organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-8-meth­oxy­quinoline

aPET Centre, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada M5T 1R8, bDepartment of Radiology, The University of Texas, Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390, USA, and cDepartment of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: alough@chem.utoronto.ca

(Received 8 May 2008; accepted 14 May 2008; online 21 May 2008)

The non-H atoms of the title mol­ecule, C10H8BrNO, are essentially coplanar. In the crystal structure, mol­ecules are linked by weak inter­molecular C—H⋯π(arene) inter­actions, forming one-dimensional chains along the a axis.

Related literature

For related literature, see: Michael (2008[Michael, J. P. (2008). Nat. Prod. Rep. 25, 166-187.]); Kulkarni et al. (2006[Kulkarni, P., Arora, V., Bennett, M., Roney, C., Partridge, K., Lewis, M., Antich, P. & Bonte, F. (2006). J. Nucl. Med. 47, 509P-510P.]); Irving & Pinnington (1957[Irving, H. & Pinnington, A. R. (1957). J. Chem. Soc. pp. 285-290.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8BrNO

  • Mr = 238.08

  • Orthorhombic, P 21 21 21

  • a = 5.1615 (1) Å

  • b = 12.1337 (6) Å

  • c = 14.2436 (7) Å

  • V = 892.05 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.56 mm−1

  • T = 150 (1) K

  • 0.30 × 0.12 × 0.11 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.545, Tmax = 0.607

  • 6134 measured reflections

  • 2026 independent reflections

  • 1872 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.059

  • S = 1.01

  • 2026 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.40 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 815 Friedel pairs

  • Flack parameter: −0.017 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10ACgi 0.98 2.66 3.531 (3) 148
Symmetry code: (i) x-1, y, z. Cg is the centroid of the C4–C9 ring.

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A edited by C. W. Carter Jr & R. M. Sweet pp. 307-326. London: Academic press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quinoline derivatatives are established chelating agents and also have applications as precursors for pesticides and pharmaceuticals (Michael, 2008). Our laboratories are pursuing the development of radiohalogenated 8-hydroxyquinoline derivatives for positron emission tomography (PET) and single photon emission computed tomography (SPECT), specifically to image extracellular glial deposition of amyloid plaque protein in Alzheimer's disease and matrix metalloproteinases in tumours (Kulkarni et al., 2006). 4-Bromo-8-methoxyquinoline, first reported by Irving & Pinnington (1957) may be used as a precursor for radiohalogenation reactions to prepare labelled 8-hydroxyquinoline-based PET or SPECT radiopharmaceuticals. To our surprise, neutral compounds bearing a 4-halogen substituted, 8-phenoxyquinoline core have not yet been studied by single-crystal X-ray crystallography. In the present study we report the crystal structure of the title compound at 150 K.

The non-hydrogen atoms of title molecule (Fig. 1), C10H8BrNO, are essentially co-planar (r.m.s. deviation of all non-H atoms = 0.0242 Å). In the crystal structure, molecules are linked by weak intermolecuar C—H···π(arene) interactions to form one-dimensional chains along the a axis (Fig. 2). There are no other hydrogen bonds or π···π stacking interactions.

Related literature top

For related literature, see: Michael (2008); Kulkarni et al. (2006); Irving & Pinnington (1957). Cg is the centroid of the C4–C9 ring.

Experimental top

X-ray quality crystals were obtained by evaporation of a solution of the title compound (ECA International Corporation, Palatine, Illinois, USA) in chloroform.

Refinement top

H atoms were placed in calculated positions with C—H = 0.95Å (aryl) and 0.98Å (methyl) and were included in the refinement in the riding-model approximation with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure showing 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
[Figure 2] Fig. 2. Part of the crystal structure showing weak C—H···π(arene) interactions as dashed lines.
4-Bromo-8-methoxyquinoline top
Crystal data top
C10H8BrNOF(000) = 472
Mr = 238.08Dx = 1.773 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6134 reflections
a = 5.1615 (1) Åθ = 2.9–27.5°
b = 12.1337 (6) ŵ = 4.56 mm1
c = 14.2436 (7) ÅT = 150 K
V = 892.05 (6) Å3Needle, colourless
Z = 40.30 × 0.12 × 0.11 mm
Data collection top
Nonius KappaCCD
diffractometer
2026 independent reflections
Radiation source: fine-focus sealed tube1872 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ scans and ω scans with κ offsetsh = 56
Absorption correction: multi-scan
(SORTAV; Blessing 1995)
k = 1415
Tmin = 0.545, Tmax = 0.607l = 1818
6134 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0306P)2 + 0.0333P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.38 e Å3
2026 reflectionsΔρmin = 0.40 e Å3
120 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0062 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 815 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.017 (11)
Crystal data top
C10H8BrNOV = 892.05 (6) Å3
Mr = 238.08Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.1615 (1) ŵ = 4.56 mm1
b = 12.1337 (6) ÅT = 150 K
c = 14.2436 (7) Å0.30 × 0.12 × 0.11 mm
Data collection top
Nonius KappaCCD
diffractometer
2026 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing 1995)
1872 reflections with I > 2σ(I)
Tmin = 0.545, Tmax = 0.607Rint = 0.036
6134 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.059Δρmax = 0.38 e Å3
S = 1.01Δρmin = 0.40 e Å3
2026 reflectionsAbsolute structure: Flack (1983), 815 Friedel pairs
120 parametersAbsolute structure parameter: 0.017 (11)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.02034 (5)0.36147 (2)0.509948 (18)0.02940 (11)
O10.1007 (3)0.62674 (16)0.72708 (14)0.0259 (4)
N10.4260 (4)0.64140 (17)0.58326 (14)0.0233 (4)
C10.5884 (5)0.6481 (2)0.51287 (18)0.0278 (6)
H1A0.58190.71260.47520.033*
C20.7717 (5)0.5671 (2)0.48878 (19)0.0268 (6)
H2A0.88420.57680.43660.032*
C30.7833 (5)0.4746 (2)0.54217 (19)0.0239 (6)
C40.6190 (5)0.4611 (2)0.62176 (17)0.0188 (5)
C50.6239 (5)0.3694 (2)0.68244 (18)0.0232 (6)
H5A0.74290.31090.67180.028*
C60.4556 (5)0.3650 (2)0.75705 (17)0.0243 (6)
H6A0.46240.30380.79860.029*
C70.2739 (5)0.4487 (2)0.77325 (18)0.0235 (6)
H7A0.15580.44240.82410.028*
C80.2656 (5)0.5400 (2)0.71586 (17)0.0195 (5)
C90.4408 (5)0.54916 (19)0.63810 (16)0.0199 (5)
C100.0731 (5)0.6201 (2)0.80535 (18)0.0271 (7)
H10C0.17840.68720.80830.041*
H10D0.02690.61260.86350.041*
H10A0.18650.55590.79780.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02472 (15)0.03108 (16)0.03239 (16)0.00303 (10)0.00306 (11)0.00756 (11)
O10.0264 (10)0.0255 (11)0.0259 (10)0.0030 (8)0.0047 (7)0.0004 (8)
N10.0281 (10)0.0212 (11)0.0206 (11)0.0009 (9)0.0021 (8)0.0001 (10)
C10.0339 (13)0.0259 (14)0.0237 (14)0.0019 (10)0.0030 (10)0.0087 (14)
C20.0265 (12)0.0299 (14)0.0240 (14)0.0065 (10)0.0049 (12)0.0001 (13)
C30.0215 (13)0.0257 (14)0.0246 (15)0.0015 (10)0.0025 (10)0.0078 (12)
C40.0210 (13)0.0184 (13)0.0169 (13)0.0037 (9)0.0018 (9)0.0016 (11)
C50.0224 (12)0.0215 (14)0.0257 (14)0.0016 (11)0.0064 (10)0.0019 (12)
C60.0328 (15)0.0176 (13)0.0225 (13)0.0037 (13)0.0074 (11)0.0035 (11)
C70.0257 (14)0.0258 (15)0.0191 (14)0.0088 (11)0.0018 (11)0.0010 (11)
C80.0208 (13)0.0185 (13)0.0193 (13)0.0003 (10)0.0021 (10)0.0014 (11)
C90.0207 (12)0.0204 (13)0.0186 (12)0.0042 (10)0.0046 (10)0.0010 (10)
C100.0240 (14)0.0314 (17)0.0258 (15)0.0015 (12)0.0047 (11)0.0028 (12)
Geometric parameters (Å, º) top
Br1—C31.895 (2)C4—C91.429 (3)
O1—C81.362 (3)C5—C61.374 (4)
O1—C101.433 (3)C5—H5A0.9500
N1—C11.309 (3)C6—C71.402 (4)
N1—C91.367 (3)C6—H6A0.9500
C1—C21.407 (4)C7—C81.378 (4)
C1—H1A0.9500C7—H7A0.9500
C2—C31.357 (3)C8—C91.434 (3)
C2—H2A0.9500C10—H10C0.9800
C3—C41.425 (3)C10—H10D0.9800
C4—C51.409 (4)C10—H10A0.9800
C8—O1—C10116.0 (2)C5—C6—H6A119.3
C1—N1—C9116.9 (2)C7—C6—H6A119.3
N1—C1—C2125.0 (2)C8—C7—C6120.4 (2)
N1—C1—H1A117.5C8—C7—H7A119.8
C2—C1—H1A117.5C6—C7—H7A119.8
C3—C2—C1118.1 (2)O1—C8—C7124.8 (2)
C3—C2—H2A121.0O1—C8—C9115.1 (2)
C1—C2—H2A121.0C7—C8—C9120.0 (2)
C2—C3—C4121.0 (2)N1—C9—C4123.7 (2)
C2—C3—Br1119.4 (2)N1—C9—C8118.0 (2)
C4—C3—Br1119.58 (19)C4—C9—C8118.3 (2)
C5—C4—C3124.6 (2)O1—C10—H10C109.5
C5—C4—C9120.1 (2)O1—C10—H10D109.5
C3—C4—C9115.3 (2)H10C—C10—H10D109.5
C6—C5—C4119.6 (3)O1—C10—H10A109.5
C6—C5—H5A120.2H10C—C10—H10A109.5
C4—C5—H5A120.2H10D—C10—H10A109.5
C5—C6—C7121.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···Cgi0.982.663.531 (3)148
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC10H8BrNO
Mr238.08
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)5.1615 (1), 12.1337 (6), 14.2436 (7)
V3)892.05 (6)
Z4
Radiation typeMo Kα
µ (mm1)4.56
Crystal size (mm)0.30 × 0.12 × 0.11
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing 1995)
Tmin, Tmax0.545, 0.607
No. of measured, independent and
observed [I > 2σ(I)] reflections
6134, 2026, 1872
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.059, 1.01
No. of reflections2026
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.40
Absolute structureFlack (1983), 815 Friedel pairs
Absolute structure parameter0.017 (11)

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), PLATON (Spek, 2003) and SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···Cgi0.982.663.531 (3)148
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We thank Dr Peter P. Antich and Dr Frederick J. Bonte for helpful discussions and support. Financial support for this work was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIrving, H. & Pinnington, A. R. (1957). J. Chem. Soc. pp. 285–290.  CrossRef Web of Science Google Scholar
First citationKulkarni, P., Arora, V., Bennett, M., Roney, C., Partridge, K., Lewis, M., Antich, P. & Bonte, F. (2006). J. Nucl. Med. 47, 509P–510P.  Google Scholar
First citationMichael, J. P. (2008). Nat. Prod. Rep. 25, 166–187.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A edited by C. W. Carter Jr & R. M. Sweet pp. 307–326. London: Academic press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds