organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1130-o1131

2,2′-(Bi­phenyl-2,2′-diyldi­­oxy)diaceto­hydrazide

aHEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and bChemistry Department, Clemson University, Clemson, SC 29634-0973, USA
*Correspondence e-mail: raza_shahm@yahoo.com

(Received 5 May 2008; accepted 16 May 2008; online 21 May 2008)

In the mol­ecule of the title compound, C16H18N4O4, the dihedral angle between the mean planes of the two benzene rings is 56.76 (5)°. The crystal structure reveals extensive inter­molecular hydrogen bonds between carbonyl O atoms and primary amines, as well as between primary and secondary amines of hydrazide, forming rings of R22(10) and R22(6) motifs, respectively. The structure is further stabilized by intra­molecular and non-classical hydrogen bonds of the types N—H⋯O and C—H⋯O, respectively. The structure does not show any ππ inter­actions.

Related literature

For related literature see: Dekeyser et al. (2003[Dekeyser, M. A., McDonald, P. T. & Angle Jr, G. W. (2003). Chimia. 57, 702-704.]); Ali et al. (2008[Ali, Q., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o910.]); Baudry et al. (2006[Baudry, Y., Litvinchuk, S., Mareda, J., Nishihara, M., Pasnin, D., Shah, M. R., Sakai, N. & Matile, S. (2006). Adv. Funct. Mater. 16, 169-179.]); Bhat et al. (1974[Bhat, T. N., Singh, T. P. & Vijayan, M. (1974). Acta Cryst. B30, 2921-2922.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 22, 120-126.]); Kakefuda et al. (2002[Kakefuda, A., Suzuki, T., Tobe, T., Tahara, A., Sakamoto, S. & Tsukamoto, S. (2002). Bioorg. Med. Chem. 10, 1905-1912.]); Litvinchuk et al. (2004[Litvinchuk, S., Bollot, G., Mareda, J., Som, A., Ronan, D., Shah, M. R., Perrottet, P., Sakai, N. & Matile, S. (2004). J. Am. Chem. Soc. 126, 10067-10075.]); Priebe et al. (2008[Priebe, J. P., Mello, R. S., Nome, F. & Bortoluzzi, A. J. (2008). Acta Cryst. E64, o302-o303.]); Sisson et al. (2006[Sisson, A. L., Shah, M. R., Bhosale, S. & Matile, S. (2006). Chem. Soc. Rev. 35, 1269-1286.]); Thaker & Patel (2008[Thaker, B. T. & Patel, P. (2008). Mol. Cryst. Liq. Cryst. 482, 3-20.]); Yan et al. (1993[Yan, S. P., Cheng, P., Liao, D. Z., Bai, L. J., Jiang, Z. H., Wang, G. L., Wang, R. J. & Yao, X. K. (1993). J. Nankai Univ. 2, 19-23.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18N4O4

  • Mr = 330.34

  • Triclinic, [P \overline 1]

  • a = 8.4041 (17) Å

  • b = 9.7148 (19) Å

  • c = 10.465 (2) Å

  • α = 99.27 (3)°

  • β = 92.50 (3)°

  • γ = 113.85 (3)°

  • V = 765.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 153 (2) K

  • 0.31 × 0.29 × 0.22 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.968, Tmax = 0.977

  • 5673 measured reflections

  • 2695 independent reflections

  • 2440 reflections with I > 2σ(I)

  • Rint = 0.009

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.092

  • S = 1.05

  • 2695 reflections

  • 237 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.924 (14) 2.192 (15) 3.059 (2) 155.7 (15)
N1—H1B⋯O4ii 0.930 (14) 2.510 (17) 3.0112 (18) 114.1 (13)
N3—H3⋯N4iii 0.900 (13) 2.191 (15) 2.9524 (18) 141.9 (14)
N4—H4B⋯O1iv 0.936 (14) 2.267 (16) 2.9873 (18) 133.3 (14)
N1—H1B⋯O1 0.930 (14) 2.348 (17) 2.7873 (18) 108.6 (13)
N2—H2⋯O2 0.906 (14) 2.118 (17) 2.5375 (16) 107.1 (13)
N3—H3⋯O3 0.900 (13) 2.230 (16) 2.5977 (17) 103.9 (12)
C5—H5A⋯N1v 0.95 2.53 3.359 (2) 146
C11—H11A⋯O1vi 0.95 2.47 3.292 (2) 145
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y-1, z-1; (iii) -x+1, -y+1, -z+1; (iv) x, y+1, z+1; (v) x, y+1, z; (vi) x, y, z+1.

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Biphenyl hydrazides are of crucial importance in the design and synthesis of novel advanced functional materials (Thaker & Patel, 2008) and compounds of biological importance (Kakefuda et al., 2002; Dekeyser et al., 2003). Our interest in the synthesis of biphenyl dihydrazide arose from the fact that we wanted to attach macrocycles like porphyrin to diphenyl dicarboxylic acid and carboxylic substituted oligo(p-phenylene)s (Litvinchuk et al., 2004) to form functionalized pores (Sisson et al., 2006; Baudry et al., 2006). The coupling of amino-substituted macrocycles gave poor yields so we changed the strategy and synthesized carboxylic substituted macrocycles and hydrazide substituted biphenyls. Studies on the coupling of these biphenyl hydrazides and macrocycles are in progress. In this paper, we report the synthesis and crystal structure of the title compound, (I).

The molecules of the title compound (Fig. 1) are held together by intermolecular hydrogen bonds involving carbonyl O-atoms and primary amines as well as primary amines and secondary amines of the type N—H···O and N—H···H, respectively, which stabilize the crystal structure (Fig. 2) resulting in ten and six membered which may be described in the graph set notation as R22(10) and R22(6) (Etter, 1990). There are three intramolecular hydrogen bonds in addition to non-classical hydrogen bonds involving phenyl H-atoms and a carbonyl oxygen and a primary amine; details of hydrogen bonding geometry have been provided in Table 1.

The C1—O1 and C16—O4 distances in (I) are 1.2284 (17)Å and 1.2338 (16) Å, respectively, typical of double bonds (Yan et al., 1993), whereas the distances C1—N2 and C16—N3 at 1.3320 (18)Å and 1.3291 (18)Å are consistent with those reported (Priebe et al., 2008), suggesting partial double bond character. Similarly, the distances N1—N2 and N3—N4, 1.4198 (17)Å and 1.4196 (17) Å, respectively, are typical for a single bond, which are in agreement with those of the analogous compound (Bhat et al., 1974), suggesting that the title compound exists as resonance hybrid between a polar and a neutral form.

Related literature top

For related literature see: Dekeyser et al. (2003); Ali et al. (2008).

For related literature, see: Baudry et al. (2006); Bhat et al. (1974); Etter (1990); Kakefuda et al. (2002); Litvinchuk et al. (2004); Priebe et al. (2008); Sisson et al. (2006); Thaker & Patel (2008); Yan et al. (1993).

Experimental top

Diethyl 2,2'-(biphenyl-2,2'-diylbis(oxy))diacetate (500 mg, 1.4 mmol) was refluxed in the presence of hydrazine hydrate (5 ml, 103 mmol) in ethanol (10 ml) at 353 K for 2 h, the reaction mixture was cooled down to room temperature and then poured into 10 ml of water. The reaction mixture was extracted three times with ethyl acetate. The combined organic phases were concentrated under reduced pressure. The crude residue was dissolved in ethanol and slow evaporation of ethanol afforded colorless crystals (276 mg, 60% yield) suitable for XRD analysis.

Refinement top

Positions of the amine H atoms were located from difference Fourier maps and were allowed to refine with Uiso(H) = 1.2Ueq (parent N-atom). The remaining H atoms were geometrically placed and treated as riding atoms with C—H = 0.95 Å (aryl) and 0.98 Å (methylene), and Uiso(H) = 1.2Ueq (parent C-atom).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the the title compound showing 50% probability displacement ellipsoids with arbitrary shperes for H atoms.
[Figure 2] Fig. 2. Packing diagram of (I) with hydrogen bonds viewed along the b axis. Symmetry codes for A through D are: 1 - x,1 - y,1 - z; x,1 + y,z; 1 - x,-y,1 - z; and 1 - x,1 - y,2 - z, respectively.
2,2'-(Biphenyl-2,2'-diyldioxy)diacetohydrazide top
Crystal data top
C16H18N4O4Z = 2
Mr = 330.34F(000) = 348
Triclinic, P1Dx = 1.433 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4041 (17) ÅCell parameters from 2518 reflections
b = 9.7148 (19) Åθ = 2.7–26.4°
c = 10.465 (2) ŵ = 0.11 mm1
α = 99.27 (3)°T = 153 K
β = 92.50 (3)°Chip, colorless
γ = 113.85 (3)°0.31 × 0.29 × 0.22 mm
V = 765.7 (3) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
2695 independent reflections
Radiation source: Sealed Tube2440 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.009
Detector resolution: 14.6306 pixels mm-1θmax = 25.2°, θmin = 2.0°
ω scansh = 109
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1011
Tmin = 0.968, Tmax = 0.977l = 1212
5673 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.3477P]
where P = (Fo2 + 2Fc2)/3
2695 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.20 e Å3
6 restraintsΔρmin = 0.20 e Å3
Crystal data top
C16H18N4O4γ = 113.85 (3)°
Mr = 330.34V = 765.7 (3) Å3
Triclinic, P1Z = 2
a = 8.4041 (17) ÅMo Kα radiation
b = 9.7148 (19) ŵ = 0.11 mm1
c = 10.465 (2) ÅT = 153 K
α = 99.27 (3)°0.31 × 0.29 × 0.22 mm
β = 92.50 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2695 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2440 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.977Rint = 0.009
5673 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0366 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.20 e Å3
2695 reflectionsΔρmin = 0.20 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32268 (15)0.23766 (13)0.20890 (9)0.0317 (3)
O20.26996 (14)0.02884 (11)0.08294 (9)0.0263 (2)
O30.33765 (13)0.10884 (10)0.50896 (8)0.0242 (2)
O40.41183 (15)0.35080 (12)0.81794 (9)0.0313 (3)
N10.28627 (18)0.42946 (14)0.03033 (12)0.0282 (3)
H1A0.389 (2)0.419 (2)0.0137 (16)0.034*
H1B0.293 (2)0.452 (2)0.1191 (14)0.034*
N20.28707 (16)0.28115 (14)0.00437 (11)0.0253 (3)
H20.253 (2)0.254 (2)0.0732 (15)0.035 (5)*
N30.41999 (16)0.39435 (13)0.61151 (11)0.0236 (3)
H30.428 (2)0.362 (2)0.5272 (14)0.038 (5)*
N40.46353 (18)0.55390 (14)0.64554 (12)0.0271 (3)
H4A0.544 (2)0.5916 (19)0.7182 (15)0.032*
H4B0.364 (2)0.565 (2)0.6732 (16)0.032*
C10.29940 (17)0.19832 (16)0.09628 (12)0.0216 (3)
C20.28191 (18)0.04884 (16)0.05358 (12)0.0217 (3)
H2B0.38510.03790.07260.026*
H2C0.17560.05230.10130.026*
C30.21044 (17)0.07599 (15)0.14010 (12)0.0196 (3)
C40.20643 (18)0.19491 (15)0.08338 (13)0.0224 (3)
H4C0.24370.20590.00020.027*
C50.14735 (18)0.29724 (16)0.15019 (14)0.0253 (3)
H5A0.14300.37790.11160.030*
C60.09474 (18)0.28244 (15)0.27275 (14)0.0246 (3)
H6A0.05440.35270.31810.029*
C70.10118 (17)0.16440 (15)0.32919 (13)0.0212 (3)
H7A0.06640.15570.41370.025*
C80.15766 (16)0.05875 (14)0.26424 (12)0.0187 (3)
C90.15926 (17)0.07024 (15)0.32413 (12)0.0187 (3)
C100.25033 (17)0.04279 (15)0.44785 (12)0.0189 (3)
C110.25260 (18)0.16331 (16)0.50320 (13)0.0229 (3)
H11A0.31640.14310.58640.028*
C120.1608 (2)0.31304 (16)0.43565 (14)0.0261 (3)
H12A0.16310.39560.47240.031*
C130.0658 (2)0.34330 (16)0.31497 (14)0.0271 (3)
H13A0.00140.44620.27000.033*
C140.06546 (18)0.22235 (15)0.26023 (13)0.0229 (3)
H14A0.00000.24360.17760.028*
C150.36921 (19)0.14095 (16)0.64783 (12)0.0242 (3)
H15A0.47200.12280.67570.029*
H15B0.26630.07170.68370.029*
C160.40281 (17)0.30626 (16)0.69949 (12)0.0218 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0463 (7)0.0413 (6)0.0184 (5)0.0285 (5)0.0086 (4)0.0069 (4)
O20.0425 (6)0.0299 (5)0.0148 (5)0.0231 (5)0.0048 (4)0.0048 (4)
O30.0358 (6)0.0189 (5)0.0135 (4)0.0073 (4)0.0008 (4)0.0026 (4)
O40.0438 (6)0.0325 (6)0.0156 (5)0.0157 (5)0.0017 (4)0.0004 (4)
N10.0377 (7)0.0248 (6)0.0259 (6)0.0165 (6)0.0055 (5)0.0054 (5)
N20.0358 (7)0.0251 (6)0.0193 (6)0.0164 (5)0.0066 (5)0.0051 (5)
N30.0307 (6)0.0196 (6)0.0179 (6)0.0087 (5)0.0049 (5)0.0008 (4)
N40.0358 (7)0.0210 (6)0.0224 (6)0.0111 (5)0.0055 (5)0.0004 (5)
C10.0205 (6)0.0282 (7)0.0173 (6)0.0112 (6)0.0020 (5)0.0045 (5)
C20.0250 (7)0.0252 (7)0.0150 (6)0.0103 (6)0.0024 (5)0.0051 (5)
C30.0210 (6)0.0182 (6)0.0184 (6)0.0079 (5)0.0007 (5)0.0016 (5)
C40.0239 (7)0.0216 (7)0.0204 (6)0.0071 (5)0.0010 (5)0.0075 (5)
C50.0266 (7)0.0184 (7)0.0311 (7)0.0081 (6)0.0006 (6)0.0094 (6)
C60.0265 (7)0.0183 (7)0.0300 (7)0.0116 (6)0.0013 (6)0.0026 (5)
C70.0215 (7)0.0202 (7)0.0208 (6)0.0080 (5)0.0014 (5)0.0032 (5)
C80.0197 (6)0.0159 (6)0.0185 (6)0.0058 (5)0.0006 (5)0.0029 (5)
C90.0217 (6)0.0187 (7)0.0179 (6)0.0101 (5)0.0051 (5)0.0044 (5)
C100.0222 (6)0.0173 (6)0.0169 (6)0.0080 (5)0.0051 (5)0.0025 (5)
C110.0281 (7)0.0259 (7)0.0183 (6)0.0138 (6)0.0036 (5)0.0071 (5)
C120.0351 (8)0.0219 (7)0.0271 (7)0.0154 (6)0.0063 (6)0.0102 (6)
C130.0337 (8)0.0175 (7)0.0289 (7)0.0102 (6)0.0016 (6)0.0030 (5)
C140.0279 (7)0.0207 (7)0.0200 (6)0.0105 (6)0.0003 (5)0.0028 (5)
C150.0325 (7)0.0252 (7)0.0134 (6)0.0104 (6)0.0021 (5)0.0041 (5)
C160.0204 (6)0.0251 (7)0.0176 (6)0.0080 (5)0.0017 (5)0.0019 (5)
Geometric parameters (Å, º) top
O1—C11.2284 (17)C4—H4C0.9500
O2—C31.3736 (16)C5—C61.385 (2)
O2—C21.4242 (15)C5—H5A0.9500
O3—C101.3779 (17)C6—C71.3901 (19)
O3—C151.4259 (15)C6—H6A0.9500
O4—C161.2338 (16)C7—C81.3922 (19)
N1—N21.4198 (17)C7—H7A0.9500
N1—H1A0.925 (14)C8—C91.4931 (18)
N1—H1B0.930 (14)C9—C141.3949 (19)
N2—C11.3320 (18)C9—C101.4037 (19)
N2—H20.907 (14)C10—C111.3937 (19)
N3—C161.3291 (18)C11—C121.387 (2)
N3—N41.4196 (17)C11—H11A0.9500
N3—H30.904 (14)C12—C131.386 (2)
N4—H4A0.914 (14)C12—H12A0.9500
N4—H4B0.936 (14)C13—C141.3888 (19)
C1—C21.5164 (19)C13—H13A0.9500
C2—H2B0.9900C14—H14A0.9500
C2—H2C0.9900C15—C161.514 (2)
C3—C41.3924 (19)C15—H15A0.9900
C3—C81.4046 (18)C15—H15B0.9900
C4—C51.389 (2)
C3—O2—C2119.52 (10)C7—C6—H6A120.1
C10—O3—C15117.33 (10)C6—C7—C8121.29 (12)
N2—N1—H1A105.6 (11)C6—C7—H7A119.4
N2—N1—H1B106.5 (11)C8—C7—H7A119.4
H1A—N1—H1B107.7 (15)C7—C8—C3117.98 (12)
C1—N2—N1122.76 (12)C7—C8—C9120.86 (11)
C1—N2—H2119.5 (11)C3—C8—C9121.16 (12)
N1—N2—H2116.3 (11)C14—C9—C10117.93 (12)
C16—N3—N4123.00 (11)C14—C9—C8120.81 (11)
C16—N3—H3121.4 (12)C10—C9—C8121.23 (12)
N4—N3—H3114.3 (12)O3—C10—C11122.79 (11)
N3—N4—H4A106.8 (11)O3—C10—C9116.07 (11)
N3—N4—H4B107.6 (11)C11—C10—C9121.13 (12)
H4A—N4—H4B105.1 (15)C12—C11—C10119.35 (12)
O1—C1—N2123.62 (13)C12—C11—H11A120.3
O1—C1—C2120.88 (12)C10—C11—H11A120.3
N2—C1—C2115.50 (11)C13—C12—C11120.59 (13)
O2—C2—C1108.04 (11)C13—C12—H12A119.7
O2—C2—H2B110.1C11—C12—H12A119.7
C1—C2—H2B110.1C12—C13—C14119.61 (13)
O2—C2—H2C110.1C12—C13—H13A120.2
C1—C2—H2C110.1C14—C13—H13A120.2
H2B—C2—H2C108.4C13—C14—C9121.34 (12)
O2—C3—C4123.65 (12)C13—C14—H14A119.3
O2—C3—C8115.15 (11)C9—C14—H14A119.3
C4—C3—C8121.17 (12)O3—C15—C16109.67 (11)
C5—C4—C3119.38 (13)O3—C15—H15A109.7
C5—C4—H4C120.3C16—C15—H15A109.7
C3—C4—H4C120.3O3—C15—H15B109.7
C6—C5—C4120.42 (12)C16—C15—H15B109.7
C6—C5—H5A119.8H15A—C15—H15B108.2
C4—C5—H5A119.8O4—C16—N3124.25 (13)
C5—C6—C7119.76 (13)O4—C16—C15119.25 (12)
C5—C6—H6A120.1N3—C16—C15116.49 (11)
N1—N2—C1—O15.0 (2)C7—C8—C9—C1055.87 (18)
N1—N2—C1—C2174.76 (12)C3—C8—C9—C10125.09 (14)
C3—O2—C2—C1163.98 (11)C15—O3—C10—C1125.80 (18)
O1—C1—C2—O2175.55 (12)C15—O3—C10—C9155.02 (12)
N2—C1—C2—O24.71 (16)C14—C9—C10—O3178.44 (11)
C2—O2—C3—C418.76 (19)C8—C9—C10—O30.38 (18)
C2—O2—C3—C8163.23 (12)C14—C9—C10—C112.38 (19)
O2—C3—C4—C5178.61 (12)C8—C9—C10—C11179.57 (12)
C8—C3—C4—C50.7 (2)O3—C10—C11—C12179.79 (12)
C3—C4—C5—C60.7 (2)C9—C10—C11—C121.1 (2)
C4—C5—C6—C70.0 (2)C10—C11—C12—C130.8 (2)
C5—C6—C7—C80.8 (2)C11—C12—C13—C141.2 (2)
C6—C7—C8—C30.82 (19)C12—C13—C14—C90.1 (2)
C6—C7—C8—C9178.24 (12)C10—C9—C14—C131.9 (2)
O2—C3—C8—C7178.01 (11)C8—C9—C14—C13179.96 (13)
C4—C3—C8—C70.05 (19)C10—O3—C15—C16159.34 (11)
O2—C3—C8—C92.93 (18)N4—N3—C16—O44.7 (2)
C4—C3—C8—C9179.01 (12)N4—N3—C16—C15175.62 (12)
C7—C8—C9—C14122.12 (14)O3—C15—C16—O4171.27 (12)
C3—C8—C9—C1456.91 (18)O3—C15—C16—N38.42 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.92 (1)2.19 (2)3.059 (2)156 (2)
N1—H1B···O4ii0.93 (1)2.51 (2)3.0112 (18)114 (1)
N3—H3···N4iii0.90 (1)2.19 (2)2.9524 (18)142 (1)
N4—H4B···O1iv0.94 (1)2.27 (2)2.9873 (18)133 (1)
N1—H1B···O10.93 (1)2.35 (2)2.7873 (18)109 (1)
N2—H2···O20.91 (1)2.12 (2)2.5375 (16)107 (1)
N3—H3···O30.90 (1)2.23 (2)2.5977 (17)104 (1)
C5—H5A···N1v0.952.533.359 (2)146
C11—H11A···O1vi0.952.473.292 (2)145
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1, z1; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1; (v) x, y+1, z; (vi) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H18N4O4
Mr330.34
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)8.4041 (17), 9.7148 (19), 10.465 (2)
α, β, γ (°)99.27 (3), 92.50 (3), 113.85 (3)
V3)765.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.31 × 0.29 × 0.22
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.968, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
5673, 2695, 2440
Rint0.009
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.092, 1.05
No. of reflections2695
No. of parameters237
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXS (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.924 (14)2.192 (15)3.059 (2)155.7 (15)
N1—H1B···O4ii0.930 (14)2.510 (17)3.0112 (18)114.1 (13)
N3—H3···N4iii0.900 (13)2.191 (15)2.9524 (18)141.9 (14)
N4—H4B···O1iv0.936 (14)2.267 (16)2.9873 (18)133.3 (14)
N1—H1B···O10.930 (14)2.348 (17)2.7873 (18)108.6 (13)
N2—H2···O20.906 (14)2.118 (17)2.5375 (16)107.1 (13)
N3—H3···O30.900 (13)2.230 (16)2.5977 (17)103.9 (12)
C5—H5A···N1v0.952.533.359 (2)146.3
C11—H11A···O1vi0.952.473.292 (2)144.8
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1, z1; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1; (v) x, y+1, z; (vi) x, y, z+1.
 

Acknowledgements

The authors thank the Higher Education Commission of Pakistan for financial support.

References

First citationAli, Q., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o910.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaudry, Y., Litvinchuk, S., Mareda, J., Nishihara, M., Pasnin, D., Shah, M. R., Sakai, N. & Matile, S. (2006). Adv. Funct. Mater. 16, 169–179.  Web of Science CrossRef CAS Google Scholar
First citationBhat, T. N., Singh, T. P. & Vijayan, M. (1974). Acta Cryst. B30, 2921–2922.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationDekeyser, M. A., McDonald, P. T. & Angle Jr, G. W. (2003). Chimia. 57, 702–704.  Web of Science CrossRef CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 22, 120–126.  CrossRef Web of Science Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationKakefuda, A., Suzuki, T., Tobe, T., Tahara, A., Sakamoto, S. & Tsukamoto, S. (2002). Bioorg. Med. Chem. 10, 1905–1912.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLitvinchuk, S., Bollot, G., Mareda, J., Som, A., Ronan, D., Shah, M. R., Perrottet, P., Sakai, N. & Matile, S. (2004). J. Am. Chem. Soc. 126, 10067-10075.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPriebe, J. P., Mello, R. S., Nome, F. & Bortoluzzi, A. J. (2008). Acta Cryst. E64, o302–o303.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSisson, A. L., Shah, M. R., Bhosale, S. & Matile, S. (2006). Chem. Soc. Rev. 35, 1269–1286.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThaker, B. T. & Patel, P. (2008). Mol. Cryst. Liq. Cryst. 482, 3–20.  Web of Science CrossRef CAS Google Scholar
First citationYan, S. P., Cheng, P., Liao, D. Z., Bai, L. J., Jiang, Z. H., Wang, G. L., Wang, R. J. & Yao, X. K. (1993). J. Nankai Univ. 2, 19–23.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1130-o1131
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds