organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-2-(Pyrrolidinium-2-ylmethyl­sulfan­yl)pyridinium dibromide

aState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: shuaizhang867@gmail.com

(Received 6 March 2008; accepted 27 March 2008; online 24 May 2008)

In the title compound, C10H16N2S2+·2Br, the pyrrolidine ring displays an envelope conformation, with the flap C atom lying 0.484 (5) Å out of the plane of the rest of the pyrrolidine ring. The thio­ether group connects the pyridine ring and the 2-methyl­pyrrolidine group. Both pyrrolidine NH bonds form hydrogen bonds to the bromide anions. These hydrogen bonds link the cations and anions in a helical chain along the c axis.

Related literature

For related literature, see: Ishii et al. (2004[Ishii, T., Fujioka, S., Sekiguchi, Y. & Kotsuki, H. (2004). J. Am. Chem. Soc. 126, 9558-9559.]); Xu et al. (2007[Xu, D. Q., Luo, S. P., Wang, Y. F. & Xu, Z. Y. (2007). Chem. Commun. pp. 4393-4395.]); Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.]).

[Scheme 1]

Experimental

Crystal data
  • C10H16N2S2+·2Br

  • Mr = 356.12

  • Trigonal, P 32

  • a = 8.9892 (9) Å

  • c = 15.4567 (14) Å

  • V = 1081.66 (18) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 5.76 mm−1

  • T = 296 (1) K

  • 0.35 × 0.30 × 0.23 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi,1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.162, Tmax = 0.266

  • 10585 measured reflections

  • 3169 independent reflections

  • 1902 reflections with F2 > 2.0σ(F2)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.108

  • S = 1.01

  • 3169 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.53 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1037 Friedel pairs

  • Flack parameter: 0.017 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2⋯Br1 0.86 2.45 3.278 (7) 163
N1—H3⋯Br1i 0.86 2.43 3.271 (5) 165
Symmetry code: (i) [-x+y, -x+1, z+{\script{1\over 3}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

In recent years, proline and its derivatives have been studied extensively because of their ability to catalyze a large number of reactions (Ishii et al., 2004). The title compound is a hydrobromide of an ionic compound that was synthesized from L-proline. It was prepared as a kind of ionic organocatalyst for use in the asymmetric Michael addition of carbonyl compounds to nitroalkenes (Xu et al., 2007). The compound consists of two ionic pairs, protonated ammoniums and Br- anions. The chiral atom C1 has the expected S conformation, and the C1/C3/C4/N1 atoms of pyrrolidine are almost coplanar. The distance of atom C2 to the C1/C3/C4/N1 mean plane is 0.484 (5) Å, while the distance of atom C5 to the plane is 0.865 (9) Å. In addition, the dihedral angle of the C1/N1/C3/C4 mean plane and the pyridine ring is 67.82 (4) °. The thioether group connects the pyridine ring and the 2-methylpyrrolidine group, the torsion angle of C6—S1—C5—C1 is 97.13 (4) °.

Related literature top

For related literature, see: Ishii et al. (2004); Xu et al. (2007); Larson (1970).

Experimental top

The title compound was readily synthesized by treating 2-mercaptopyridine with (S)-(+)-2-bromomethylpyrrolidine hydrobromide in MeCN. The compound (S)-(+)-2-bromomethylpyrrolidine hydrobromide was obtained from commercially available L-proline by reduction with NaBH4 and subsequent bromination with PBr3. Suitable crystals were obtained by slow evaporation of methanol at room temperature.

Refinement top

All H atoms were placed in calculated positions with C—H=0.98 Å (sp), C—H=0.97 Å (sp2), C—H=0.93 Å (aromatic), N—H=0.86 Å and included in the final cycles of refinement as a riding model, with Uiso(H)=1.2Ueq of the carrier atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with the atomic labeling scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Hydrogen bonding in the title compound. Symmetry codes: (i) 1-y, 1+x-y, -1/3+z; (ii) 1-y, 1+x-y, 2/3+z; (iii) -x+y, 1-x, 1/3+z.
(S)-2-(Pyrrolidinium-2-ylmethylsulfanyl)pyridinium dibromide top
Crystal data top
C10H16N2S2+·2BrDx = 1.640 Mg m3
Mr = 356.12Mo Kα radiation, λ = 0.71073 Å
Trigonal, P32Cell parameters from 5169 reflections
Hall symbol: P 32θ = 3.7–27.4°
a = 8.9892 (9) ŵ = 5.76 mm1
c = 15.4567 (14) ÅT = 296 K
V = 1081.66 (18) Å3Chunk, colorless
Z = 30.35 × 0.30 × 0.23 mm
F(000) = 528.00
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1902 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.061
ω scansθmax = 27.4°
Absorption correction: multi-scan
(ABSCOR; Higashi,1995)
h = 1111
Tmin = 0.162, Tmax = 0.266k = 1110
10585 measured reflectionsl = 1820
3169 independent reflections
Refinement top
Refinement on F2 w = 1/[0.7600σ(Fo2)]/(4Fo2)
R[F2 > 2σ(F2)] = 0.036(Δ/σ)max = 0.013
wR(F2) = 0.108Δρmax = 0.67 e Å3
S = 1.01Δρmin = 0.53 e Å3
3169 reflectionsExtinction correction: Larson (1970) Crystallographic Computing eq. 22
138 parametersExtinction coefficient: 385 (18)
0 restraintsAbsolute structure: Flack (1983), 1037 Friedel Pairs
H-atom parameters constrainedAbsolute structure parameter: 0.017 (2)
Crystal data top
C10H16N2S2+·2BrZ = 3
Mr = 356.12Mo Kα radiation
Trigonal, P32µ = 5.76 mm1
a = 8.9892 (9) ÅT = 296 K
c = 15.4567 (14) Å0.35 × 0.30 × 0.23 mm
V = 1081.66 (18) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3169 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi,1995)
1902 reflections with F2 > 2.0σ(F2)
Tmin = 0.162, Tmax = 0.266Rint = 0.061
10585 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.108Δρmax = 0.67 e Å3
S = 1.01Δρmin = 0.53 e Å3
3169 reflectionsAbsolute structure: Flack (1983), 1037 Friedel Pairs
138 parametersAbsolute structure parameter: 0.017 (2)
0 restraints
Special details top

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.51453 (17)0.87503 (13)0.16904 (9)0.1032 (4)
Br20.10004 (11)0.14553 (10)0.04190 (9)0.0605 (2)
S10.0678 (3)0.4733 (3)0.31433 (12)0.0671 (7)
N10.4515 (9)0.5570 (8)0.2963 (3)0.067 (2)
N20.0359 (7)0.6865 (8)0.2110 (3)0.053 (2)
C10.3184 (9)0.4069 (9)0.2462 (4)0.053 (2)
C20.3905 (11)0.2858 (11)0.2388 (5)0.071 (3)
C30.5771 (13)0.4004 (16)0.2379 (8)0.086 (5)
C40.6121 (14)0.5513 (18)0.2933 (7)0.077 (5)
C50.1434 (10)0.3261 (10)0.2879 (4)0.059 (2)
C60.0388 (9)0.5412 (9)0.2143 (4)0.050 (2)
C70.0160 (10)0.4576 (10)0.1352 (4)0.059 (2)
C80.0040 (10)0.5283 (11)0.0612 (4)0.066 (2)
C90.0037 (10)0.6817 (12)0.0635 (4)0.067 (2)
C100.0138 (10)0.7576 (11)0.1396 (4)0.062 (2)
H10.31050.44600.18800.064*
H20.46730.65110.27350.080*
H30.41870.55090.34910.080*
H70.01440.35340.13300.071*
H80.01800.47240.00870.079*
H90.01540.73100.01300.080*
H100.01080.85930.14320.074*
H210.35600.20850.28790.085*
H220.35220.21950.18570.085*
H310.61690.43770.17930.103*
H320.63430.34210.26140.103*
H410.64500.53690.35110.092*
H420.70330.65640.26820.092*
H510.14770.27080.34090.071*
H520.06140.24030.24840.071*
H2010.04940.74030.25900.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1369 (10)0.0925 (8)0.0513 (4)0.0357 (7)0.0061 (5)0.0034 (4)
Br20.0670 (6)0.0510 (5)0.0630 (4)0.0292 (4)0.0073 (4)0.0054 (3)
S10.0848 (16)0.0802 (16)0.0554 (11)0.0555 (14)0.0125 (10)0.0098 (10)
N10.072 (4)0.063 (4)0.053 (3)0.026 (4)0.001 (3)0.006 (3)
N20.055 (4)0.055 (4)0.053 (3)0.029 (3)0.011 (2)0.003 (2)
C10.052 (4)0.046 (4)0.058 (4)0.022 (4)0.001 (3)0.001 (3)
C20.055 (5)0.082 (6)0.084 (5)0.040 (5)0.000 (4)0.005 (4)
C30.070 (8)0.088 (10)0.090 (14)0.032 (7)0.004 (7)0.000 (10)
C40.061 (7)0.083 (14)0.093 (10)0.041 (9)0.004 (6)0.003 (10)
C50.051 (5)0.063 (5)0.065 (5)0.030 (4)0.011 (3)0.009 (3)
C60.056 (5)0.041 (4)0.060 (4)0.030 (4)0.008 (3)0.003 (3)
C70.075 (5)0.056 (5)0.055 (4)0.040 (4)0.002 (3)0.002 (3)
C80.071 (6)0.078 (6)0.053 (4)0.041 (5)0.001 (3)0.001 (4)
C90.077 (6)0.082 (6)0.053 (4)0.049 (5)0.002 (3)0.002 (4)
C100.088 (6)0.061 (5)0.050 (4)0.048 (5)0.002 (3)0.009 (3)
Geometric parameters (Å, º) top
S1—C51.811 (11)N1—H30.860
S1—C61.729 (7)N2—H2010.860
N1—C11.496 (8)C1—H10.980
N1—C41.471 (18)C2—H210.970
N2—C61.321 (12)C2—H220.970
N2—C101.339 (10)C3—H310.970
C1—C21.524 (16)C3—H320.970
C1—C51.508 (10)C4—H410.970
C2—C31.465 (12)C4—H420.970
C3—C41.499 (9)C5—H510.970
C6—C71.396 (9)C5—H520.970
C7—C81.363 (12)C7—H70.930
C8—C91.379 (16)C8—H80.930
C9—C101.329 (10)C9—H90.930
N1—H20.860C10—H100.930
C5—S1—C6103.5 (4)C1—C2—H22110.8
C1—N1—C4108.0 (8)C3—C2—H21110.8
C6—N2—C10125.8 (6)C3—C2—H22110.8
N1—C1—C2104.4 (7)H21—C2—H22109.5
N1—C1—C5112.6 (6)C2—C3—H31110.3
C2—C1—C5113.7 (6)C2—C3—H32110.3
C1—C2—C3104.2 (8)C4—C3—H31110.3
C2—C3—C4106.2 (11)C4—C3—H32110.3
N1—C4—C3106.5 (8)H31—C3—H32109.5
S1—C5—C1115.3 (6)N1—C4—H41110.2
S1—C6—N2117.7 (5)N1—C4—H42110.2
S1—C6—C7126.9 (7)C3—C4—H41110.2
N2—C6—C7115.4 (7)C3—C4—H42110.2
C6—C7—C8120.2 (9)H41—C4—H42109.5
C7—C8—C9120.7 (7)S1—C5—H51108.0
C8—C9—C10118.4 (8)S1—C5—H52108.0
N2—C10—C9119.5 (10)C1—C5—H51108.0
C1—N1—H2109.8C1—C5—H52108.0
C1—N1—H3109.8H51—C5—H52109.5
C4—N1—H2109.8C6—C7—H7119.9
C4—N1—H3109.8C8—C7—H7119.9
H2—N1—H3109.5C7—C8—H8119.7
C6—N2—H201117.1C9—C8—H8119.7
C10—N2—H201117.1C8—C9—H9120.8
N1—C1—H1108.7C10—C9—H9120.8
C2—C1—H1108.7N2—C10—H10120.2
C5—C1—H1108.7C9—C10—H10120.2
C1—C2—H21110.8
C5—S1—C6—N2159.4 (5)N1—C1—C5—S151.7 (8)
C5—S1—C6—C721.3 (8)C2—C1—C5—S1170.2 (5)
C6—S1—C5—C166.8 (5)C5—C1—C2—C3153.7 (7)
C1—N1—C4—C32.2 (10)C1—C2—C3—C432.4 (11)
C4—N1—C1—C217.3 (7)C2—C3—C4—N122.0 (12)
C4—N1—C1—C5141.1 (8)S1—C6—C7—C8179.4 (6)
C6—N2—C10—C91.5 (12)N2—C6—C7—C81.2 (11)
C10—N2—C6—S1179.6 (5)C6—C7—C8—C90.6 (10)
C10—N2—C6—C70.1 (9)C7—C8—C9—C101.0 (12)
N1—C1—C2—C330.6 (8)C8—C9—C10—N22.1 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···Br10.862.453.278 (7)163
N1—H3···Br1i0.862.433.271 (5)165
Symmetry code: (i) x+y, x+1, z+1/3.

Experimental details

Crystal data
Chemical formulaC10H16N2S2+·2Br
Mr356.12
Crystal system, space groupTrigonal, P32
Temperature (K)296
a, c (Å)8.9892 (9), 15.4567 (14)
V3)1081.66 (18)
Z3
Radiation typeMo Kα
µ (mm1)5.76
Crystal size (mm)0.35 × 0.30 × 0.23
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi,1995)
Tmin, Tmax0.162, 0.266
No. of measured, independent and
observed [F2 > 2.0σ(F2)] reflections
10585, 3169, 1902
Rint0.061
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.108, 1.01
No. of reflections3169
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.53
Absolute structureFlack (1983), 1037 Friedel Pairs
Absolute structure parameter0.017 (2)

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR97 (Altomare et al., 1999), CRYSTALS (Betteridge et al., 2003), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···Br10.8602.4473.278 (7)163
N1—H3···Br1i0.8602.4343.271 (5)165
Symmetry code: (i) x+y, x+1, z+1/3.
 

Acknowledgements

We thank Professor Jian-Ming Gu of Zhejiang University for his help.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIshii, T., Fujioka, S., Sekiguchi, Y. & Kotsuki, H. (2004). J. Am. Chem. Soc. 126, 9558–9559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationXu, D. Q., Luo, S. P., Wang, Y. F. & Xu, Z. Y. (2007). Chem. Commun. pp. 4393–4395.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds