing investigation, the title compound has recently been prepared and its crystal structure is reported here.
The molecular structure of the title compound is shown in Fig. 1. The molecule displays an approximately planar structure, the furan ring is slightly twisted with respect to the phenylhydrazone plane with a dihedral angle of 12.62 (6)°. The N4—C7 bond distance (Table 1) indicates a typical C=N double dond. The molecule assumes an E configuration with the phenylhydrazine and furan located on the opposite sides of the C=N bond. An intramolecular hydrogen bond is observed between the N3-imino and the adjacent N1-nitro groups; such a hydrogen bonding is a common feature in o-nitrophenylhydrazine compounds (Vickery et al., 1985; Fan et al., 2004).
A partially overlapped arrangement of parallel benzene rings of adjacent molecules is illustrated in Fig. 2. The face-to-face separation of 3.287 (7) Å strongly indicates the existence of π-π stacking between parallel dinitrophenyl rings of adjacent molecules in the crystal. It agrees with that found in a related dinitrophenylhydrazine compound, isobutylaldehyde 2,4-dinitrophenylhydrazone (Shan et al., 2003b).
The crystal structure also contains intermolecular weak C—H···O hydrogen bonding (Table 2).