organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-1,1,3,3-tetra­phenyl­propan-2-ol

aSchool of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081, People's Republic of China
*Correspondence e-mail: jrli@bit.edu.cn

(Received 14 April 2008; accepted 15 May 2008; online 21 May 2008)

The title compound, C28H26O, was synthesized by condensation of diphenyl­methyl­lithium and ethyl acetate. In one diphenyl­methyl group, the two benzene rings are rotated by 65.0 (3)° with respect to each other, while in the other diphenyl­methyl group, the dihedral angle between the two benzene rings is 84.1 (3)°.

Related literature

For related literature, see: Bunce & Dowdy (1990[Bunce, R. A. & Dowdy, E. D. (1990). Synth. Commun. 20, 3007-3014.]); Ibis & Deniz (2007[Ibis, C. & Deniz, N. G. (2007). Acta Cryst. E63, o1091-o1092.]); Lednicer et al. (1990[Lednicer, D., Mitscher, L. A. & Georg, G. I. (1990). The Organic Chemistry of Drug Synthesis, Vol. 4, New York: J. Wiley & Sons.]).

[Scheme 1]

Experimental

Crystal data
  • C28H26O

  • Mr = 378.49

  • Monoclinic, P 21 /n

  • a = 8.4313 (4) Å

  • b = 23.8539 (11) Å

  • c = 10.3420 (5) Å

  • β = 96.624 (3)°

  • V = 2066.09 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 113 (2) K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.980, Tmax = 0.985

  • 15409 measured reflections

  • 3633 independent reflections

  • 3442 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.116

  • S = 1.11

  • 3633 reflections

  • 267 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas. USA.]).

Supporting information


Comment top

Diphenylmethane derivatives are potentially useful precursors to a variety of medicinal agents (Lednicer et al.,1990). In our approach to the preparation of diphenylacetone by reaction of diphenylmethyllithium with ethyl acetate (Bunce & Dowdy, 1990), the title compound, 2-methyl-1,1,3,3-tetraphenylpropan-2-ol, was formed as a double addition product.

There are two diphenymethyl groups in the title compound. In one of these, the two benzene rings are inclined at an angle of 115.0 (3)°, and in the other the dihedral angle between the two benzene rings is 84.1 (3)° which is somewhat different from the corresponding angles found in 3,4,4-trichloro-1-[4-(diphenylmethyl)-piperazine-1-yl]- 2-nitro-1-(propylsulfanyl)-buta-1,3-diene, viz. 80.6 (1)° (Ibis & Deniz, 2007). The plane (C4/C2/O1) and plane (C1/C2/C3) are rotated 92.4 (3)° with respect to each other.

Related literature top

For related literature, see: Bunce & Dowdy (1990); Ibis & Deniz (2007); Lednicer et al. (1990).

Experimental top

To a stirred solution of ethyl acetate (20 mmol) in dry THF (30 ml) a solution of diphenylmethyllithium (40 mmol) in THF (30 ml) was added dropwise. After stirring at room temperature for 20 min to ensure complete reaction, the mixture was cooled and quenched with HCl (1M, 50 ml). The mixture was transferred to a separatory funnel and extrated with ether (40 ml) 3 times. Then, the ether was washed with saturated aqueous Na2CO3, water and dried with sodium sulfate. Evaporation of the solvent and recrystallization from petroleum ether yielded precipitate as fine colorless needles. M.p. 406–408 K; IR (KBr): 3563(O—H), 3026,2938 (C—H) cm-1; 1H-NMR(CDCl3, p.p.m.): 1.30 (3H, s), 1.69 (1H, s), 4.13 (2H, s),7.21–7.45 (20H, m); 13C-NMR(CDCl3, p.p.m.): 25.7, 60.5, 71.4,126.5, 128.2, 130.2, 141.2; The product (100 mg) was dissolved in ethyl acetate (2 ml) and petroleum ether (5 ml) and the solution was kept at room temperature for 5 d yielding colorless single crystals.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C-H = 0.95 Å (CarH), 0.98 Å (RCH3) or 1.00 Å (R3CH) and Uiso(H) values of either 1.2 Ueq or 1.5 Ueq (RCH3). The OH hydrogen was found in a difference Fourier map and refined (O-H = 0.90 Å) with Uiso(H) constrained to 1.5 Ueq (O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure, drawn with 30% probability ellipsoids
[Figure 2] Fig. 2. The crystal structure, viewed along a axis
2-Methyl-1,1,3,3-tetraphenylpropan-2-ol top
Crystal data top
C28H26OF(000) = 808
Mr = 378.49Dx = 1.217 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ynCell parameters from 4487 reflections
a = 8.4313 (4) Åθ = 2.2–27.9°
b = 23.8539 (11) ŵ = 0.07 mm1
c = 10.3420 (5) ÅT = 113 K
β = 96.624 (3)°Prism, colorless
V = 2066.09 (17) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Rigaku Saturn CCD
diffractometer
3633 independent reflections
Radiation source: rotating anode3442 reflections with I > 2σ(I)
Confocal multilayer optics monochromatorRint = 0.050
Detector resolution: 14.63 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 2828
Tmin = 0.980, Tmax = 0.985l = 1211
15409 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.9679P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
3633 reflectionsΔρmax = 0.19 e Å3
267 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0182 (16)
Crystal data top
C28H26OV = 2066.09 (17) Å3
Mr = 378.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.4313 (4) ŵ = 0.07 mm1
b = 23.8539 (11) ÅT = 113 K
c = 10.3420 (5) Å0.22 × 0.20 × 0.18 mm
β = 96.624 (3)°
Data collection top
Rigaku Saturn CCD
diffractometer
3633 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3442 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.985Rint = 0.050
15409 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.19 e Å3
3633 reflectionsΔρmin = 0.20 e Å3
267 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31548 (15)0.05491 (5)0.07175 (11)0.0266 (3)
H10.261 (3)0.0232 (9)0.082 (2)0.040*
C10.47972 (19)0.12873 (7)0.18234 (16)0.0200 (4)
H1A0.52150.14060.27260.024*
C20.3887 (2)0.07256 (7)0.19928 (16)0.0210 (4)
C30.2473 (2)0.08319 (7)0.28398 (16)0.0207 (4)
H30.17150.10800.22890.025*
C40.5084 (2)0.02774 (7)0.25298 (18)0.0257 (4)
H4A0.45070.00570.27660.039*
H4B0.57370.04230.33020.039*
H4C0.57750.01790.18650.039*
C50.3781 (2)0.17823 (7)0.12541 (16)0.0209 (4)
C60.3655 (2)0.22646 (7)0.20063 (17)0.0242 (4)
H60.41240.22680.28870.029*
C70.2853 (2)0.27396 (8)0.14873 (19)0.0312 (5)
H70.27850.30640.20110.037*
C80.2156 (2)0.27379 (8)0.02062 (19)0.0309 (5)
H80.16090.30600.01510.037*
C90.2263 (2)0.22615 (8)0.05520 (18)0.0283 (4)
H90.17810.22590.14290.034*
C100.3073 (2)0.17876 (7)0.00380 (16)0.0234 (4)
H100.31450.14660.05690.028*
C110.6273 (2)0.12517 (7)0.10844 (16)0.0209 (4)
C120.6302 (2)0.09609 (7)0.00935 (16)0.0247 (4)
H120.54110.07390.04250.030*
C130.7628 (2)0.09956 (7)0.07790 (17)0.0258 (4)
H130.76400.07920.15670.031*
C140.8932 (2)0.13250 (7)0.03209 (17)0.0259 (4)
H140.98230.13520.08020.031*
C150.8925 (2)0.16146 (7)0.08431 (18)0.0255 (4)
H150.98120.18410.11610.031*
C160.7610 (2)0.15716 (7)0.15446 (17)0.0236 (4)
H160.76240.17640.23510.028*
C170.2875 (2)0.11566 (7)0.41090 (16)0.0217 (4)
C180.1949 (2)0.16277 (7)0.43236 (18)0.0280 (4)
H180.10900.17290.36900.034*
C190.2261 (3)0.19528 (8)0.54486 (19)0.0348 (5)
H190.16230.22730.55690.042*
C200.3501 (3)0.18077 (8)0.63886 (19)0.0350 (5)
H200.37350.20330.71430.042*
C210.4394 (2)0.13327 (8)0.62203 (18)0.0318 (5)
H210.52150.12230.68790.038*
C220.4095 (2)0.10121 (8)0.50852 (16)0.0261 (4)
H220.47310.06910.49760.031*
C230.1510 (2)0.02965 (7)0.30277 (16)0.0210 (4)
C240.1924 (2)0.00805 (7)0.40487 (17)0.0258 (4)
H240.28270.00040.46610.031*
C250.1038 (2)0.05649 (8)0.41854 (18)0.0294 (4)
H250.13500.08180.48780.035*
C260.0301 (2)0.06799 (8)0.33105 (18)0.0296 (4)
H260.09100.10090.34060.035*
C270.0739 (2)0.03107 (8)0.22989 (19)0.0287 (4)
H270.16510.03880.16970.034*
C280.0153 (2)0.01748 (7)0.21599 (17)0.0252 (4)
H280.01650.04260.14660.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0300 (7)0.0285 (7)0.0213 (7)0.0063 (6)0.0031 (5)0.0030 (5)
C10.0198 (9)0.0214 (9)0.0188 (8)0.0009 (7)0.0027 (7)0.0011 (7)
C20.0238 (9)0.0214 (9)0.0177 (8)0.0001 (7)0.0021 (7)0.0016 (7)
C30.0212 (9)0.0208 (9)0.0205 (9)0.0019 (7)0.0037 (7)0.0013 (7)
C40.0252 (10)0.0236 (9)0.0290 (10)0.0027 (7)0.0056 (8)0.0040 (7)
C50.0180 (9)0.0234 (9)0.0221 (9)0.0016 (7)0.0057 (7)0.0019 (7)
C60.0245 (9)0.0240 (9)0.0245 (9)0.0012 (7)0.0041 (7)0.0024 (7)
C70.0361 (11)0.0231 (10)0.0362 (11)0.0036 (8)0.0116 (9)0.0011 (8)
C80.0329 (11)0.0273 (10)0.0339 (11)0.0088 (8)0.0104 (8)0.0071 (8)
C90.0274 (10)0.0332 (11)0.0250 (10)0.0058 (8)0.0064 (8)0.0054 (8)
C100.0239 (9)0.0246 (9)0.0224 (9)0.0033 (7)0.0058 (7)0.0011 (7)
C110.0215 (9)0.0196 (9)0.0217 (9)0.0031 (7)0.0027 (7)0.0034 (7)
C120.0244 (9)0.0252 (9)0.0248 (9)0.0015 (7)0.0037 (7)0.0022 (7)
C130.0274 (10)0.0260 (10)0.0244 (9)0.0017 (8)0.0052 (8)0.0009 (7)
C140.0234 (9)0.0264 (10)0.0292 (10)0.0017 (7)0.0089 (8)0.0041 (8)
C150.0217 (9)0.0227 (9)0.0322 (10)0.0014 (7)0.0032 (8)0.0001 (7)
C160.0237 (9)0.0238 (9)0.0231 (9)0.0007 (7)0.0017 (7)0.0011 (7)
C170.0240 (9)0.0215 (9)0.0210 (9)0.0042 (7)0.0081 (7)0.0002 (7)
C180.0326 (11)0.0239 (10)0.0294 (10)0.0018 (8)0.0113 (8)0.0005 (8)
C190.0460 (13)0.0260 (10)0.0362 (11)0.0046 (9)0.0212 (10)0.0065 (8)
C200.0457 (12)0.0347 (11)0.0272 (10)0.0174 (9)0.0155 (9)0.0111 (8)
C210.0343 (11)0.0390 (11)0.0224 (9)0.0122 (9)0.0044 (8)0.0006 (8)
C220.0287 (10)0.0262 (10)0.0242 (9)0.0040 (8)0.0057 (8)0.0011 (7)
C230.0224 (9)0.0196 (9)0.0219 (9)0.0017 (7)0.0060 (7)0.0017 (7)
C240.0279 (10)0.0277 (10)0.0222 (9)0.0009 (8)0.0045 (7)0.0005 (7)
C250.0358 (11)0.0264 (10)0.0277 (10)0.0007 (8)0.0105 (8)0.0035 (8)
C260.0295 (10)0.0269 (10)0.0347 (11)0.0051 (8)0.0139 (8)0.0030 (8)
C270.0232 (10)0.0292 (10)0.0342 (10)0.0040 (8)0.0052 (8)0.0049 (8)
C280.0237 (9)0.0256 (9)0.0263 (10)0.0024 (7)0.0032 (7)0.0013 (7)
Geometric parameters (Å, º) top
O1—C21.453 (2)C13—C141.389 (3)
O1—H10.90 (2)C13—H130.9500
C1—C51.536 (2)C14—C151.388 (3)
C1—C111.536 (2)C14—H140.9500
C1—C21.564 (2)C15—C161.397 (2)
C1—H1A1.0000C15—H150.9500
C2—C41.530 (2)C16—H160.9500
C2—C31.579 (2)C17—C221.399 (2)
C3—C171.528 (2)C17—C181.400 (2)
C3—C231.538 (2)C18—C191.398 (3)
C3—H31.0000C18—H180.9500
C4—H4A0.9800C19—C201.387 (3)
C4—H4B0.9800C19—H190.9500
C4—H4C0.9800C20—C211.383 (3)
C5—C101.399 (2)C20—H200.9500
C5—C61.400 (2)C21—C221.399 (3)
C6—C71.394 (3)C21—H210.9500
C6—H60.9500C22—H220.9500
C7—C81.386 (3)C23—C241.400 (2)
C7—H70.9500C23—C281.401 (2)
C8—C91.390 (3)C24—C251.392 (3)
C8—H80.9500C24—H240.9500
C9—C101.394 (2)C25—C261.390 (3)
C9—H90.9500C25—H250.9500
C10—H100.9500C26—C271.385 (3)
C11—C161.398 (2)C26—H260.9500
C11—C121.405 (2)C27—C281.398 (2)
C12—C131.394 (2)C27—H270.9500
C12—H120.9500C28—H280.9500
C2—O1—H1108.2 (13)C14—C13—C12120.65 (16)
C5—C1—C11107.46 (13)C14—C13—H13119.7
C5—C1—C2116.24 (14)C12—C13—H13119.7
C11—C1—C2116.40 (13)C15—C14—C13119.67 (16)
C5—C1—H1A105.2C15—C14—H14120.2
C11—C1—H1A105.2C13—C14—H14120.2
C2—C1—H1A105.2C14—C15—C16119.77 (17)
O1—C2—C4108.69 (13)C14—C15—H15120.1
O1—C2—C1108.02 (13)C16—C15—H15120.1
C4—C2—C1109.12 (14)C15—C16—C11121.34 (16)
O1—C2—C3106.33 (13)C15—C16—H16119.3
C4—C2—C3114.80 (13)C11—C16—H16119.3
C1—C2—C3109.65 (13)C22—C17—C18117.40 (16)
C17—C3—C23112.37 (13)C22—C17—C3124.53 (16)
C17—C3—C2116.80 (14)C18—C17—C3118.06 (16)
C23—C3—C2112.33 (13)C19—C18—C17121.51 (18)
C17—C3—H3104.6C19—C18—H18119.2
C23—C3—H3104.6C17—C18—H18119.2
C2—C3—H3104.6C20—C19—C18119.93 (18)
C2—C4—H4A109.5C20—C19—H19120.0
C2—C4—H4B109.5C18—C19—H19120.0
H4A—C4—H4B109.5C21—C20—C19119.59 (18)
C2—C4—H4C109.5C21—C20—H20120.2
H4A—C4—H4C109.5C19—C20—H20120.2
H4B—C4—H4C109.5C20—C21—C22120.35 (19)
C10—C5—C6118.16 (16)C20—C21—H21119.8
C10—C5—C1122.05 (15)C22—C21—H21119.8
C6—C5—C1119.58 (15)C17—C22—C21121.15 (18)
C7—C6—C5121.22 (17)C17—C22—H22119.4
C7—C6—H6119.4C21—C22—H22119.4
C5—C6—H6119.4C24—C23—C28117.65 (16)
C8—C7—C6119.91 (17)C24—C23—C3122.67 (15)
C8—C7—H7120.0C28—C23—C3119.68 (15)
C6—C7—H7120.0C25—C24—C23121.34 (17)
C7—C8—C9119.59 (17)C25—C24—H24119.3
C7—C8—H8120.2C23—C24—H24119.3
C9—C8—H8120.2C26—C25—C24120.16 (17)
C8—C9—C10120.59 (17)C26—C25—H25119.9
C8—C9—H9119.7C24—C25—H25119.9
C10—C9—H9119.7C27—C26—C25119.49 (17)
C9—C10—C5120.51 (16)C27—C26—H26120.3
C9—C10—H10119.7C25—C26—H26120.3
C5—C10—H10119.7C26—C27—C28120.31 (18)
C16—C11—C12118.10 (16)C26—C27—H27119.8
C16—C11—C1117.90 (15)C28—C27—H27119.8
C12—C11—C1123.70 (15)C27—C28—C23121.03 (17)
C13—C12—C11120.46 (16)C27—C28—H28119.5
C13—C12—H12119.8C23—C28—H28119.5
C11—C12—H12119.8
C5—C1—C2—O160.36 (17)C11—C12—C13—C141.0 (3)
C11—C1—C2—O167.83 (17)C12—C13—C14—C151.1 (3)
C5—C1—C2—C4178.36 (13)C13—C14—C15—C160.1 (3)
C11—C1—C2—C450.16 (19)C14—C15—C16—C111.5 (3)
C5—C1—C2—C355.11 (18)C12—C11—C16—C151.6 (3)
C11—C1—C2—C3176.70 (13)C1—C11—C16—C15172.30 (15)
O1—C2—C3—C17165.43 (13)C23—C3—C17—C2278.1 (2)
C4—C2—C3—C1774.36 (19)C2—C3—C17—C2253.8 (2)
C1—C2—C3—C1748.89 (19)C23—C3—C17—C18101.00 (18)
O1—C2—C3—C2362.63 (17)C2—C3—C17—C18127.07 (16)
C4—C2—C3—C2357.59 (19)C22—C17—C18—C192.0 (3)
C1—C2—C3—C23179.17 (13)C3—C17—C18—C19178.79 (16)
C11—C1—C5—C1064.1 (2)C17—C18—C19—C200.6 (3)
C2—C1—C5—C1068.3 (2)C18—C19—C20—C211.7 (3)
C11—C1—C5—C6110.57 (17)C19—C20—C21—C222.6 (3)
C2—C1—C5—C6116.99 (17)C18—C17—C22—C211.1 (2)
C10—C5—C6—C70.3 (3)C3—C17—C22—C21179.75 (16)
C1—C5—C6—C7174.63 (16)C20—C21—C22—C171.2 (3)
C5—C6—C7—C80.4 (3)C17—C3—C23—C2446.2 (2)
C6—C7—C8—C90.0 (3)C2—C3—C23—C2487.94 (19)
C7—C8—C9—C100.4 (3)C17—C3—C23—C28133.29 (16)
C8—C9—C10—C50.5 (3)C2—C3—C23—C2892.59 (18)
C6—C5—C10—C90.2 (2)C28—C23—C24—C251.2 (3)
C1—C5—C10—C9174.93 (15)C3—C23—C24—C25179.32 (16)
C5—C1—C11—C1687.47 (18)C23—C24—C25—C260.9 (3)
C2—C1—C11—C16140.18 (16)C24—C25—C26—C270.4 (3)
C5—C1—C11—C1286.06 (19)C25—C26—C27—C280.2 (3)
C2—C1—C11—C1246.3 (2)C26—C27—C28—C230.5 (3)
C16—C11—C12—C130.3 (3)C24—C23—C28—C271.0 (2)
C1—C11—C12—C13173.18 (16)C3—C23—C28—C27179.51 (15)

Experimental details

Crystal data
Chemical formulaC28H26O
Mr378.49
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)8.4313 (4), 23.8539 (11), 10.3420 (5)
β (°) 96.624 (3)
V3)2066.09 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerRigaku Saturn CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.980, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
15409, 3633, 3442
Rint0.050
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.116, 1.11
No. of reflections3633
No. of parameters267
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2006).

 

References

First citationBunce, R. A. & Dowdy, E. D. (1990). Synth. Commun. 20, 3007–3014.  CrossRef CAS Web of Science Google Scholar
First citationIbis, C. & Deniz, N. G. (2007). Acta Cryst. E63, o1091–o1092.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLednicer, D., Mitscher, L. A. & Georg, G. I. (1990). The Organic Chemistry of Drug Synthesis, Vol. 4, New York: J. Wiley & Sons.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2006). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas. USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds