organic compounds
Cytenamide acetic acid solvate
aSolid-State Research Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, John Arbuthnott Building, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, bUniversity of Göttingen, GZG, Department of Crystallography, Goldschmidtstrasse 1, D-37077 Göttingen, Germany, cISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, England, and dUniversity College London, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, England
*Correspondence e-mail: alastair.florence@strath.ac.uk
In the H-dibenzo[a,d]cycloheptatriene-5-carboxamide ethanoic acid solvate), C16H13NO·C2H4O2, the cytenamide and solvent molecules form a hydrogen-bonded R22(8) dimer motif, which is further connected to form a centrosymmetric double ring motif arrangement. The cycloheptene ring adopts a boat conformation and the dihedral angle between the least-squares planes through the two aromatic rings is 54.7 (2)°.
of the title compound (systematic name: 5Related literature
For details on experimental methods used to obtain this form, see: Davis et al. (1964); Florence et al. (2003); Florence, Johnston, Fernandes et al. (2006). For related literature on related molecules, see: Cyr et al. (1987); Fleischman et al. (2003); Florence, Johnston, Price et al. (2006); Florence, Leech et al. (2006); Bandoli et al. (1992); Harrison et al. (2006); Leech et al. (2007); Florence et al. (2008) and Johnston et al. (2006). For other related literature, see: Etter (1990).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S160053680801550X/om2234sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680801550X/om2234Isup2.hkl
A sample of cytenamide was synthesized according to a modification of the published method (Davis et al., 1964). A single-crystal sample of cytenamide-acetic acid was grown form a saturated acetic acid solution by isothermal solvent evaporation at 278 K.
All non-H atoms were refined anisotropically. H-atoms were found on a difference Fourier map and were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (bond lengths to accepted values, i.e. C—H in the range 0.93–98, N—H = 0,86 and O—H = 0.82 Å with esd's of 0.02 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were treated with the riding model. Atoms C12, C13, C14 and, to some extent C15, suffer from large and prolate thermal ellipsoids. Given the rigidity of the molecule and well behaved thermal parameters of the remainder atoms, we exclude the possibility of disorder or incorrect treatment of absorption effects. Investigation of diffraction frames indicated significant splitting of some low-order reflections and this is likely to be the principal cause of the anomalous thermal parameters and of high R-factor obtained.
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell
CrysAlis CCD (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).C16H13NO·C2H4O2 | F(000) = 624 |
Mr = 295.34 | Dx = 1.279 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3006 reflections |
a = 5.8726 (17) Å | θ = 3–26° |
b = 14.418 (3) Å | µ = 0.09 mm−1 |
c = 18.182 (4) Å | T = 160 K |
β = 95.13 (2)° | Needle, colourless |
V = 1533.3 (6) Å3 | 0.44 × 0.09 × 0.06 mm |
Z = 4 |
Oxford Diffraction Gemini diffractometer | 2759 independent reflections |
Graphite monochromator | 2025 reflections with I > 2σ(I) |
Detector resolution: 15.9745 pixels mm-1 | Rint = 0.065 |
ω scans | θmax = 25.2°, θmin = 2.7° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | h = −7→7 |
Tmin = 0.84, Tmax = 0.99 | k = −17→17 |
16235 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.089 | H-atom parameters constrained |
wR(F2) = 0.148 | Method = Modified Sheldrick w = 1/[σ2(F2) + 3.15P], where P = (max(Fo2,0) + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.000156 |
2759 reflections | Δρmax = 0.43 e Å−3 |
199 parameters | Δρmin = −0.37 e Å−3 |
0 restraints |
C16H13NO·C2H4O2 | V = 1533.3 (6) Å3 |
Mr = 295.34 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.8726 (17) Å | µ = 0.09 mm−1 |
b = 14.418 (3) Å | T = 160 K |
c = 18.182 (4) Å | 0.44 × 0.09 × 0.06 mm |
β = 95.13 (2)° |
Oxford Diffraction Gemini diffractometer | 2759 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | 2025 reflections with I > 2σ(I) |
Tmin = 0.84, Tmax = 0.99 | Rint = 0.065 |
16235 measured reflections |
R[F2 > 2σ(F2)] = 0.089 | 0 restraints |
wR(F2) = 0.148 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.43 e Å−3 |
2759 reflections | Δρmin = −0.37 e Å−3 |
199 parameters |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8743 (7) | 0.1556 (2) | 0.5586 (2) | 0.0377 | |
C2 | 1.0683 (7) | 0.2065 (3) | 0.52488 (19) | 0.0394 | |
H2 | 1.2072 | 0.1709 | 0.5395 | 0.0464* | |
C3 | 1.0494 (7) | 0.2106 (2) | 0.4415 (2) | 0.0359 | |
H3 | 0.3643 | 0.6194 | 0.8262 | 0.0919* | |
C4 | 1.2134 (7) | 0.1675 (3) | 0.4031 (2) | 0.0434 | |
H4 | 1.3362 | 0.1355 | 0.4291 | 0.0517* | |
C5 | 1.2009 (8) | 0.1694 (3) | 0.3270 (2) | 0.0489 | |
H5 | 1.3155 | 0.1417 | 0.3023 | 0.0588* | |
C6 | 1.0206 (8) | 0.2134 (3) | 0.2876 (2) | 0.0492 | |
H6 | 1.0115 | 0.2146 | 0.2361 | 0.0589* | |
C7 | 0.8543 (8) | 0.2557 (3) | 0.3251 (2) | 0.0479 | |
H7 | 0.7287 | 0.2834 | 0.2980 | 0.0554* | |
C8 | 0.8695 (7) | 0.2579 (2) | 0.4025 (2) | 0.0391 | |
C9 | 0.7017 (8) | 0.3120 (3) | 0.4383 (2) | 0.0500 | |
H9 | 0.5540 | 0.3138 | 0.4140 | 0.0595* | |
C10 | 0.7341 (8) | 0.3609 (3) | 0.5012 (2) | 0.0548 | |
H10 | 0.6062 | 0.3933 | 0.5149 | 0.0651* | |
C11 | 0.9405 (9) | 0.3695 (3) | 0.5504 (2) | 0.0537 | |
C12 | 0.9797 (11) | 0.4529 (3) | 0.5910 (3) | 0.0745 | |
H12 | 0.8701 | 0.4989 | 0.5867 | 0.0940* | |
C13 | 1.1748 (15) | 0.4673 (4) | 0.6361 (3) | 0.1040 | |
H13 | 1.1957 | 0.5230 | 0.6618 | 0.1120* | |
C14 | 1.3377 (12) | 0.3999 (5) | 0.6437 (3) | 0.0924 | |
H14 | 1.4716 | 0.4096 | 0.6745 | 0.1038* | |
C15 | 1.3053 (9) | 0.3160 (3) | 0.6066 (2) | 0.0620 | |
H15 | 1.4196 | 0.2700 | 0.6121 | 0.0709* | |
C16 | 1.1082 (8) | 0.3006 (3) | 0.5609 (2) | 0.0448 | |
C17 | 0.6177 (7) | 0.5488 (3) | 0.8287 (2) | 0.0425 | |
C18 | 0.8000 (7) | 0.5266 (3) | 0.7809 (2) | 0.0554 | |
H18a | 0.9163 | 0.5730 | 0.7854 | 0.0834* | |
H18b | 0.8713 | 0.4698 | 0.7965 | 0.0835* | |
H18c | 0.7432 | 0.5218 | 0.7303 | 0.0833* | |
O1 | 0.8339 (5) | 0.17284 (18) | 0.62261 (13) | 0.0490 | |
O2 | 0.6154 (5) | 0.52248 (18) | 0.89214 (14) | 0.0484 | |
O3 | 0.4556 (5) | 0.6020 (2) | 0.79594 (15) | 0.0614 | |
N1 | 0.7638 (6) | 0.0891 (2) | 0.51942 (16) | 0.0425 | |
H1N | 0.7870 | 0.0813 | 0.4727 | 0.0503* | |
H2N | 0.6669 | 0.0546 | 0.5419 | 0.0502* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.051 (3) | 0.0295 (19) | 0.030 (2) | −0.0027 (18) | −0.0055 (18) | 0.0048 (16) |
C2 | 0.046 (2) | 0.038 (2) | 0.032 (2) | −0.0007 (18) | −0.0058 (18) | 0.0005 (17) |
C3 | 0.049 (2) | 0.0252 (18) | 0.033 (2) | −0.0068 (17) | 0.0016 (18) | 0.0008 (16) |
C4 | 0.056 (3) | 0.038 (2) | 0.036 (2) | −0.0023 (19) | −0.001 (2) | −0.0003 (18) |
C5 | 0.061 (3) | 0.045 (2) | 0.041 (2) | −0.002 (2) | 0.009 (2) | −0.008 (2) |
C6 | 0.075 (3) | 0.044 (2) | 0.028 (2) | −0.004 (2) | 0.002 (2) | 0.0015 (18) |
C7 | 0.064 (3) | 0.040 (2) | 0.038 (2) | −0.002 (2) | −0.008 (2) | 0.0106 (19) |
C8 | 0.052 (3) | 0.030 (2) | 0.035 (2) | −0.0051 (18) | 0.0013 (19) | 0.0049 (16) |
C9 | 0.062 (3) | 0.038 (2) | 0.050 (3) | 0.004 (2) | 0.006 (2) | 0.013 (2) |
C10 | 0.079 (3) | 0.030 (2) | 0.059 (3) | 0.008 (2) | 0.029 (3) | 0.012 (2) |
C11 | 0.090 (4) | 0.038 (2) | 0.036 (2) | −0.014 (2) | 0.019 (2) | 0.0013 (19) |
C12 | 0.141 (5) | 0.041 (3) | 0.049 (3) | −0.023 (3) | 0.046 (3) | −0.005 (2) |
C13 | 0.207 (9) | 0.063 (4) | 0.049 (3) | −0.076 (5) | 0.053 (5) | −0.028 (3) |
C14 | 0.138 (6) | 0.100 (5) | 0.042 (3) | −0.083 (5) | 0.027 (3) | −0.023 (3) |
C15 | 0.082 (4) | 0.072 (3) | 0.032 (2) | −0.036 (3) | 0.007 (2) | −0.009 (2) |
C16 | 0.066 (3) | 0.040 (2) | 0.029 (2) | −0.017 (2) | 0.006 (2) | 0.0005 (17) |
C17 | 0.054 (3) | 0.034 (2) | 0.038 (2) | 0.0012 (19) | −0.007 (2) | −0.0052 (18) |
C18 | 0.062 (3) | 0.055 (3) | 0.048 (3) | 0.004 (2) | 0.000 (2) | −0.010 (2) |
O1 | 0.073 (2) | 0.0466 (16) | 0.0272 (15) | −0.0191 (15) | 0.0036 (14) | −0.0021 (12) |
O2 | 0.064 (2) | 0.0436 (16) | 0.0359 (16) | 0.0114 (14) | −0.0044 (14) | 0.0061 (13) |
O3 | 0.082 (2) | 0.067 (2) | 0.0351 (16) | 0.0330 (18) | 0.0035 (15) | 0.0077 (14) |
N1 | 0.064 (2) | 0.0351 (18) | 0.0269 (17) | −0.0113 (16) | −0.0012 (16) | 0.0012 (14) |
O1—C1 | 1.234 (4) | C11—C12 | 1.419 (6) |
O2—C17 | 1.216 (5) | C12—C13 | 1.364 (10) |
O3—C17 | 1.322 (5) | C13—C14 | 1.362 (10) |
O3—H3 | 0.8400 | C14—C15 | 1.390 (8) |
N1—C1 | 1.329 (5) | C15—C16 | 1.381 (6) |
N1—H1N | 0.8800 | C2—H2 | 0.9800 |
N1—H2N | 0.8800 | C4—H4 | 0.9500 |
C1—C2 | 1.529 (6) | C5—H5 | 0.9300 |
C2—C16 | 1.516 (6) | C6—H6 | 0.9300 |
C2—C3 | 1.511 (5) | C7—H7 | 0.9400 |
C3—C8 | 1.397 (5) | C9—H9 | 0.9400 |
C3—C4 | 1.386 (6) | C10—H10 | 0.9400 |
C4—C5 | 1.379 (5) | C12—H12 | 0.9200 |
C5—C6 | 1.379 (6) | C13—H13 | 0.9300 |
C6—C7 | 1.382 (6) | C14—H14 | 0.9300 |
C7—C8 | 1.403 (5) | C15—H15 | 0.9400 |
C8—C9 | 1.455 (6) | C17—C18 | 1.473 (6) |
C9—C10 | 1.343 (5) | C18—H18A | 0.9500 |
C10—C11 | 1.446 (6) | C18—H18B | 0.9500 |
C11—C16 | 1.400 (7) | C18—H18C | 0.9500 |
C17—O3—H3 | 111.00 | C1—C2—H2 | 106.00 |
H1N—N1—H2N | 122.00 | C16—C2—H2 | 105.00 |
C1—N1—H1N | 120.00 | C3—C2—H2 | 106.00 |
C1—N1—H2N | 118.00 | C3—C4—H4 | 120.00 |
N1—C1—C2 | 118.5 (3) | C5—C4—H4 | 119.00 |
O1—C1—N1 | 121.7 (3) | C6—C5—H5 | 120.00 |
O1—C1—C2 | 119.7 (3) | C4—C5—H5 | 120.00 |
C1—C2—C3 | 115.5 (3) | C5—C6—H6 | 120.00 |
C3—C2—C16 | 113.2 (3) | C7—C6—H6 | 120.00 |
C1—C2—C16 | 110.4 (3) | C6—C7—H7 | 119.00 |
C4—C3—C8 | 119.4 (3) | C8—C7—H7 | 120.00 |
C2—C3—C4 | 119.7 (3) | C10—C9—H9 | 116.00 |
C2—C3—C8 | 120.9 (3) | C8—C9—H9 | 116.00 |
C3—C4—C5 | 121.3 (4) | C11—C10—H10 | 116.00 |
C4—C5—C6 | 120.0 (4) | C9—C10—H10 | 116.00 |
C5—C6—C7 | 119.4 (3) | C11—C12—H12 | 119.00 |
C6—C7—C8 | 121.4 (4) | C13—C12—H12 | 119.00 |
C3—C8—C7 | 118.4 (4) | C12—C13—H13 | 120.00 |
C7—C8—C9 | 118.4 (4) | C14—C13—H13 | 120.00 |
C3—C8—C9 | 123.1 (3) | C15—C14—H14 | 120.00 |
C8—C9—C10 | 127.8 (4) | C13—C14—H14 | 120.00 |
C9—C10—C11 | 128.3 (4) | C14—C15—H15 | 120.00 |
C10—C11—C12 | 118.9 (4) | C16—C15—H15 | 120.00 |
C12—C11—C16 | 116.8 (4) | O2—C17—C18 | 124.2 (4) |
C10—C11—C16 | 124.3 (4) | O3—C17—C18 | 113.1 (3) |
C11—C12—C13 | 122.0 (5) | O2—C17—O3 | 122.7 (4) |
C12—C13—C14 | 119.8 (5) | C17—C18—H18A | 110.00 |
C13—C14—C15 | 120.5 (6) | C17—C18—H18B | 110.00 |
C14—C15—C16 | 120.2 (5) | C17—C18—H18C | 112.00 |
C2—C16—C11 | 119.8 (4) | H18A—C18—H18B | 107.00 |
C11—C16—C15 | 120.6 (4) | H18A—C18—H18C | 109.00 |
C2—C16—C15 | 119.5 (4) | H18B—C18—H18C | 109.00 |
O1—C1—C2—C3 | −157.1 (3) | C5—C6—C7—C8 | 2.5 (7) |
O1—C1—C2—C16 | −27.1 (5) | C6—C7—C8—C3 | −4.4 (6) |
N1—C1—C2—C3 | 27.5 (5) | C6—C7—C8—C9 | 173.5 (4) |
N1—C1—C2—C16 | 157.4 (3) | C3—C8—C9—C10 | 33.2 (6) |
C1—C2—C3—C4 | −116.5 (4) | C7—C8—C9—C10 | −144.6 (4) |
C1—C2—C3—C8 | 64.0 (4) | C8—C9—C10—C11 | −2.4 (7) |
C16—C2—C3—C4 | 114.9 (4) | C9—C10—C11—C12 | 149.6 (5) |
C16—C2—C3—C8 | −64.6 (5) | C9—C10—C11—C16 | −30.0 (7) |
C1—C2—C16—C11 | −67.0 (5) | C10—C11—C12—C13 | −177.3 (5) |
C1—C2—C16—C15 | 110.0 (4) | C16—C11—C12—C13 | 2.4 (8) |
C3—C2—C16—C11 | 64.2 (5) | C10—C11—C16—C2 | −5.9 (6) |
C3—C2—C16—C15 | −118.8 (4) | C10—C11—C16—C15 | 177.2 (4) |
C2—C3—C4—C5 | 179.6 (4) | C12—C11—C16—C2 | 174.4 (4) |
C8—C3—C4—C5 | −0.8 (6) | C12—C11—C16—C15 | −2.5 (6) |
C2—C3—C8—C7 | −177.0 (4) | C11—C12—C13—C14 | −0.8 (9) |
C2—C3—C8—C9 | 5.2 (5) | C12—C13—C14—C15 | −0.9 (9) |
C4—C3—C8—C7 | 3.5 (5) | C13—C14—C15—C16 | 0.8 (8) |
C4—C3—C8—C9 | −174.3 (4) | C14—C15—C16—C2 | −175.9 (4) |
C3—C4—C5—C6 | −1.1 (7) | C14—C15—C16—C11 | 1.0 (7) |
C4—C5—C6—C7 | 0.3 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2i | 0.88 | 2.27 | 2.888 (4) | 128 |
N1—H2N···O2ii | 0.88 | 2.18 | 3.018 (4) | 158 |
O3—H3···O1iii | 0.84 | 1.73 | 2.565 (4) | 169 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y−1/2, −z+3/2; (iii) −x+1, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C16H13NO·C2H4O2 |
Mr | 295.34 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 160 |
a, b, c (Å) | 5.8726 (17), 14.418 (3), 18.182 (4) |
β (°) | 95.13 (2) |
V (Å3) | 1533.3 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.44 × 0.09 × 0.06 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.84, 0.99 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16235, 2759, 2025 |
Rint | 0.065 |
(sin θ/λ)max (Å−1) | 0.600 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.089, 0.148, 1.08 |
No. of reflections | 2759 |
No. of parameters | 199 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.43, −0.37 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).
O1—C1 | 1.234 (4) | O3—C17 | 1.322 (5) |
O2—C17 | 1.216 (5) | N1—C1 | 1.329 (5) |
N1—C1—C2 | 118.5 (3) | O2—C17—C18 | 124.2 (4) |
O1—C1—N1 | 121.7 (3) | O3—C17—C18 | 113.1 (3) |
O1—C1—C2 | 119.7 (3) | O2—C17—O3 | 122.7 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2i | 0.88 | 2.27 | 2.888 (4) | 128 |
N1—H2N···O2ii | 0.88 | 2.18 | 3.018 (4) | 158 |
O3—H3···O1iii | 0.84 | 1.73 | 2.565 (4) | 169 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y−1/2, −z+3/2; (iii) −x+1, y+1/2, −z+3/2. |
Acknowledgements
The authors thank the Basic Technology Programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (http://www.cposs.org.uk ).
References
Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bandoli, G., Nicolini, M., Ongaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr. 22, 177–183. CAS Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Cyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem. 70, 836–840. CAS PubMed Web of Science Google Scholar
Davis, M. A., Winthrop, S. O., Thomas, R. A., Herr, F., Charest, M.-P. & Gaudry, R. (1964). J. Med. Chem. 7, 88–94. CrossRef PubMed CAS Web of Science Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodriguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909–919. Web of Science CSD CrossRef CAS Google Scholar
Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938. Web of Science CSD CrossRef PubMed CAS Google Scholar
Florence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst. 39, 922–924. Web of Science CrossRef CAS IUCr Journals Google Scholar
Florence, A. J., Johnston, A., Price, S. L., Nowell, H., Kennedy, A. R. & Shankland, N. (2006). J. Pharm. Sci. 95, 1918–1930. Web of Science CrossRef PubMed CAS Google Scholar
Florence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746–747. Web of Science CSD CrossRef CAS Google Scholar
Florence, A. J., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A., Fernandes, P. & Leech, C. K. (2008). CrystEngComm, 10, 26–28. Web of Science CSD CrossRef CAS Google Scholar
Harrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, o240–o242. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Johnston, A., Florence, A. J., Fernandes, P., Shankland, N. & Kennedy, A. R. (2006). Acta Cryst. E62, o5361–o5362. Web of Science CSD CrossRef IUCr Journals Google Scholar
Leech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007). Acta Cryst. E63, o675–o677. CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2007). CrysAlis CCD, CrysAlis RED and ABSPACK. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Cytenamide (CYT) is an analogue of carbamazepine (CBZ), a dibenzazepine drug used to control seizures (Cyr et al., 1987). CYT-acetic acid solvate was produced during an automated parallel crystallization study (Florence et al., 2006a) of CYT as part of a wider investigation that couples automated parallel crystallization with crystal structure prediction methodology to investigate the basic science underlying the solid-state diversity of CBZ (Florence, Johnston, Price et al., 2006b; Florence, Leech et al., 2006) and its closely related analogues: CYT, 10,11-dihydrocarbamazepine (DHC) (Bandoli et al., 1992; Harrison et al., 2006; Leech et al., 2007) and cyheptamide (Florence et al., 2008). The sample was identified as a new form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003). Subsequent manual recrystallization from a saturated acetic acid solution by slow evaporation at 278 K yielded a sample suitable for single-crystal X-ray diffraction (Fig. 1).
The reported crystal structure is essentially iso-structural with that of CBZ-acetic acid (1/1) (Fleischman et al., 2003) and DHC-acetic acid (1/1) (Johnston et al., 2006). Accordingly, it displays the same space group with very similar unit-cell parameters and packing arrangements [CBZ:acetic a = 5.121 (4) Å, b = 15.714 (13) Å, c = 18.499 (15) Å, β = 95.65 (1)°; DHC:acetic a = 5.3104 (4) Å, b = 15.424 (17) Å, c = 18.7329 (2) Å, β = 95.65 (1)°]. Specifically, the CYT and acetic acid molecules are connected via O—H···O and N—H···O hydrogen bonds (contacts 1 and 2) to form an R22(8) (Etter, 1990) dimer motif. A third hydrogen bond, N1—H1···O2, joins adjacent dimers forming a centrosymmetric double motif arrangement (Fig. 2).