organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Dihydr­­oxy-2-methyl-4H-pyran-4-one

aDepartment of Pharmaceutical Science, Henan College of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, and bSchool of Pharmaceutical Science & Technology, Tianjin University, Tianjin 300072, People's Republic of China
*Correspondence e-mail: pharmgao@tju.edu.cn

(Received 18 March 2008; accepted 19 April 2008; online 10 May 2008)

In the title compound, C6H6O4, inter- and intra­molecular hydrogen bonds are observed which help to establish the crystal structure. There are weak ππ interactions between pyran rings separated by 3.5692 (9) Å.

Related literature

For general background, see: Shinoda et al. (2004[Shinoda, Y., Murata, M., Homma, S. & Komura, H. (2004). Biosci. Biotechnol. Biochem. 68, 529-536.]). For related structures, see: Yao et al. (2005[Yao, G.-M., Wang, Y.-B., Wang, L.-Q. & Qin, G.-W. (2005). Acta Cryst. E61, o1403-o1405.]); Gibbons et al. (2000[Gibbons, S., Denny, B. J., Ali-Amine, S., Mathew, K. T., Skelton, B. W., White, A. H. & Gray, A. I. (2000). J. Nat. Prod. 63, 839-840.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6O4

  • Mr = 142.11

  • Monoclinic, P 21 /n

  • a = 6.9400 (14) Å

  • b = 6.0648 (12) Å

  • c = 14.008 (3) Å

  • β = 92.77 (3)°

  • V = 588.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 113 (2) K

  • 0.14 × 0.12 × 0.10 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC. (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.981, Tmax = 0.986

  • 3970 measured reflections

  • 1381 independent reflections

  • 1166 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.096

  • S = 1.10

  • 1381 reflections

  • 115 parameters

  • All H-ataom parameters refined

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H6⋯O3i 0.838 (18) 1.89 (2) 2.6902 (12) 159.6 (13)
O2—H5⋯O3ii 0.94 (2) 1.75 (2) 2.6596 (12) 162.6 (17)
O4—H6⋯O3 0.838 (18) 2.44 (2) 2.7820 (12) 105.4 (10)
C1—H3⋯O4 1.005 (15) 2.537 (14) 2.8957 (15) 100.5 (9)
C6—H4⋯O2iii 0.936 (14) 2.412 (13) 3.3354 (14) 169.4 (12)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+3, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC. (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, 3,5-dihydroxy-2-methyl-pyran-4-one, (I) was identified as a decomposition product in the stored solution of orange juice (Shinoda, et al., 2004). We report here the crystal structure of the title compound (Fig. 1) which was isolated from Hydrocotyle sibthorpoioides Lam. The structure of (I) is stabilized by two strong intermolecular hydrogen bonds of the type O—H···O and a weak intermolecular interaction of the type C—H···O. Intramolecular interactions are also observed which result in five membered rings; details are given in Table 1. There is indication of π-π interactions between the pyran rings lying about inversion centers with minimum separation of 3.5692 (9) Å. The crystal structures of 2-hydroxymethyl analogue (Yao et al., 2005) and 5-hydroxy-3-methoxy-pyran-4-one (Gibbons et al., 2000) have been reported.

Related literature top

For general background, see:Shinoda et al. (2004). For related structures, see: Yao et al. (2005; Gibbons et al. (2000).

Experimental top

Dried powder of Hydrocotyle sibthorpoioides Lam was exacted with EtOH and the extract was concentrated in vacuo. The residue was subjected to silical-gel coloumn chromatography. Elution with chloroform-methanol (95:5 v/v) yielded the title compound. Crystals suitable for XRD study were grwon from a solution of methanol at room temperature by slow evaporation.

Refinement top

All H atoms were located from difference map and allowed to refine freely.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
3,5-Dihydroxy-2-methyl-4H-pyran-4-one top
Crystal data top
C6H6O4F(000) = 296
Mr = 142.11Dx = 1.603 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1620 reflections
a = 6.9400 (14) Åθ = 1.5–27.9°
b = 6.0648 (12) ŵ = 0.14 mm1
c = 14.008 (3) ÅT = 113 K
β = 92.77 (3)°Block, colorless
V = 588.9 (2) Å30.14 × 0.12 × 0.10 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
1381 independent reflections
Radiation source: rotating anode1166 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.025
ω scansθmax = 27.9°, θmin = 2.9°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
h = 99
Tmin = 0.981, Tmax = 0.986k = 77
3970 measured reflectionsl = 1018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096All H-atom parameters refined
S = 1.11 w = 1/[σ2(Fo2) + (0.0654P)2]
where P = (Fo2 + 2Fc2)/3
1381 reflections(Δ/σ)max < 0.001
115 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C6H6O4V = 588.9 (2) Å3
Mr = 142.11Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9400 (14) ŵ = 0.14 mm1
b = 6.0648 (12) ÅT = 113 K
c = 14.008 (3) Å0.14 × 0.12 × 0.10 mm
β = 92.77 (3)°
Data collection top
Rigaku Saturn
diffractometer
1381 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1166 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.986Rint = 0.025
3970 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.096All H-atom parameters refined
S = 1.11Δρmax = 0.37 e Å3
1381 reflectionsΔρmin = 0.24 e Å3
115 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.27997 (10)1.01120 (11)0.27250 (5)0.0149 (2)
O10.76427 (10)1.05517 (12)0.44524 (5)0.0157 (2)
O40.56909 (12)0.69576 (12)0.26153 (5)0.0171 (2)
O20.32648 (11)1.36372 (12)0.40092 (5)0.0173 (2)
C40.43152 (15)1.02588 (15)0.32615 (7)0.0124 (2)
C50.46324 (15)1.20540 (16)0.39217 (7)0.0132 (2)
C30.58183 (15)0.86536 (16)0.32479 (7)0.0127 (2)
C20.74196 (15)0.88197 (16)0.38483 (7)0.0139 (2)
C60.62774 (16)1.21333 (17)0.44749 (7)0.0157 (2)
C10.90601 (15)0.72547 (19)0.39113 (8)0.0174 (3)
H40.656 (2)1.323 (2)0.4929 (10)0.021 (3)*
H30.871 (2)0.582 (2)0.3585 (10)0.028 (3)*
H11.017 (2)0.782 (2)0.3616 (11)0.037 (4)*
H20.940 (2)0.689 (2)0.4591 (10)0.025 (3)*
H50.271 (3)1.393 (3)0.3397 (14)0.054 (5)*
H60.454 (3)0.669 (2)0.2453 (11)0.037 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0141 (4)0.0150 (4)0.0153 (4)0.0004 (3)0.0022 (3)0.0013 (3)
O10.0155 (4)0.0165 (4)0.0148 (4)0.0005 (3)0.0020 (3)0.0020 (3)
O40.0136 (4)0.0163 (4)0.0211 (4)0.0004 (3)0.0008 (3)0.0080 (3)
O20.0233 (4)0.0142 (4)0.0142 (4)0.0058 (3)0.0018 (3)0.0018 (3)
C40.0142 (5)0.0125 (5)0.0105 (4)0.0022 (4)0.0016 (4)0.0017 (3)
C50.0177 (5)0.0106 (5)0.0116 (4)0.0007 (4)0.0021 (4)0.0008 (3)
C30.0138 (5)0.0118 (5)0.0128 (5)0.0019 (4)0.0023 (4)0.0011 (3)
C20.0145 (5)0.0141 (5)0.0132 (4)0.0017 (4)0.0024 (4)0.0003 (3)
C60.0200 (6)0.0133 (5)0.0139 (5)0.0012 (4)0.0006 (4)0.0020 (4)
C10.0126 (5)0.0200 (6)0.0195 (5)0.0013 (4)0.0001 (4)0.0010 (4)
Geometric parameters (Å, º) top
O3—C41.2659 (13)C4—C51.4386 (13)
O1—C61.3497 (13)C5—C61.3494 (16)
O1—C21.3531 (12)C3—C21.3646 (15)
O4—C31.3577 (12)C2—C11.4816 (15)
O4—H60.838 (18)C6—H40.936 (14)
O2—C51.3598 (12)C1—H31.005 (15)
O2—H50.94 (2)C1—H10.956 (17)
C4—C31.4276 (14)C1—H20.996 (15)
C6—O1—C2120.47 (8)O1—C2—C3120.53 (9)
C3—O4—H6110.7 (11)O1—C2—C1113.31 (9)
C5—O2—H5107.9 (12)C3—C2—C1126.15 (9)
O3—C4—C3122.06 (9)C5—C6—O1122.45 (9)
O3—C4—C5122.13 (9)C5—C6—H4124.0 (8)
C3—C4—C5115.82 (9)O1—C6—H4113.5 (8)
C6—C5—O2119.86 (9)C2—C1—H3111.1 (8)
C6—C5—C4119.68 (10)C2—C1—H1112.2 (9)
O2—C5—C4120.44 (9)H3—C1—H1107.1 (13)
O4—C3—C2118.92 (9)C2—C1—H2110.3 (8)
O4—C3—C4120.04 (9)H3—C1—H2106.4 (12)
C2—C3—C4121.01 (9)H1—C1—H2109.5 (13)
O3—C4—C5—C6179.79 (9)C6—O1—C2—C1179.47 (9)
C3—C4—C5—C60.12 (14)O4—C3—C2—O1176.47 (9)
O3—C4—C5—O21.94 (15)C4—C3—C2—O11.93 (15)
C3—C4—C5—O2178.15 (8)O4—C3—C2—C12.39 (16)
O3—C4—C3—O43.12 (15)C4—C3—C2—C1179.21 (9)
C5—C4—C3—O4176.78 (8)O2—C5—C6—O1176.71 (9)
O3—C4—C3—C2178.50 (9)C4—C5—C6—O11.58 (15)
C5—C4—C3—C21.59 (14)C2—O1—C6—C51.32 (15)
C6—O1—C2—C30.47 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H6···O3i0.838 (18)1.89 (2)2.6902 (12)159.6 (13)
O2—H5···O3ii0.94 (2)1.75 (2)2.6596 (12)162.6 (17)
O4—H6···O30.838 (18)2.44 (2)2.7820 (12)105.4 (10)
C1—H3···O41.005 (15)2.537 (14)2.8957 (15)100.5 (9)
C6—H4···O2iii0.936 (14)2.412 (13)3.3354 (14)169.4 (12)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y+3, z+1.

Experimental details

Crystal data
Chemical formulaC6H6O4
Mr142.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)6.9400 (14), 6.0648 (12), 14.008 (3)
β (°) 92.77 (3)
V3)588.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.14 × 0.12 × 0.10
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.981, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
3970, 1381, 1166
Rint0.025
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.096, 1.11
No. of reflections1381
No. of parameters115
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.37, 0.24

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H6···O3i0.838 (18)1.89 (2)2.6902 (12)159.6 (13)
O2—H5···O3ii0.94 (2)1.75 (2)2.6596 (12)162.6 (17)
O4—H6···O30.838 (18)2.44 (2)2.7820 (12)105.4 (10)
C1—H3···O41.005 (15)2.537 (14)2.8957 (15)100.5 (9)
C6—H4···O2iii0.936 (14)2.412 (13)3.3354 (14)169.4 (12)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y+3, z+1.
 

References

First citationGibbons, S., Denny, B. J., Ali-Amine, S., Mathew, K. T., Skelton, B. W., White, A. H. & Gray, A. I. (2000). J. Nat. Prod. 63, 839–840.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC. (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShinoda, Y., Murata, M., Homma, S. & Komura, H. (2004). Biosci. Biotechnol. Biochem. 68, 529–536.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYao, G.-M., Wang, Y.-B., Wang, L.-Q. & Qin, G.-W. (2005). Acta Cryst. E61, o1403–o1405.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds