organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-Furyl methyl ketone 2,4-di­nitro­phenyl­hydrazone

aCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, People's Republic of China
*Correspondence e-mail: shanshang@mail.hz.zj.cn

(Received 2 May 2008; accepted 19 May 2008; online 24 May 2008)

Crystals of the title compound, C12H10N4O5, were obtained from a condensation reaction of 2,4-dinitro­phenyl­hydrazine and 2-furyl methyl ketone. The mol­ecule displays a nearly planar structure, and the furan ring is slightly twisted by a dihedral angle of 12.62 (6)° with respect to the phenyl­hydrazone plane. The face-to-face separation of 3.287 (7) Å between parallel benzene rings of adjacent mol­ecules indicates the existence of ππ stacking between dinitro­phenyl rings in the crystal structure.

Related literature

For general background, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]); Shan et al. (2003a[Shan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003a). Acta Cryst. C59, o135-o136.], 2006[Shan, S., Fan, Z. & Xu, D.-J. (2006). Acta Cryst. E62, o1123-o1125.]). For related structures, see: Vickery et al. (1985[Vickery, B., Willey, G. R. & Drew, M. G. B. (1985). Acta Cryst. C41, 1072-1075.]); Fan et al. (2004[Fan, Z., Shan, S., Hu, W.-X. & Xu, D.-J. (2004). Acta Cryst. E60, o1102-o1104.]); Shan et al. (2003b[Shan, S., Xu, D.-J. & Hu, W.-X. (2003b). Acta Cryst. E59, o838-o840.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N4O5

  • Mr = 290.24

  • Monoclinic, P 21 /c

  • a = 9.8917 (8) Å

  • b = 12.8477 (15) Å

  • c = 10.6549 (12) Å

  • β = 111.63 (2)°

  • V = 1258.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 (2) K

  • 0.36 × 0.23 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: none

  • 12121 measured reflections

  • 2858 independent reflections

  • 1784 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.111

  • S = 1.03

  • 2858 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1 0.86 1.97 2.6063 (15) 130
C9—H9⋯O4i 0.93 2.41 3.334 (2) 172
C11—H11⋯O2ii 0.93 2.41 3.1530 (19) 137
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y+1, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As some phenylhydrazone derivatives have shown to be potentially DNA damaging and mutagenic agents (Okabe et al., 1993), a series of new phenylhydrazone derivatives have been synthesized in our laboratory (Shan et al., 2003a; Shan et al., 2006). As part of the ongoing investigation, the title compound has recently been prepared and its crystal structure is reported here.

The molecular structure of the title compound is shown in Fig. 1. The molecule displays an approximately planar structure, the furan ring is slightly twisted with respect to the phenylhydrazone plane with a dihedral angle of 12.62 (6)°. The N4—C7 bond distance (Table 1) indicates a typical C=N double dond. The molecule assumes an E configuration with the phenylhydrazine and furan located on the opposite sides of the C=N bond. An intramolecular hydrogen bond is observed between the N3-imino and the adjacent N1-nitro groups; such a hydrogen bonding is a common feature in o-nitrophenylhydrazine compounds (Vickery et al., 1985; Fan et al., 2004).

A partially overlapped arrangement of parallel benzene rings of adjacent molecules is illustrated in Fig. 2. The face-to-face separation of 3.287 (7) Å strongly indicates the existence of π-π stacking between parallel dinitrophenyl rings of adjacent molecules in the crystal. It agrees with that found in a related dinitrophenylhydrazine compound, isobutylaldehyde 2,4-dinitrophenylhydrazone (Shan et al., 2003b).

The crystal structure also contains intermolecular weak C—H···O hydrogen bonding (Table 2).

Related literature top

For general background, see: Okabe et al. (1993); Shan et al. (2003a, 2006). For related structures, see: Vickery et al. (1985); Fan et al. (2004); Shan et al. (2003b).

Experimental top

2,4-Dinitrophenylhydrazine (0.4 g, 2 mmol) was dissolved in ethanol (10 ml), and H2SO4 solution (98%, 0.5 ml) was slowly added to the ethanol solution with stirring. The solution was heated at 333 K for several min until the solution cleared. 2-Furyl methylketone (0.22 g, 2 mmol) was added to the above solution with continuous stirring, and the mixture was refluxed for 30 min. When the solution had cooled to room temperature brown powder crystals appeared. The powder crystals were separated and washed with water three times. Recrystallization from an absolute ethanol solution yielded well shaped single crystals.

Refinement top

Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and the torsion angle was refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.93 and N—H = 0.86 Å, and refined in riding mode, Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A diagram showing the overlapped arrangement of parallel benzene rings of neighboring molecules [symmetry code: (i) 1 - x,1 - y,1 - z].
(E)-2-Furyl methyl ketone 2,4-dinitrophenylhydrazone top
Crystal data top
C12H10N4O5F(000) = 600
Mr = 290.24Dx = 1.532 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5266 reflections
a = 9.8917 (8) Åθ = 3.2–26.0°
b = 12.8477 (15) ŵ = 0.12 mm1
c = 10.6549 (12) ÅT = 293 K
β = 111.63 (2)°Prism, brown
V = 1258.7 (3) Å30.36 × 0.23 × 0.18 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1784 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 27.4°, θmin = 3.2°
Detector resolution: 10.00 pixels mm-1h = 1212
ω scansk = 1616
12121 measured reflectionsl = 1313
2858 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0649P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2858 reflectionsΔρmax = 0.21 e Å3
192 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0047 (11)
Crystal data top
C12H10N4O5V = 1258.7 (3) Å3
Mr = 290.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8917 (8) ŵ = 0.12 mm1
b = 12.8477 (15) ÅT = 293 K
c = 10.6549 (12) Å0.36 × 0.23 × 0.18 mm
β = 111.63 (2)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1784 reflections with I > 2σ(I)
12121 measured reflectionsRint = 0.026
2858 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
2858 reflectionsΔρmin = 0.17 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13582 (13)0.43547 (8)0.14104 (11)0.0648 (4)
O20.15573 (13)0.27996 (8)0.22020 (12)0.0648 (4)
O30.44159 (13)0.19704 (8)0.66737 (13)0.0660 (4)
O40.52296 (15)0.31707 (10)0.81753 (13)0.0742 (4)
O50.09817 (11)0.93990 (8)0.18361 (12)0.0566 (3)
N10.17859 (13)0.37357 (9)0.23615 (12)0.0452 (3)
N20.45693 (14)0.28930 (10)0.70150 (14)0.0498 (3)
N30.21841 (13)0.59367 (8)0.30483 (12)0.0412 (3)
H30.17570.57530.22190.049*
N40.22992 (13)0.69747 (8)0.33900 (12)0.0411 (3)
C10.27421 (13)0.52042 (9)0.40146 (14)0.0349 (3)
C20.25858 (14)0.41229 (10)0.37100 (14)0.0368 (3)
C30.31897 (14)0.33809 (10)0.46968 (15)0.0406 (3)
H3A0.30850.26770.44780.049*
C40.39417 (14)0.36870 (10)0.59975 (15)0.0403 (3)
C50.40955 (15)0.47424 (11)0.63469 (15)0.0412 (3)
H50.45970.49400.72380.049*
C60.35072 (14)0.54818 (10)0.53751 (14)0.0393 (3)
H60.36130.61820.56150.047*
C70.16518 (14)0.76093 (10)0.24031 (14)0.0395 (3)
C80.18273 (16)0.87045 (10)0.27796 (16)0.0431 (4)
C90.26625 (19)0.92158 (12)0.38905 (18)0.0586 (4)
H90.33290.89260.46740.070*
C100.2326 (2)1.02927 (13)0.3632 (2)0.0691 (5)
H100.27341.08420.42180.083*
C110.1335 (2)1.03623 (12)0.2414 (2)0.0662 (5)
H110.09261.09830.19970.079*
C120.07984 (19)0.73130 (12)0.09826 (17)0.0556 (4)
H12A0.14470.70730.05600.083*
H12B0.02680.79070.05020.083*
H12C0.01300.67670.09680.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0920 (9)0.0420 (6)0.0438 (7)0.0007 (6)0.0055 (6)0.0006 (5)
O20.0836 (8)0.0323 (6)0.0615 (8)0.0105 (5)0.0068 (6)0.0098 (5)
O30.0778 (8)0.0408 (6)0.0728 (9)0.0058 (5)0.0200 (7)0.0147 (5)
O40.0884 (9)0.0708 (8)0.0459 (8)0.0053 (7)0.0041 (7)0.0107 (6)
O50.0572 (6)0.0371 (6)0.0754 (8)0.0069 (5)0.0242 (6)0.0136 (5)
N10.0513 (7)0.0333 (6)0.0443 (8)0.0020 (5)0.0096 (6)0.0035 (5)
N20.0510 (7)0.0468 (8)0.0489 (9)0.0030 (6)0.0151 (6)0.0111 (6)
N30.0510 (7)0.0272 (5)0.0399 (7)0.0003 (5)0.0103 (5)0.0014 (5)
N40.0490 (7)0.0263 (6)0.0468 (7)0.0013 (5)0.0164 (6)0.0013 (5)
C10.0349 (7)0.0296 (6)0.0404 (8)0.0010 (5)0.0142 (6)0.0009 (5)
C20.0373 (7)0.0305 (6)0.0400 (8)0.0020 (5)0.0112 (6)0.0026 (5)
C30.0411 (7)0.0297 (6)0.0492 (9)0.0020 (5)0.0147 (7)0.0013 (6)
C40.0395 (7)0.0372 (7)0.0434 (9)0.0017 (6)0.0146 (6)0.0064 (6)
C50.0421 (7)0.0439 (8)0.0366 (8)0.0028 (6)0.0132 (6)0.0034 (6)
C60.0433 (7)0.0316 (7)0.0448 (9)0.0023 (6)0.0181 (6)0.0047 (6)
C70.0428 (7)0.0343 (7)0.0427 (8)0.0003 (6)0.0171 (6)0.0024 (6)
C80.0507 (8)0.0319 (7)0.0496 (9)0.0045 (6)0.0220 (7)0.0084 (6)
C90.0800 (11)0.0390 (8)0.0549 (10)0.0056 (8)0.0227 (9)0.0049 (7)
C100.0959 (14)0.0354 (8)0.0892 (15)0.0106 (8)0.0495 (13)0.0130 (9)
C110.0762 (12)0.0289 (8)0.1072 (18)0.0051 (8)0.0499 (13)0.0085 (9)
C120.0682 (10)0.0446 (8)0.0471 (10)0.0010 (8)0.0133 (8)0.0036 (7)
Geometric parameters (Å, º) top
O1—N11.2338 (16)C3—H3A0.9300
O2—N11.2239 (15)C4—C51.3995 (19)
O3—N21.2327 (17)C5—C61.367 (2)
O4—N21.2194 (18)C5—H50.9300
O5—C111.369 (2)C6—H60.9300
O5—C81.3735 (18)C7—C81.4560 (19)
N1—C21.4491 (18)C7—C121.485 (2)
N2—C41.4510 (18)C8—C91.339 (2)
N3—C11.3533 (17)C9—C101.426 (2)
N3—N41.3760 (15)C9—H90.9300
N3—H30.8600C10—C111.309 (3)
N4—C71.2977 (18)C10—H100.9300
C1—C61.4115 (19)C11—H110.9300
C1—C21.4221 (17)C12—H12A0.9600
C2—C31.3813 (19)C12—H12B0.9600
C3—C41.367 (2)C12—H12C0.9600
C11—O5—C8105.81 (13)C4—C5—H5120.1
O2—N1—O1121.97 (13)C5—C6—C1121.31 (13)
O2—N1—C2118.71 (12)C5—C6—H6119.3
O1—N1—C2119.32 (11)C1—C6—H6119.3
O4—N2—O3122.83 (14)N4—C7—C8114.26 (13)
O4—N2—C4118.26 (13)N4—C7—C12126.16 (13)
O3—N2—C4118.91 (14)C8—C7—C12119.58 (12)
C1—N3—N4120.13 (12)C9—C8—O5109.82 (13)
C1—N3—H3119.9C9—C8—C7133.59 (14)
N4—N3—H3119.9O5—C8—C7116.59 (13)
C7—N4—N3115.25 (12)C8—C9—C10106.32 (17)
N3—C1—C6121.30 (12)C8—C9—H9126.8
N3—C1—C2121.75 (13)C10—C9—H9126.8
C6—C1—C2116.95 (12)C11—C10—C9107.09 (16)
C3—C2—C1121.36 (13)C11—C10—H10126.5
C3—C2—N1116.28 (12)C9—C10—H10126.5
C1—C2—N1122.37 (12)C10—C11—O5110.96 (14)
C4—C3—C2119.62 (13)C10—C11—H11124.5
C4—C3—H3A120.2O5—C11—H11124.5
C2—C3—H3A120.2C7—C12—H12A109.5
C3—C4—C5120.90 (13)C7—C12—H12B109.5
C3—C4—N2118.57 (13)H12A—C12—H12B109.5
C5—C4—N2120.52 (13)C7—C12—H12C109.5
C6—C5—C4119.84 (13)H12A—C12—H12C109.5
C6—C5—H5120.1H12B—C12—H12C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.861.972.6063 (15)130
C9—H9···O4i0.932.413.334 (2)172
C11—H11···O2ii0.932.413.1530 (19)137
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H10N4O5
Mr290.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.8917 (8), 12.8477 (15), 10.6549 (12)
β (°) 111.63 (2)
V3)1258.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.36 × 0.23 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12121, 2858, 1784
Rint0.026
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.03
No. of reflections2858
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
N3—C11.3533 (17)N4—C71.2977 (18)
N3—N41.3760 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.861.972.6063 (15)130
C9—H9···O4i0.932.413.334 (2)172
C11—H11···O2ii0.932.413.1530 (19)137
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1, z.
 

Acknowledgements

The work was supported by the Natural Science Foundation of Zhejiang Province, China (No. M203027).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFan, Z., Shan, S., Hu, W.-X. & Xu, D.-J. (2004). Acta Cryst. E60, o1102–o1104.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationShan, S., Fan, Z. & Xu, D.-J. (2006). Acta Cryst. E62, o1123–o1125.  CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Xu, D.-J. & Hu, W.-X. (2003b). Acta Cryst. E59, o838–o840.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003a). Acta Cryst. C59, o135–o136.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVickery, B., Willey, G. R. & Drew, M. G. B. (1985). Acta Cryst. C41, 1072–1075.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds