organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1175-o1176

Cytenamide acetic acid solvate

aSolid-State Research Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, John Arbuthnott Building, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, bUniversity of Göttingen, GZG, Department of Crystallography, Goldschmidtstrasse 1, D-37077 Göttingen, Germany, cISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, England, and dUniversity College London, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, England
*Correspondence e-mail: alastair.florence@strath.ac.uk

(Received 9 May 2008; accepted 22 May 2008; online 30 May 2008)

In the crystal structure of the title compound (systematic name: 5H-dibenzo[a,d]cyclo­hepta­triene-5-carboxamide ethanoic acid solvate), C16H13NO·C2H4O2, the cytenamide and solvent mol­ecules form a hydrogen-bonded R22(8) dimer motif, which is further connected to form a centrosymmetric double ring motif arrangement. The cycloheptene ring adopts a boat conformation and the dihedral angle between the least-squares planes through the two aromatic rings is 54.7 (2)°.

Related literature

For details on experimental methods used to obtain this form, see: Davis et al. (1964[Davis, M. A., Winthrop, S. O., Thomas, R. A., Herr, F., Charest, M.-P. & Gaudry, R. (1964). J. Med. Chem. 7, 88-94.]); Florence et al. (2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.]); Florence, Johnston, Fernandes et al. (2006[Florence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst. 39, 922-924.]). For related literature on related mol­ecules, see: Cyr et al. (1987[Cyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem. 70, 836-840.]); Fleischman et al. (2003[Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodriguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909-919.]); Florence, Johnston, Price et al. (2006[Florence, A. J., Johnston, A., Price, S. L., Nowell, H., Kennedy, A. R. & Shankland, N. (2006). J. Pharm. Sci. 95, 1918-1930.]); Florence, Leech et al. (2006[Florence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746-747.]); Bandoli et al. (1992[Bandoli, G., Nicolini, M., Ongaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr. 22, 177-183.]); Harrison et al. (2006[Harrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, o240-o242.]); Leech et al. (2007[Leech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007). Acta Cryst. E63, o675-o677.]); Florence et al. (2008[Florence, A. J., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A., Fernandes, P. & Leech, C. K. (2008). CrystEngComm, 10, 26-28.]) and Johnston et al. (2006[Johnston, A., Florence, A. J., Fernandes, P., Shankland, N. & Kennedy, A. R. (2006). Acta Cryst. E62, o5361-o5362.]). For other related literature, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO·C2H4O2

  • Mr = 295.34

  • Monoclinic, P 21 /c

  • a = 5.8726 (17) Å

  • b = 14.418 (3) Å

  • c = 18.182 (4) Å

  • β = 95.13 (2)°

  • V = 1533.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 160 K

  • 0.44 × 0.09 × 0.06 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (ABSPACK; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD, CrysAlis RED and ABSPACK. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.84, Tmax = 0.99

  • 16235 measured reflections

  • 2759 independent reflections

  • 2025 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.089

  • wR(F2) = 0.148

  • S = 1.08

  • 2759 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.88 2.27 2.888 (4) 128
N1—H2N⋯O2ii 0.88 2.18 3.018 (4) 158
O3—H3⋯O1iii 0.84 1.73 2.565 (4) 169
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD, CrysAlis RED and ABSPACK. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD, CrysAlis RED and ABSPACK. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Cytenamide (CYT) is an analogue of carbamazepine (CBZ), a dibenzazepine drug used to control seizures (Cyr et al., 1987). CYT-acetic acid solvate was produced during an automated parallel crystallization study (Florence et al., 2006a) of CYT as part of a wider investigation that couples automated parallel crystallization with crystal structure prediction methodology to investigate the basic science underlying the solid-state diversity of CBZ (Florence, Johnston, Price et al., 2006b; Florence, Leech et al., 2006) and its closely related analogues: CYT, 10,11-dihydrocarbamazepine (DHC) (Bandoli et al., 1992; Harrison et al., 2006; Leech et al., 2007) and cyheptamide (Florence et al., 2008). The sample was identified as a new form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003). Subsequent manual recrystallization from a saturated acetic acid solution by slow evaporation at 278 K yielded a sample suitable for single-crystal X-ray diffraction (Fig. 1).

The reported crystal structure is essentially iso-structural with that of CBZ-acetic acid (1/1) (Fleischman et al., 2003) and DHC-acetic acid (1/1) (Johnston et al., 2006). Accordingly, it displays the same space group with very similar unit-cell parameters and packing arrangements [CBZ:acetic a = 5.121 (4) Å, b = 15.714 (13) Å, c = 18.499 (15) Å, β = 95.65 (1)°; DHC:acetic a = 5.3104 (4) Å, b = 15.424 (17) Å, c = 18.7329 (2) Å, β = 95.65 (1)°]. Specifically, the CYT and acetic acid molecules are connected via O—H···O and N—H···O hydrogen bonds (contacts 1 and 2) to form an R22(8) (Etter, 1990) dimer motif. A third hydrogen bond, N1—H1···O2, joins adjacent dimers forming a centrosymmetric double motif arrangement (Fig. 2).

Related literature top

For details on experimental methods used to obtain this form see: Davis et al. (1964); Florence et al. (2003); Florence, Johnston, Fernandes et al. (2006a). For related literature on associated dibenzazepine molecules see: Cyr et al. (1987); Fleischman et al. (2003); Florence, Johnston, Price et al. (2006b); Florence, Leech et al. (2006); Bandoli et al. (1992); Harrison et al. (2006); Leech et al. (2007); Florence et al. (2008) and Johnston et al. (2006). For other related literature see: Etter (1990).

Experimental top

A sample of cytenamide was synthesized according to a modification of the published method (Davis et al., 1964). A single-crystal sample of cytenamide-acetic acid was grown form a saturated acetic acid solution by isothermal solvent evaporation at 278 K.

Refinement top

All non-H atoms were refined anisotropically. H-atoms were found on a difference Fourier map and were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (bond lengths to accepted values, i.e. C—H in the range 0.93–98, N—H = 0,86 and O—H = 0.82 Å with esd's of 0.02 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were treated with the riding model. Atoms C12, C13, C14 and, to some extent C15, suffer from large and prolate thermal ellipsoids. Given the rigidity of the molecule and well behaved thermal parameters of the remainder atoms, we exclude the possibility of disorder or incorrect treatment of absorption effects. Investigation of diffraction frames indicated significant splitting of some low-order reflections and this is likely to be the principal cause of the anomalous thermal parameters and of high R-factor obtained.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of CYT acetic acid (1/1), showing 50% probablility displacement ellipsoids.
[Figure 2] Fig. 2. The hydrogen bonded R22(8) motifs of CYT-acetic acid joined in a centrosymmetric arrangement via an R42(8) motif. Hydrogen bonds are shown as dashed lines.
5H-dibenzo[a,d]cycloheptatriene-5-carboxamide ethanoic acid solvate top
Crystal data top
C16H13NO·C2H4O2F(000) = 624
Mr = 295.34Dx = 1.279 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3006 reflections
a = 5.8726 (17) Åθ = 3–26°
b = 14.418 (3) ŵ = 0.09 mm1
c = 18.182 (4) ÅT = 160 K
β = 95.13 (2)°Needle, colourless
V = 1533.3 (6) Å30.44 × 0.09 × 0.06 mm
Z = 4
Data collection top
Oxford Diffraction Gemini
diffractometer
2759 independent reflections
Graphite monochromator2025 reflections with I > 2σ(I)
Detector resolution: 15.9745 pixels mm-1Rint = 0.065
ω scansθmax = 25.2°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 77
Tmin = 0.84, Tmax = 0.99k = 1717
16235 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.089H-atom parameters constrained
wR(F2) = 0.148 Method = Modified Sheldrick w = 1/[σ2(F2) + 3.15P],
where P = (max(Fo2,0) + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.000156
2759 reflectionsΔρmax = 0.43 e Å3
199 parametersΔρmin = 0.37 e Å3
0 restraints
Crystal data top
C16H13NO·C2H4O2V = 1533.3 (6) Å3
Mr = 295.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.8726 (17) ŵ = 0.09 mm1
b = 14.418 (3) ÅT = 160 K
c = 18.182 (4) Å0.44 × 0.09 × 0.06 mm
β = 95.13 (2)°
Data collection top
Oxford Diffraction Gemini
diffractometer
2759 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2025 reflections with I > 2σ(I)
Tmin = 0.84, Tmax = 0.99Rint = 0.065
16235 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0890 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.08Δρmax = 0.43 e Å3
2759 reflectionsΔρmin = 0.37 e Å3
199 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8743 (7)0.1556 (2)0.5586 (2)0.0377
C21.0683 (7)0.2065 (3)0.52488 (19)0.0394
H21.20720.17090.53950.0464*
C31.0494 (7)0.2106 (2)0.4415 (2)0.0359
H30.36430.61940.82620.0919*
C41.2134 (7)0.1675 (3)0.4031 (2)0.0434
H41.33620.13550.42910.0517*
C51.2009 (8)0.1694 (3)0.3270 (2)0.0489
H51.31550.14170.30230.0588*
C61.0206 (8)0.2134 (3)0.2876 (2)0.0492
H61.01150.21460.23610.0589*
C70.8543 (8)0.2557 (3)0.3251 (2)0.0479
H70.72870.28340.29800.0554*
C80.8695 (7)0.2579 (2)0.4025 (2)0.0391
C90.7017 (8)0.3120 (3)0.4383 (2)0.0500
H90.55400.31380.41400.0595*
C100.7341 (8)0.3609 (3)0.5012 (2)0.0548
H100.60620.39330.51490.0651*
C110.9405 (9)0.3695 (3)0.5504 (2)0.0537
C120.9797 (11)0.4529 (3)0.5910 (3)0.0745
H120.87010.49890.58670.0940*
C131.1748 (15)0.4673 (4)0.6361 (3)0.1040
H131.19570.52300.66180.1120*
C141.3377 (12)0.3999 (5)0.6437 (3)0.0924
H141.47160.40960.67450.1038*
C151.3053 (9)0.3160 (3)0.6066 (2)0.0620
H151.41960.27000.61210.0709*
C161.1082 (8)0.3006 (3)0.5609 (2)0.0448
C170.6177 (7)0.5488 (3)0.8287 (2)0.0425
C180.8000 (7)0.5266 (3)0.7809 (2)0.0554
H18a0.91630.57300.78540.0834*
H18b0.87130.46980.79650.0835*
H18c0.74320.52180.73030.0833*
O10.8339 (5)0.17284 (18)0.62261 (13)0.0490
O20.6154 (5)0.52248 (18)0.89214 (14)0.0484
O30.4556 (5)0.6020 (2)0.79594 (15)0.0614
N10.7638 (6)0.0891 (2)0.51942 (16)0.0425
H1N0.78700.08130.47270.0503*
H2N0.66690.05460.54190.0502*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.051 (3)0.0295 (19)0.030 (2)0.0027 (18)0.0055 (18)0.0048 (16)
C20.046 (2)0.038 (2)0.032 (2)0.0007 (18)0.0058 (18)0.0005 (17)
C30.049 (2)0.0252 (18)0.033 (2)0.0068 (17)0.0016 (18)0.0008 (16)
C40.056 (3)0.038 (2)0.036 (2)0.0023 (19)0.001 (2)0.0003 (18)
C50.061 (3)0.045 (2)0.041 (2)0.002 (2)0.009 (2)0.008 (2)
C60.075 (3)0.044 (2)0.028 (2)0.004 (2)0.002 (2)0.0015 (18)
C70.064 (3)0.040 (2)0.038 (2)0.002 (2)0.008 (2)0.0106 (19)
C80.052 (3)0.030 (2)0.035 (2)0.0051 (18)0.0013 (19)0.0049 (16)
C90.062 (3)0.038 (2)0.050 (3)0.004 (2)0.006 (2)0.013 (2)
C100.079 (3)0.030 (2)0.059 (3)0.008 (2)0.029 (3)0.012 (2)
C110.090 (4)0.038 (2)0.036 (2)0.014 (2)0.019 (2)0.0013 (19)
C120.141 (5)0.041 (3)0.049 (3)0.023 (3)0.046 (3)0.005 (2)
C130.207 (9)0.063 (4)0.049 (3)0.076 (5)0.053 (5)0.028 (3)
C140.138 (6)0.100 (5)0.042 (3)0.083 (5)0.027 (3)0.023 (3)
C150.082 (4)0.072 (3)0.032 (2)0.036 (3)0.007 (2)0.009 (2)
C160.066 (3)0.040 (2)0.029 (2)0.017 (2)0.006 (2)0.0005 (17)
C170.054 (3)0.034 (2)0.038 (2)0.0012 (19)0.007 (2)0.0052 (18)
C180.062 (3)0.055 (3)0.048 (3)0.004 (2)0.000 (2)0.010 (2)
O10.073 (2)0.0466 (16)0.0272 (15)0.0191 (15)0.0036 (14)0.0021 (12)
O20.064 (2)0.0436 (16)0.0359 (16)0.0114 (14)0.0044 (14)0.0061 (13)
O30.082 (2)0.067 (2)0.0351 (16)0.0330 (18)0.0035 (15)0.0077 (14)
N10.064 (2)0.0351 (18)0.0269 (17)0.0113 (16)0.0012 (16)0.0012 (14)
Geometric parameters (Å, º) top
O1—C11.234 (4)C11—C121.419 (6)
O2—C171.216 (5)C12—C131.364 (10)
O3—C171.322 (5)C13—C141.362 (10)
O3—H30.8400C14—C151.390 (8)
N1—C11.329 (5)C15—C161.381 (6)
N1—H1N0.8800C2—H20.9800
N1—H2N0.8800C4—H40.9500
C1—C21.529 (6)C5—H50.9300
C2—C161.516 (6)C6—H60.9300
C2—C31.511 (5)C7—H70.9400
C3—C81.397 (5)C9—H90.9400
C3—C41.386 (6)C10—H100.9400
C4—C51.379 (5)C12—H120.9200
C5—C61.379 (6)C13—H130.9300
C6—C71.382 (6)C14—H140.9300
C7—C81.403 (5)C15—H150.9400
C8—C91.455 (6)C17—C181.473 (6)
C9—C101.343 (5)C18—H18A0.9500
C10—C111.446 (6)C18—H18B0.9500
C11—C161.400 (7)C18—H18C0.9500
C17—O3—H3111.00C1—C2—H2106.00
H1N—N1—H2N122.00C16—C2—H2105.00
C1—N1—H1N120.00C3—C2—H2106.00
C1—N1—H2N118.00C3—C4—H4120.00
N1—C1—C2118.5 (3)C5—C4—H4119.00
O1—C1—N1121.7 (3)C6—C5—H5120.00
O1—C1—C2119.7 (3)C4—C5—H5120.00
C1—C2—C3115.5 (3)C5—C6—H6120.00
C3—C2—C16113.2 (3)C7—C6—H6120.00
C1—C2—C16110.4 (3)C6—C7—H7119.00
C4—C3—C8119.4 (3)C8—C7—H7120.00
C2—C3—C4119.7 (3)C10—C9—H9116.00
C2—C3—C8120.9 (3)C8—C9—H9116.00
C3—C4—C5121.3 (4)C11—C10—H10116.00
C4—C5—C6120.0 (4)C9—C10—H10116.00
C5—C6—C7119.4 (3)C11—C12—H12119.00
C6—C7—C8121.4 (4)C13—C12—H12119.00
C3—C8—C7118.4 (4)C12—C13—H13120.00
C7—C8—C9118.4 (4)C14—C13—H13120.00
C3—C8—C9123.1 (3)C15—C14—H14120.00
C8—C9—C10127.8 (4)C13—C14—H14120.00
C9—C10—C11128.3 (4)C14—C15—H15120.00
C10—C11—C12118.9 (4)C16—C15—H15120.00
C12—C11—C16116.8 (4)O2—C17—C18124.2 (4)
C10—C11—C16124.3 (4)O3—C17—C18113.1 (3)
C11—C12—C13122.0 (5)O2—C17—O3122.7 (4)
C12—C13—C14119.8 (5)C17—C18—H18A110.00
C13—C14—C15120.5 (6)C17—C18—H18B110.00
C14—C15—C16120.2 (5)C17—C18—H18C112.00
C2—C16—C11119.8 (4)H18A—C18—H18B107.00
C11—C16—C15120.6 (4)H18A—C18—H18C109.00
C2—C16—C15119.5 (4)H18B—C18—H18C109.00
O1—C1—C2—C3157.1 (3)C5—C6—C7—C82.5 (7)
O1—C1—C2—C1627.1 (5)C6—C7—C8—C34.4 (6)
N1—C1—C2—C327.5 (5)C6—C7—C8—C9173.5 (4)
N1—C1—C2—C16157.4 (3)C3—C8—C9—C1033.2 (6)
C1—C2—C3—C4116.5 (4)C7—C8—C9—C10144.6 (4)
C1—C2—C3—C864.0 (4)C8—C9—C10—C112.4 (7)
C16—C2—C3—C4114.9 (4)C9—C10—C11—C12149.6 (5)
C16—C2—C3—C864.6 (5)C9—C10—C11—C1630.0 (7)
C1—C2—C16—C1167.0 (5)C10—C11—C12—C13177.3 (5)
C1—C2—C16—C15110.0 (4)C16—C11—C12—C132.4 (8)
C3—C2—C16—C1164.2 (5)C10—C11—C16—C25.9 (6)
C3—C2—C16—C15118.8 (4)C10—C11—C16—C15177.2 (4)
C2—C3—C4—C5179.6 (4)C12—C11—C16—C2174.4 (4)
C8—C3—C4—C50.8 (6)C12—C11—C16—C152.5 (6)
C2—C3—C8—C7177.0 (4)C11—C12—C13—C140.8 (9)
C2—C3—C8—C95.2 (5)C12—C13—C14—C150.9 (9)
C4—C3—C8—C73.5 (5)C13—C14—C15—C160.8 (8)
C4—C3—C8—C9174.3 (4)C14—C15—C16—C2175.9 (4)
C3—C4—C5—C61.1 (7)C14—C15—C16—C111.0 (7)
C4—C5—C6—C70.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.882.272.888 (4)128
N1—H2N···O2ii0.882.183.018 (4)158
O3—H3···O1iii0.841.732.565 (4)169
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H13NO·C2H4O2
Mr295.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)160
a, b, c (Å)5.8726 (17), 14.418 (3), 18.182 (4)
β (°) 95.13 (2)
V3)1533.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.44 × 0.09 × 0.06
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.84, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
16235, 2759, 2025
Rint0.065
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.089, 0.148, 1.08
No. of reflections2759
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.37

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
O1—C11.234 (4)O3—C171.322 (5)
O2—C171.216 (5)N1—C11.329 (5)
N1—C1—C2118.5 (3)O2—C17—C18124.2 (4)
O1—C1—N1121.7 (3)O3—C17—C18113.1 (3)
O1—C1—C2119.7 (3)O2—C17—O3122.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.882.272.888 (4)128
N1—H2N···O2ii0.882.183.018 (4)158
O3—H3···O1iii0.841.732.565 (4)169
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the Basic Technology Programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (http://www.cposs.org.uk ).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBandoli, G., Nicolini, M., Ongaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr. 22, 177–183.  CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem. 70, 836–840.  CAS PubMed Web of Science Google Scholar
First citationDavis, M. A., Winthrop, S. O., Thomas, R. A., Herr, F., Charest, M.-P. & Gaudry, R. (1964). J. Med. Chem. 7, 88–94.  CrossRef PubMed CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodriguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909–919.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlorence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst. 39, 922–924.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlorence, A. J., Johnston, A., Price, S. L., Nowell, H., Kennedy, A. R. & Shankland, N. (2006). J. Pharm. Sci. 95, 1918–1930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlorence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746–747.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlorence, A. J., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A., Fernandes, P. & Leech, C. K. (2008). CrystEngComm, 10, 26–28.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, o240–o242.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJohnston, A., Florence, A. J., Fernandes, P., Shankland, N. & Kennedy, A. R. (2006). Acta Cryst. E62, o5361–o5362.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLeech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007). Acta Cryst. E63, o675–o677.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD, CrysAlis RED and ABSPACK. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1175-o1176
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds