inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The pyrochlore-type molybdate Pr1.37Ca0.63Mo2O7

aUnité Sciences Chimiques de Rennes, UMR CNRS No. 6226, Université de Rennes I–INSA Rennes, Campus de Beaulieu, 35042 Rennes CEDEX, France
*Correspondence e-mail: patrick.gougeon@univ-rennes1.fr

(Received 2 April 2008; accepted 21 May 2008; online 24 May 2008)

Praseodymium calcium dimolybdenum hepta­oxide, Pr1.37Ca0.63Mo2O7, crystallizes in the cubic pyrochlore-type structure. In the crystal structure, MoO6 octa­hedra are linked together by common corners, forming a three-dimensional [Mo2O6] network. The Pr and Ca atoms and the remaining O atoms are located in the voids of the [Mo2O6] network. The Pr and Ca atoms are distributed statistically over the same 16c crystallographic position with site-occupancy factors of 0.684 (3) and 0.316 (3), respectively. They are surrounded by eight O atoms forming a ditrigonal scalenohedron. All atoms lie on special positions. The (Pr, Ca) and Mo atoms are, respectively in the 16c and 16d positions with [\overline{3}]m symmetry, and the O atoms in the 48f or 8a positions with mm or [\overline{4}]3m site symmetry, respectively.

Related literature

For related literature, see: Hubert (1974[Hubert, Ph. H. (1974). Bull. Soc. Chim. Fr. 11, 2385-2386.]); Subramanian et al. (1983[Subramanian, M. A., Aravamudan, G. & Subba Rao, G. V. (1983). Prog. Solid State Chem. 15, 55-143.]); American Chemical Society (2007[American Chemical Society (2007). SciFinder Scholar. http://www.cas.org/SCIFINDER/SCHOLAR .]); Gougeon et al. (2003[Gougeon, P., Gall, P., Halet, J.-F. & Gautier, R. (2003). Acta Cryst. B59, 472-478.]); Kerihuel & Gougeon (1995[Kerihuel, G. & Gougeon, P. (1995). Acta Cryst. C51, 1475-1478.]).

Experimental

Crystal data
  • Pr1.37Ca0.63Mo2O7

  • Mr = 522.18

  • Cubic, [F d \overline 3m ]

  • a = 10.4329 (3) Å

  • V = 1135.57 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 16.45 mm−1

  • T = 293 (2) K

  • 0.16 × 0.14 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: analytical (de Meulenaer & Tompa, 1965[Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.]) Tmin = 0.093, Tmax = 0.125

  • 771 measured reflections

  • 266 independent reflections

  • 167 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.086

  • S = 1.11

  • 266 reflections

  • 12 parameters

  • Δρmax = 2.51 e Å−3

  • Δρmin = −1.55 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: COLLECT; data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

An attempt to synthesize PrCaMo16O28, a compound with the PrMo8O14 type structure (Kerihuel & Gougeon, 1995), was unsuccessful, resulting in a multiphase product. However, the formation of the new compound, Pr1.37Ca0.63Mo2O7 was achieved. A survey of the literature related to the rare earth molybdates R2Mo2O7 with the database SciFinder Scholar (American Chemical Society, 2007) shows that these compounds only form for the rare-earths from Nd to Lu. To our knowledge, no quaternary molybdate pyrochlore has thus far been reported.

Related literature top

For related literature, see: Hubert (1974); Subramanian et al. (1983); American Chemical Society (2007); Gougeon et al. (2003); Kerihuel & Gougeon (1995).

Experimental top

Single crystals of Pr1.37Ca0.63Mo2O7 were prepared from a mixture of Pr6O11 (Rhone Poulenc, 99.99%), CaMoO4, MoO3 (Cerac, 99.95%) and Mo (Plansee, 99.9999%) with the nominal composition PrCaMo16O28. Before use, Mo powder was reduced under a flow of H2 gas at 1273 K for ten hours in order to eliminate any trace of oxygen. CaMoO4 was prepared by heating a stoichiometric mixture of CaCO3 and MoO3 in an open porcelain crucible at 1073 K for 24 h. The initial mixture (ca 5 g) was cold pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc welding system. The charge was heated at a rate of 300 K/h up to 2223 K, and the temperature was held for 5 min., then cooled at 100 K/h to 1373 K and finally furnace cooled. The final product was multiphasic with Pr1.37Ca0.63Mo2O7 and Pr1 - xCaxMo10O16, isomorphous with the RMo5O8 compounds (R = La to Gd; Gougeon et al., 2003), as predominant phases. The crystals thus obtained were of irregular shape.

Refinement top

The structure was solved by direct methods using SIR97 (Altomare et al., 1999). The second setting, with the origin at 3 m of the Fd3m space group, was chosen. Initial refinement with full occupancy for the Pr1 site resulted in an R factor of about 0.30. Refinement of the site-occupancy factor of the Pr1 atoms lowered the R factor to 0.0274 with an occupation factor of 0.74. As qualitative microanalyses using a Jeol JSM-35 CF scanning electron microscope equipped with a Tracor energy-dispersive-type X-ray spectrometer indicated the presence of calcium in the crystals, we surmised that the deficiency observed on the Pr1 site resulted from the presence of calcium. Refinements taking into account an occupation of the deficient Pr1 site simultaneously by Pr and Ca atoms with no constraint on the site-occupancy factors of the Pr1 and Ca1 atoms led to an over-occupation of the 16 d position. Consequently, the sum of the site occupancy factors was constrained to unity, and the ADPs of the Pr1 and Ca1 atoms were constrained to be equal. Refinement of the occupancy factor of the O2 atom in 8a position which frequently exhibits partial or total deficiency, indicates full occupation of this position.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT (Nonius, 1998); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : View of Pr1.37Ca0.63Mo2O7 along the [110] direction. Displacement ellipsoids are drawn at the 97% probability level.
Praseodymium calcium dimolybdenum heptaoxide top
Crystal data top
Pr1.37Ca0.63Mo2O7Dx = 6.109 Mg m3
Mr = 522.18Mo Kα radiation, λ = 0.71070 Å
Cubic, Fd3mCell parameters from 1172 reflections
Hall symbol: -F 4vw 2vwθ = 3.4–45.3°
a = 10.4329 (3) ŵ = 16.45 mm1
V = 1135.57 (6) Å3T = 293 K
Z = 8Irregular block, black
F(000) = 1867.40.16 × 0.14 × 0.12 mm
Data collection top
Nonius KappaCCD
diffractometer
266 independent reflections
Radiation source: fine-focus sealed tube167 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.053
Detector resolution: 9 pixels mm-1θmax = 45.3°, θmin = 3.4°
ϕ scans (κ = 0) + additional ω scansh = 120
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
k = 014
Tmin = 0.093, Tmax = 0.125l = 013
771 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0207P)2 + 4.885P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086(Δ/σ)max < 0.001
S = 1.12Δρmax = 2.51 e Å3
266 reflectionsΔρmin = 1.55 e Å3
12 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00256 (19)
Crystal data top
Pr1.37Ca0.63Mo2O7Z = 8
Mr = 522.18Mo Kα radiation
Cubic, Fd3mµ = 16.45 mm1
a = 10.4329 (3) ÅT = 293 K
V = 1135.57 (6) Å30.16 × 0.14 × 0.12 mm
Data collection top
Nonius KappaCCD
diffractometer
266 independent reflections
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
167 reflections with I > 2σ(I)
Tmin = 0.093, Tmax = 0.125Rint = 0.053
771 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02712 parameters
wR(F2) = 0.0860 restraints
S = 1.12Δρmax = 2.51 e Å3
266 reflectionsΔρmin = 1.55 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pr10.00000.00000.00000.00947 (18)0.685 (3)
Ca10.00000.00000.00000.00947 (18)0.315 (3)
Mo10.50000.50000.50000.00539 (19)
O10.4247 (3)0.12500.12500.0160 (5)
O20.12500.12500.12500.0100 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.00947 (18)0.00947 (18)0.00947 (18)0.00154 (5)0.00154 (5)0.00154 (5)
Ca10.00947 (18)0.00947 (18)0.00947 (18)0.00154 (5)0.00154 (5)0.00154 (5)
Mo10.00539 (19)0.00539 (19)0.00539 (19)0.00013 (5)0.00013 (5)0.00013 (5)
O10.0239 (14)0.0120 (6)0.0120 (6)0.0000.0000.0026 (8)
O20.0100 (8)0.0100 (8)0.0100 (8)0.0000.0000.000
Geometric parameters (Å, º) top
Pr1—O2i2.2588Mo1—Ca1xvii3.6886 (1)
Pr1—O22.2588Mo1—Ca1xviii3.6886 (1)
Pr1—O1ii2.5930 (18)Mo1—Ca1xix3.6886 (1)
Pr1—O1iii2.5930 (18)Mo1—Ca1xx3.6886 (1)
Pr1—O1iv2.5930 (18)Mo1—Ca1xxi3.6886 (1)
Pr1—O1v2.5930 (18)Mo1—Ca1xxii3.6886 (1)
Pr1—O1vi2.5930 (18)O1—Mo1xxiii2.0046 (10)
Pr1—O1vii2.5930 (18)O1—Mo1xxiv2.0046 (10)
Pr1—Pr1vii3.6886 (1)O1—Pr1vii2.5930 (18)
Pr1—Ca1viii3.6886 (1)O1—Ca1vii2.5930 (18)
Pr1—Ca1ix3.6886 (1)O1—Ca1xxv2.5930 (18)
Pr1—Ca1x3.6886 (1)O1—Pr1xxv2.5930 (18)
Mo1—O1xi2.0046 (10)O2—Ca1xxv2.2588
Mo1—O1xii2.0046 (10)O2—Pr1vii2.2588
Mo1—O1xiii2.0046 (10)O2—Pr1ix2.2588
Mo1—O1xiv2.0046 (10)O2—Pr1xxv2.2588
Mo1—O1xv2.0046 (10)O2—Ca1vii2.2588
Mo1—O1xvi2.0046 (10)O2—Ca1ix2.2588
O2i—Pr1—O2180.0O1xii—Mo1—Ca1xvii42.51 (5)
O2i—Pr1—O1ii79.93 (4)O1xiii—Mo1—Ca1xvii137.49 (5)
O2—Pr1—O1ii100.07 (4)O1xiv—Mo1—Ca1xvii90.0
O2i—Pr1—O1iii79.93 (4)O1xv—Mo1—Ca1xvii137.49 (5)
O2—Pr1—O1iii100.07 (4)O1xvi—Mo1—Ca1xvii42.51 (5)
O1ii—Pr1—O1iii117.01 (2)O1xi—Mo1—Ca1xviii42.51 (5)
O2i—Pr1—O1iv79.93 (4)O1xii—Mo1—Ca1xviii90.0
O2—Pr1—O1iv100.07 (4)O1xiii—Mo1—Ca1xviii137.49 (5)
O1ii—Pr1—O1iv117.01 (2)O1xiv—Mo1—Ca1xviii137.49 (5)
O1iii—Pr1—O1iv117.01 (2)O1xv—Mo1—Ca1xviii90.0
O2i—Pr1—O1v100.07 (4)O1xvi—Mo1—Ca1xviii42.51 (5)
O2—Pr1—O1v79.93 (4)Ca1xvii—Mo1—Ca1xviii60.0
O1ii—Pr1—O1v180.00 (8)O1xi—Mo1—Ca1xix42.51 (5)
O1iii—Pr1—O1v62.99 (2)O1xii—Mo1—Ca1xix137.49 (5)
O1iv—Pr1—O1v62.99 (2)O1xiii—Mo1—Ca1xix90.0
O2i—Pr1—O1vi100.07 (4)O1xiv—Mo1—Ca1xix137.49 (5)
O2—Pr1—O1vi79.93 (4)O1xv—Mo1—Ca1xix42.51 (5)
O1ii—Pr1—O1vi62.99 (2)O1xvi—Mo1—Ca1xix90.0
O1iii—Pr1—O1vi180.00 (8)Ca1xvii—Mo1—Ca1xix120.0
O1iv—Pr1—O1vi62.99 (2)Ca1xviii—Mo1—Ca1xix60.0
O1v—Pr1—O1vi117.01 (2)O1xi—Mo1—Ca1xx137.49 (5)
O2i—Pr1—O1vii100.07 (4)O1xii—Mo1—Ca1xx90.0
O2—Pr1—O1vii79.93 (4)O1xiii—Mo1—Ca1xx42.51 (5)
O1ii—Pr1—O1vii62.99 (2)O1xiv—Mo1—Ca1xx42.51 (5)
O1iii—Pr1—O1vii62.99 (2)O1xv—Mo1—Ca1xx90.0
O1iv—Pr1—O1vii180.00 (8)O1xvi—Mo1—Ca1xx137.49 (5)
O1v—Pr1—O1vii117.01 (2)Ca1xvii—Mo1—Ca1xx120.0
O1vi—Pr1—O1vii117.01 (2)Ca1xviii—Mo1—Ca1xx180.0
O2i—Pr1—Pr1vii144.7Ca1xix—Mo1—Ca1xx120.0
O2—Pr1—Pr1vii35.3O1xi—Mo1—Ca1xxi90.0
O1ii—Pr1—Pr1vii135.34 (4)O1xii—Mo1—Ca1xxi137.49 (5)
O1iii—Pr1—Pr1vii81.87 (4)O1xiii—Mo1—Ca1xxi42.51 (5)
O1iv—Pr1—Pr1vii81.87 (4)O1xiv—Mo1—Ca1xxi90.0
O1v—Pr1—Pr1vii44.66 (4)O1xv—Mo1—Ca1xxi42.51 (5)
O1vi—Pr1—Pr1vii98.13 (4)O1xvi—Mo1—Ca1xxi137.49 (5)
O1vii—Pr1—Pr1vii98.13 (4)Ca1xvii—Mo1—Ca1xxi180.0
O2i—Pr1—Ca1viii35.3Ca1xviii—Mo1—Ca1xxi120.0
O2—Pr1—Ca1viii144.7Ca1xix—Mo1—Ca1xxi60.0
O1ii—Pr1—Ca1viii44.66 (4)Ca1xx—Mo1—Ca1xxi60.0
O1iii—Pr1—Ca1viii98.13 (4)O1xi—Mo1—Ca1xxii137.49 (5)
O1iv—Pr1—Ca1viii98.13 (4)O1xii—Mo1—Ca1xxii42.51 (5)
O1v—Pr1—Ca1viii135.34 (4)O1xiii—Mo1—Ca1xxii90.0
O1vi—Pr1—Ca1viii81.87 (4)O1xiv—Mo1—Ca1xxii42.51 (5)
O1vii—Pr1—Ca1viii81.87 (4)O1xv—Mo1—Ca1xxii137.49 (5)
Pr1vii—Pr1—Ca1viii180.0O1xvi—Mo1—Ca1xxii90.0
O2i—Pr1—Ca1ix144.7Ca1xvii—Mo1—Ca1xxii60.0
O2—Pr1—Ca1ix35.3Ca1xviii—Mo1—Ca1xxii120.0
O1ii—Pr1—Ca1ix81.87 (4)Ca1xix—Mo1—Ca1xxii180.0
O1iii—Pr1—Ca1ix81.87 (4)Ca1xx—Mo1—Ca1xxii60.0
O1iv—Pr1—Ca1ix135.34 (4)Ca1xxi—Mo1—Ca1xxii120.0
O1v—Pr1—Ca1ix98.13 (4)Mo1xxiii—O1—Mo1xxiv133.86 (14)
O1vi—Pr1—Ca1ix98.13 (4)Mo1xxiii—O1—Pr1vii105.99 (3)
O1vii—Pr1—Ca1ix44.66 (4)Mo1xxiv—O1—Pr1vii105.99 (3)
Pr1vii—Pr1—Ca1ix60.0Mo1xxiii—O1—Ca1vii105.99 (3)
Ca1viii—Pr1—Ca1ix120.0Mo1xxiv—O1—Ca1vii105.99 (3)
O2i—Pr1—Ca1x35.3Mo1xxiii—O1—Ca1xxv105.99 (3)
O2—Pr1—Ca1x144.7Mo1xxiv—O1—Ca1xxv105.99 (3)
O1ii—Pr1—Ca1x98.13 (4)Pr1vii—O1—Ca1xxv90.68 (8)
O1iii—Pr1—Ca1x98.13 (4)Ca1vii—O1—Ca1xxv90.68 (8)
O1iv—Pr1—Ca1x44.66 (4)Mo1xxiii—O1—Pr1xxv105.99 (3)
O1v—Pr1—Ca1x81.87 (4)Mo1xxiv—O1—Pr1xxv105.99 (3)
O1vi—Pr1—Ca1x81.87 (4)Pr1vii—O1—Pr1xxv90.68 (8)
O1vii—Pr1—Ca1x135.34 (4)Ca1vii—O1—Pr1xxv90.68 (8)
Pr1vii—Pr1—Ca1x120.0Pr1—O2—Ca1xxv109.5
Ca1viii—Pr1—Ca1x60.0Pr1—O2—Pr1vii109.5
Ca1ix—Pr1—Ca1x180.0Ca1xxv—O2—Pr1vii109.5
O1xi—Mo1—O1xii94.97 (9)Pr1—O2—Pr1ix109.5
O1xi—Mo1—O1xiii94.97 (9)Ca1xxv—O2—Pr1ix109.5
O1xii—Mo1—O1xiii94.97 (9)Pr1vii—O2—Pr1ix109.5
O1xi—Mo1—O1xiv180.0Pr1—O2—Pr1xxv109.5
O1xii—Mo1—O1xiv85.03 (9)Pr1vii—O2—Pr1xxv109.5
O1xiii—Mo1—O1xiv85.03 (9)Pr1ix—O2—Pr1xxv109.5
O1xi—Mo1—O1xv85.03 (9)Pr1—O2—Ca1vii109.5
O1xii—Mo1—O1xv180.0Ca1xxv—O2—Ca1vii109.5
O1xiii—Mo1—O1xv85.03 (9)Pr1ix—O2—Ca1vii109.5
O1xiv—Mo1—O1xv94.97 (9)Pr1xxv—O2—Ca1vii109.5
O1xi—Mo1—O1xvi85.03 (9)Pr1—O2—Ca1ix109.5
O1xii—Mo1—O1xvi85.03 (9)Ca1xxv—O2—Ca1ix109.5
O1xiii—Mo1—O1xvi180.0Pr1vii—O2—Ca1ix109.5
O1xiv—Mo1—O1xvi94.97 (9)Pr1xxv—O2—Ca1ix109.5
O1xv—Mo1—O1xvi94.97 (9)Ca1vii—O2—Ca1ix109.5
O1xi—Mo1—Ca1xvii90.0
Symmetry codes: (i) x, y, z; (ii) y, z1/4, x1/4; (iii) z1/4, x1/4, y; (iv) x1/4, y1/4, z; (v) y, z+1/4, x+1/4; (vi) z+1/4, x+1/4, y; (vii) x+1/4, y+1/4, z; (viii) x1/4, y1/4, z; (ix) x, y+1/4, z+1/4; (x) x, y1/4, z1/4; (xi) y+1/2, z+1/2, x+1; (xii) z+1/2, x+1, y+1/2; (xiii) x+1, y+1/2, z+1/2; (xiv) y+1/2, z+1/2, x; (xv) z+1/2, x, y+1/2; (xvi) x, y+1/2, z+1/2; (xvii) x+1/4, y+3/4, z+1/2; (xviii) y+1/4, x+1/2, z+3/4; (xix) x+1/2, y+1/4, z+3/4; (xx) y+3/4, x+1/2, z+1/4; (xxi) x+3/4, y+1/4, z+1/2; (xxii) x+1/2, y+3/4, z+1/4; (xxiii) x, y+3/4, z+3/4; (xxiv) x, y1/2, z1/2; (xxv) y+1/4, x, z+1/4.

Experimental details

Crystal data
Chemical formulaPr1.37Ca0.63Mo2O7
Mr522.18
Crystal system, space groupCubic, Fd3m
Temperature (K)293
a (Å)10.4329 (3)
V3)1135.57 (6)
Z8
Radiation typeMo Kα
µ (mm1)16.45
Crystal size (mm)0.16 × 0.14 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionAnalytical
(de Meulenaer & Tompa, 1965)
Tmin, Tmax0.093, 0.125
No. of measured, independent and
observed [I > 2σ(I)] reflections
771, 266, 167
Rint0.053
(sin θ/λ)max1)1.001
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.086, 1.12
No. of reflections266
No. of parameters12
Δρmax, Δρmin (e Å3)2.51, 1.55

Computer programs: COLLECT (Nonius, 1998), EVALCCD (Duisenberg et al., 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001).

 

Acknowledgements

Intensity data were collected on the Nonius KappaCCD X-ray diffactometer system of the `Centre de diffractométrie de l'Université de Rennes I' (www.cdifx.univ-rennes1.fr).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAmerican Chemical Society (2007). SciFinder Scholar. http://www.cas.org/SCIFINDER/SCHOLARGoogle Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGougeon, P., Gall, P., Halet, J.-F. & Gautier, R. (2003). Acta Cryst. B59, 472–478.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHubert, Ph. H. (1974). Bull. Soc. Chim. Fr. 11, 2385–2386.  Google Scholar
First citationKerihuel, G. & Gougeon, P. (1995). Acta Cryst. C51, 1475–1478.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMeulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018.  CrossRef IUCr Journals Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubramanian, M. A., Aravamudan, G. & Subba Rao, G. V. (1983). Prog. Solid State Chem. 15, 55–143.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds