organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1095-o1096

Methyl 3-(4-bromo­phen­yl)-2-(1H-indol-3-ylmeth­yl)-5-[1-(4-meth­oxy­phen­yl)-4-oxo-2-phenyl­azetidin-2-yl]-4-nitro­pyrrolidine-2-carboxyl­ate

aDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, bDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 089, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: sudharose18@gmail.com

(Received 10 April 2008; accepted 12 May 2008; online 17 May 2008)

In the title compound, C37H33BrN4O6, the pyrrolidine ring adopts an envelope conformation. The β-lactam ring is planar and makes dihedral angles of 70.16 (13) and 28.32 (13)° with the phenyl and 4-methoxy­phenyl rings, respectively. The mol­ecular packing is stabilized by intra­molecular C—H⋯O inter­actions and the crystal packing is determined by inter­molecular N—H⋯O hydrogen bonds, and C—H⋯O and C—H⋯π inter­actions.

Related literature

For related literature, see: Kamala et al. (2008[Kamala, E. T. S., Nirmala, S., Sudha, L., Arumugam, N. & Raghunathan, R. (2008). Acta Cryst. E64, o716-o717.]); Lukacs & Ohno (1990[Lukacs, G. & Ohno, M. (1990). Editors. Recent Progress in the Chemical Synthesis of Antibiotics. Berlin: Springer.]); Sundari Bhaskaran et al. (2006[Sundari Bhaskaran, Selvanayagam, S., Velmurugan, D., Ravikumar, K., Arumugam, N. & Raghunathan, R. (2006). Anal. Sci. 22, 57-58.]); Suzuki et al. (1994[Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119-6122.]); Yang et al. (1987[Yang, Q.-C., Seiler, P. & Dunitz, J. D. (1987). Acta Cryst. C43, 565-567.]); Amal Raj et al. (2003[Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-409.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]); Ülkü et al. (1997[Ülkü, D., Ercan, F. & Güner, V. (1997). Acta Cryst. C53, 1945-1947.]).

[Scheme 1]

Experimental

Crystal data
  • C37H33BrN4O6

  • Mr = 709.58

  • Monoclinic, C c

  • a = 11.3988 (4) Å

  • b = 34.8587 (13) Å

  • c = 8.7039 (3) Å

  • β = 100.982 (2)°

  • V = 3395.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 293 (2) K

  • 0.30 × 0.22 × 0.22 mm

Data collection
  • Bruker Kappa APEX2 diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.703, Tmax = 0.769

  • 37282 measured reflections

  • 8532 independent reflections

  • 6397 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.120

  • S = 1.04

  • 8532 reflections

  • 433 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4142 Friedel pairs

  • Flack parameter: 0.008 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O4 0.98 2.27 2.717 (3) 107
C4—H4⋯O4i 0.93 2.57 3.186 (3) 124
C31—H31⋯O4ii 0.93 2.55 3.399 (3) 152
N1—H1A⋯O5iii 0.86 2.02 2.820 (3) 155
C18—H18⋯Cgiv 0.93 2.80 3.641 (4) 151
Symmetry codes: (i) x, y, z-1; (ii) [x, -y+2, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) x, y, z+1. Cg is the centroid of the indole benzene ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

β–Lactams with a substituent at the N atom, which is easily removable under mild conditions have found wide applicability in the synthesis of bicyclic β–lactam antibiotics (Lukacs & Ohno, 1990). Substituted pyrrolidines have gained much importance because they are the structural elements of many alkaloids. It has been found that they exhibit antifungal activity against various pathogens (Amal Raj et al., 2003). Optically active pyrrolidine derivatives have been used as intermediates in controlled asymmetric synthesis (Suzuki et al., 1994). Since the title compound, (I), also contains an indole unit it may also exhibit some biological activity. In view of these, the structure of title compound is determined to establish the conformation of the molecule (Fig. 1).

The bond lengths and angles in I are agree with those observed in a similar structure (Sundari Bhaskaran et al., 2006; Kamala et al., 2008). The β–lactam ring is planar with its internal angles in the range 84.4 (2) to 95.5 (2)°. The C–C–C bond angle in the β–lactam ring is comparable to the values in related reported structures (Ulku et al., 1997). The bond N4?C16, is shorter than the bond lengths, N4—C14 and N4—C17 and is close to the length of a double bond, a feature observed in β–propiolactam (Yang et al., 1987) and where C and N are sp2 hybridized.

The methoxy group is coplanar with the C17/C18/C19/C20/C21/C22 benzene ring: dihedral angle C21–C20–O6–C23 = 161.0 (4)°. The methoxyphenyl and the phenyl rings bridged by the β–lactam ring are oriented at an angle of 42.32 (11)° with respect to each other, whereas the β–lactam ring makes a dihedral angles of 28.32 (13)° and 70.16 (13)° with them respectively. The indole moiety is planar and makes a dihedral angle of 38.01 (11)°, 62.8 (7)° and 73.8 (9)° with the β–lactam, bromophenyl and phenyl rings respectively. The nitro–group is orthogonal to indole moiety [89.2 (2)°] and makes a dihedral angle of 66.6 (3)° with the β–lactam ring.

The pyrrolidine ring N2/C10/C11/C12/C13 adopts an envelope conformation, with asymmetry parameters (Nardelli, 1995), ΔCS (C13) = 0.038 (2) and puckering parameters (Cremer & Pople, 1975) q2 = 0.377 (2)Å and ϕ = 150.8 (3)°. Atom C13 deviates from the mean plane defined by N2/C10/C11/C12 on 0.573 (8) Å.

In the crystal structure of I (Fig.2), adjacent molecules are linked by N—H···O and C—H···O hydrogen bonds into chains. In addition, the packing is stabilized by C—H···Cg interactions involving C3/C4/C5/C6/C7/C8 rings with centroid Cg.

Related literature top

For related literature, see: Kamala et al. (2008); Lukacs & Ohno (1990); Sundari Bhaskaran et al. (2006); Suzuki et al. (1994); Yang et al. (1987).

For related literature, see: Amal Raj, Raghunathan, Sridevi Kumari & Raman (2003); Cremer & Pople (1975); Nardelli (1995); Ülkü et al. (1997).

Experimental top

The β–lactam aldehyde (1 mol) was treated with tryptophanmethylester hydrochloride (1 mol) in the presence of Et3N (2.5 mol) and anhydrous MgSO4 (2 g) in dry dichloromethane (10 ml) at room temperature for 12 h to give the imine. The imine was washed with water and dried over Na2SO4. The solvent was evaporated under vacuum. The imine (1 mol) was then strirred with silver(I) acetate and p–bromo nitrostyrene (1 mol) in the presence of Et3N (1.2 mol) and molecular sieves in dry toluene (30 ml) at room temperature for 12 h. The reaction mixture was filtered through a plug celite. The solvent was evaporated under reduced pressure and the residue was subjected to column chromatography on silica gel (100–200 mesh), with hexane–ethyl acetate (7:3) as eluent to give the product. The compound was recrystallized from ethyl acetate.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H respectively, and N—H = 0.86 Å, and with Uiso(H) = 1.5i>Ueq(C) for methyl and Uiso(H) = 1.2i>Ueq(parent C, N) for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of I. The displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius. The intramolecular H–bond are drawn by dashed line.
[Figure 2] Fig. 2. The packing of the molecules viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involed in hydrogen bonds have been ommited for clarity. Symmetry codes: (i) x, y, z - 1; (ii) x, -y + 2, z - 1/2; (iii) x + 1/2, -y + 3/2, z - 1/2; (iv) x, y, z + 1.
Methyl 3-(4-bromophenyl)-2-(1H-indol-3-ylmethyl)-5-[1-(4-methoxyphenyl)- 4-oxo-2-phenylazetidin-2-yl]-4-nitropyrrolidine-2-carboxylate top
Crystal data top
C37H33BrN4O6F(000) = 1464
Mr = 709.58Dx = 1.388 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 13968 reflections
a = 11.3988 (4) Åθ = 2.3–23.4°
b = 34.8587 (13) ŵ = 1.26 mm1
c = 8.7039 (3) ÅT = 293 K
β = 100.982 (2)°Prism, colourless
V = 3395.1 (2) Å30.30 × 0.22 × 0.22 mm
Z = 4
Data collection top
Bruker Kappa APEX2
diffractometer
8532 independent reflections
Radiation source: fine–focus sealed tube6397 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scansθmax = 28.7°, θmin = 1.2°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1515
Tmin = 0.703, Tmax = 0.769k = 4646
37282 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0682P)2 + 0.1826P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
8532 reflectionsΔρmax = 0.43 e Å3
433 parametersΔρmin = 0.37 e Å3
2 restraintsAbsolute structure: Flack (1983), 4142 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.008 (6)
Crystal data top
C37H33BrN4O6V = 3395.1 (2) Å3
Mr = 709.58Z = 4
Monoclinic, CcMo Kα radiation
a = 11.3988 (4) ŵ = 1.26 mm1
b = 34.8587 (13) ÅT = 293 K
c = 8.7039 (3) Å0.30 × 0.22 × 0.22 mm
β = 100.982 (2)°
Data collection top
Bruker Kappa APEX2
diffractometer
8532 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
6397 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 0.769Rint = 0.028
37282 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.120Δρmax = 0.43 e Å3
S = 1.04Δρmin = 0.37 e Å3
8532 reflectionsAbsolute structure: Flack (1983), 4142 Friedel pairs
433 parametersAbsolute structure parameter: 0.008 (6)
2 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0310 (3)0.82854 (8)0.0512 (3)0.0541 (6)
H10.99610.81560.12440.065*
C20.9937 (2)0.86265 (6)0.0140 (3)0.0406 (5)
C31.07094 (19)0.87204 (7)0.1184 (3)0.0388 (5)
C41.0793 (2)0.90284 (8)0.2186 (3)0.0490 (6)
H41.02550.92310.22620.059*
C51.1678 (3)0.90276 (10)0.3055 (4)0.0609 (7)
H51.17340.92310.37280.073*
C61.2498 (3)0.87257 (11)0.2947 (4)0.0628 (8)
H61.30960.87340.35390.075*
C71.2437 (2)0.84207 (9)0.1991 (4)0.0594 (7)
H71.29780.82190.19320.071*
C81.1543 (2)0.84186 (7)0.1104 (3)0.0446 (5)
C90.8907 (2)0.88613 (7)0.0180 (3)0.0405 (5)
H9A0.82130.86970.01190.049*
H9B0.87150.90570.06220.049*
C100.91742 (18)0.90557 (6)0.1798 (2)0.0352 (5)
C110.81174 (18)0.93273 (6)0.2125 (3)0.0349 (4)
H110.84740.95730.25100.042*
C120.7686 (2)0.91299 (6)0.3488 (3)0.0386 (5)
H120.68110.91280.33190.046*
C130.8177 (2)0.87176 (6)0.3464 (3)0.0385 (5)
H130.76640.85840.25960.046*
C140.8218 (2)0.84705 (7)0.4896 (3)0.0435 (5)
H140.87380.85780.58220.052*
C150.6981 (3)0.83327 (8)0.5252 (3)0.0538 (6)
H150.69450.83690.63590.065*
C160.7435 (3)0.79315 (9)0.4961 (4)0.0637 (8)
C170.9507 (3)0.78706 (8)0.4405 (3)0.0561 (7)
C181.0634 (3)0.80218 (9)0.4846 (4)0.0689 (9)
H181.07220.82590.53420.083*
C191.1637 (4)0.78329 (10)0.4579 (5)0.0771 (10)
H191.23830.79490.48520.093*
C201.1543 (4)0.74769 (10)0.3916 (5)0.0737 (9)
C211.0396 (5)0.73262 (11)0.3432 (6)0.0990 (15)
H211.03120.70870.29500.119*
C220.9395 (4)0.75174 (10)0.3643 (6)0.0893 (13)
H220.86420.74130.32810.107*
C231.3582 (4)0.74477 (16)0.3661 (7)0.1051 (14)
H23A1.41640.72670.34450.158*
H23B1.38530.75590.46740.158*
H23C1.34750.76460.28810.158*
C240.5431 (3)0.82771 (10)0.2772 (4)0.0665 (8)
H240.58810.80820.24450.080*
C250.4380 (3)0.83898 (13)0.1818 (4)0.0798 (10)
H250.41180.82630.08760.096*
C260.3718 (3)0.86851 (12)0.2234 (5)0.0801 (10)
H260.30240.87660.15710.096*
C270.4099 (3)0.88592 (13)0.3652 (5)0.0802 (10)
H270.36450.90570.39580.096*
C280.5143 (3)0.87489 (11)0.4641 (4)0.0685 (8)
H280.53860.88740.55910.082*
C290.5832 (3)0.84510 (8)0.4218 (3)0.0544 (6)
C300.71391 (19)0.94108 (6)0.0732 (3)0.0363 (4)
C310.7291 (2)0.97173 (7)0.0228 (3)0.0465 (6)
H310.79890.98620.00020.056*
C320.6435 (2)0.98119 (8)0.1500 (4)0.0544 (7)
H320.65611.00160.21390.065*
C330.5397 (2)0.96064 (8)0.1828 (3)0.0508 (6)
C340.5213 (2)0.93019 (9)0.0920 (4)0.0586 (7)
H340.45070.91610.11530.070*
C350.6090 (2)0.92037 (8)0.0358 (3)0.0498 (6)
H350.59690.89950.09730.060*
C361.0328 (2)0.92886 (7)0.1965 (3)0.0419 (5)
C371.1292 (3)0.97884 (10)0.0855 (6)0.0814 (11)
H37A1.11370.99660.00020.122*
H37B1.19570.96280.07490.122*
H37C1.14760.99270.18230.122*
N11.1279 (2)0.81582 (6)0.0061 (3)0.0549 (5)
H1A1.16590.79480.01970.066*
N20.93345 (17)0.87641 (5)0.3021 (2)0.0397 (4)
H20.99830.86440.34030.048*
N30.8208 (2)0.93141 (6)0.5030 (3)0.0462 (5)
N40.8479 (2)0.80657 (6)0.4657 (3)0.0533 (5)
O11.11802 (17)0.92443 (7)0.2958 (3)0.0690 (6)
O21.02387 (15)0.95506 (5)0.0846 (2)0.0551 (4)
O30.7714 (2)0.92499 (8)0.6116 (3)0.0771 (7)
O40.91172 (19)0.95038 (6)0.5130 (2)0.0617 (5)
O50.7038 (3)0.76121 (7)0.4957 (4)0.0892 (8)
O61.2477 (3)0.72571 (8)0.3636 (4)0.0996 (10)
Br10.42238 (4)0.974927 (13)0.35828 (4)0.08931 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0691 (16)0.0355 (13)0.0601 (16)0.0073 (11)0.0179 (13)0.0020 (11)
C20.0465 (11)0.0341 (12)0.0418 (12)0.0011 (9)0.0097 (9)0.0032 (10)
C30.0393 (10)0.0357 (12)0.0389 (12)0.0034 (9)0.0016 (9)0.0057 (9)
C40.0522 (12)0.0504 (15)0.0435 (14)0.0073 (11)0.0067 (11)0.0041 (11)
C50.0677 (17)0.0685 (18)0.0483 (15)0.0068 (14)0.0159 (13)0.0043 (14)
C60.0496 (14)0.089 (2)0.0536 (16)0.0031 (14)0.0189 (12)0.0149 (16)
C70.0468 (13)0.0708 (19)0.0589 (17)0.0136 (12)0.0055 (12)0.0192 (15)
C80.0451 (12)0.0426 (13)0.0427 (13)0.0089 (9)0.0000 (10)0.0086 (11)
C90.0417 (11)0.0359 (12)0.0437 (12)0.0013 (9)0.0078 (9)0.0000 (9)
C100.0327 (8)0.0302 (10)0.0436 (13)0.0009 (8)0.0094 (9)0.0040 (9)
C110.0365 (10)0.0263 (10)0.0431 (12)0.0011 (8)0.0103 (8)0.0000 (9)
C120.0389 (10)0.0354 (11)0.0419 (12)0.0018 (8)0.0085 (9)0.0004 (9)
C130.0467 (11)0.0272 (10)0.0407 (11)0.0055 (9)0.0060 (9)0.0010 (9)
C140.0566 (13)0.0337 (12)0.0378 (11)0.0081 (10)0.0027 (10)0.0031 (9)
C150.0735 (17)0.0474 (15)0.0435 (14)0.0171 (12)0.0186 (12)0.0037 (11)
C160.090 (2)0.0456 (16)0.0543 (16)0.0199 (14)0.0108 (15)0.0120 (13)
C170.0870 (19)0.0333 (13)0.0462 (14)0.0035 (12)0.0080 (13)0.0045 (11)
C180.0743 (19)0.0456 (16)0.073 (2)0.0130 (14)0.0217 (15)0.0056 (14)
C190.079 (2)0.0572 (19)0.082 (2)0.0090 (16)0.0163 (17)0.0014 (17)
C200.104 (3)0.0501 (17)0.0684 (19)0.0108 (17)0.0196 (18)0.0024 (15)
C210.138 (4)0.0461 (18)0.128 (4)0.017 (2)0.064 (3)0.032 (2)
C220.107 (3)0.0497 (18)0.122 (3)0.0272 (19)0.050 (3)0.026 (2)
C230.089 (3)0.113 (4)0.105 (3)0.030 (3)0.003 (2)0.004 (3)
C240.0708 (18)0.0644 (19)0.0642 (19)0.0175 (15)0.0123 (15)0.0084 (15)
C250.071 (2)0.097 (3)0.065 (2)0.0285 (19)0.0031 (17)0.0118 (18)
C260.0577 (17)0.100 (3)0.081 (2)0.0084 (18)0.0086 (16)0.001 (2)
C270.0580 (18)0.105 (3)0.081 (2)0.0011 (17)0.0217 (17)0.003 (2)
C280.0642 (18)0.089 (2)0.0569 (17)0.0115 (16)0.0242 (14)0.0088 (16)
C290.0562 (14)0.0562 (16)0.0527 (15)0.0229 (12)0.0150 (12)0.0019 (12)
C300.0364 (10)0.0284 (10)0.0459 (12)0.0033 (8)0.0127 (9)0.0020 (9)
C310.0422 (11)0.0388 (13)0.0579 (15)0.0039 (9)0.0082 (11)0.0151 (11)
C320.0532 (14)0.0470 (15)0.0642 (17)0.0012 (11)0.0142 (13)0.0201 (13)
C330.0498 (13)0.0488 (14)0.0513 (14)0.0102 (11)0.0038 (11)0.0088 (12)
C340.0437 (12)0.0555 (17)0.0703 (18)0.0125 (11)0.0051 (12)0.0120 (14)
C350.0457 (12)0.0443 (14)0.0563 (15)0.0075 (10)0.0017 (11)0.0168 (12)
C360.0369 (10)0.0364 (12)0.0532 (13)0.0003 (8)0.0110 (10)0.0011 (10)
C370.068 (2)0.071 (2)0.109 (3)0.0308 (16)0.026 (2)0.015 (2)
N10.0716 (14)0.0342 (11)0.0589 (14)0.0197 (10)0.0124 (11)0.0003 (10)
N20.0430 (9)0.0298 (10)0.0463 (11)0.0066 (7)0.0086 (8)0.0070 (8)
N30.0578 (12)0.0345 (11)0.0452 (11)0.0106 (9)0.0070 (9)0.0021 (9)
N40.0763 (15)0.0329 (11)0.0496 (12)0.0102 (10)0.0087 (10)0.0055 (9)
O10.0425 (9)0.0822 (15)0.0772 (14)0.0107 (9)0.0016 (9)0.0147 (12)
O20.0468 (9)0.0451 (10)0.0736 (13)0.0128 (7)0.0120 (8)0.0133 (9)
O30.0954 (17)0.0919 (17)0.0507 (12)0.0014 (13)0.0306 (12)0.0115 (11)
O40.0706 (12)0.0474 (11)0.0580 (11)0.0057 (9)0.0105 (9)0.0032 (9)
O50.115 (2)0.0477 (12)0.1045 (19)0.0364 (13)0.0203 (16)0.0114 (12)
O60.128 (3)0.0694 (16)0.109 (2)0.0224 (17)0.042 (2)0.0027 (15)
Br10.0742 (2)0.0972 (3)0.0835 (2)0.00646 (19)0.01798 (16)0.0311 (2)
Geometric parameters (Å, º) top
C1—C21.351 (4)C19—C201.364 (5)
C1—N11.370 (4)C19—H190.9300
C1—H10.9300C20—O61.371 (5)
C2—C31.419 (3)C20—C211.397 (7)
C2—C91.500 (3)C21—C221.364 (6)
C3—C41.398 (4)C21—H210.9300
C3—C81.410 (3)C22—H220.9300
C4—C51.371 (4)C23—O61.420 (6)
C4—H40.9300C23—H23A0.9600
C5—C61.399 (5)C23—H23B0.9600
C5—H50.9300C23—H23C0.9600
C6—C71.359 (5)C24—C251.379 (5)
C6—H60.9300C24—C291.393 (4)
C7—C81.391 (4)C24—H240.9300
C7—H70.9300C25—C261.366 (6)
C8—N11.357 (4)C25—H250.9300
C9—C101.540 (3)C26—C271.369 (6)
C9—H9A0.9700C26—H260.9300
C9—H9B0.9700C27—C281.384 (5)
C10—N21.458 (3)C27—H270.9300
C10—C361.529 (3)C28—C291.393 (5)
C10—C111.600 (3)C28—H280.9300
C11—C301.511 (3)C30—C351.381 (3)
C11—C121.532 (3)C30—C311.388 (3)
C11—H110.9800C31—C321.369 (4)
C12—N31.505 (3)C31—H310.9300
C12—C131.544 (3)C32—C331.366 (4)
C12—H120.9800C32—H320.9300
C13—N21.453 (3)C33—C341.363 (4)
C13—C141.508 (3)C33—Br11.895 (3)
C13—H130.9800C34—C351.390 (4)
C14—N41.465 (3)C34—H340.9300
C14—C151.576 (4)C35—H350.9300
C14—H140.9800C36—O11.180 (3)
C15—C291.498 (4)C36—O21.325 (3)
C15—C161.529 (5)C37—O21.458 (3)
C15—H150.9800C37—H37A0.9600
C16—O51.202 (4)C37—H37B0.9600
C16—N41.350 (4)C37—H37C0.9600
C17—C181.374 (5)N1—H1A0.8600
C17—C221.393 (5)N2—H20.8600
C17—N41.408 (4)N3—O31.210 (3)
C18—C191.377 (5)N3—O41.218 (3)
C18—H180.9300
C2—C1—N1110.1 (2)C20—C19—H19119.8
C2—C1—H1125.0C18—C19—H19119.8
N1—C1—H1125.0C19—C20—O6125.6 (4)
C1—C2—C3106.7 (2)C19—C20—C21117.6 (4)
C1—C2—C9126.7 (2)O6—C20—C21116.8 (3)
C3—C2—C9126.6 (2)C22—C21—C20122.3 (3)
C4—C3—C8118.6 (2)C22—C21—H21118.8
C4—C3—C2134.5 (2)C20—C21—H21118.8
C8—C3—C2106.9 (2)C21—C22—C17119.5 (4)
C5—C4—C3119.2 (3)C21—C22—H22120.3
C5—C4—H4120.4C17—C22—H22120.3
C3—C4—H4120.4O6—C23—H23A109.5
C4—C5—C6121.1 (3)O6—C23—H23B109.5
C4—C5—H5119.5H23A—C23—H23B109.5
C6—C5—H5119.5O6—C23—H23C109.5
C7—C6—C5121.2 (2)H23A—C23—H23C109.5
C7—C6—H6119.4H23B—C23—H23C109.5
C5—C6—H6119.4C25—C24—C29121.2 (3)
C6—C7—C8118.2 (3)C25—C24—H24119.4
C6—C7—H7120.9C29—C24—H24119.4
C8—C7—H7120.9C26—C25—C24121.1 (3)
N1—C8—C7130.8 (2)C26—C25—H25119.5
N1—C8—C3107.4 (2)C24—C25—H25119.5
C7—C8—C3121.8 (3)C25—C26—C27118.4 (4)
C2—C9—C10112.56 (19)C25—C26—H26120.8
C2—C9—H9A109.1C27—C26—H26120.8
C10—C9—H9A109.1C26—C27—C28121.7 (4)
C2—C9—H9B109.1C26—C27—H27119.2
C10—C9—H9B109.1C28—C27—H27119.2
H9A—C9—H9B107.8C27—C28—C29120.3 (3)
N2—C10—C36108.35 (18)C27—C28—H28119.9
N2—C10—C9109.65 (18)C29—C28—H28119.9
C36—C10—C9109.74 (18)C24—C29—C28117.3 (3)
N2—C10—C11106.06 (16)C24—C29—C15121.5 (3)
C36—C10—C11109.40 (17)C28—C29—C15121.2 (3)
C9—C10—C11113.48 (17)C35—C30—C31117.5 (2)
C30—C11—C12114.28 (18)C35—C30—C11124.2 (2)
C30—C11—C10115.92 (18)C31—C30—C11118.3 (2)
C12—C11—C10103.63 (16)C32—C31—C30121.4 (2)
C30—C11—H11107.5C32—C31—H31119.3
C12—C11—H11107.5C30—C31—H31119.3
C10—C11—H11107.5C33—C32—C31119.9 (2)
N3—C12—C11111.63 (18)C33—C32—H32120.0
N3—C12—C13109.04 (19)C31—C32—H32120.0
C11—C12—C13103.74 (18)C34—C33—C32120.7 (3)
N3—C12—H12110.7C34—C33—Br1120.6 (2)
C11—C12—H12110.7C32—C33—Br1118.8 (2)
C13—C12—H12110.7C33—C34—C35119.3 (2)
N2—C13—C14113.3 (2)C33—C34—H34120.4
N2—C13—C12104.45 (17)C35—C34—H34120.4
C14—C13—C12118.4 (2)C30—C35—C34121.3 (2)
N2—C13—H13106.7C30—C35—H35119.4
C14—C13—H13106.7C34—C35—H35119.4
C12—C13—H13106.7O1—C36—O2124.4 (2)
N4—C14—C13114.1 (2)O1—C36—C10125.0 (2)
N4—C14—C1587.00 (18)O2—C36—C10110.6 (2)
C13—C14—C15116.6 (2)O2—C37—H37A109.5
N4—C14—H14112.3O2—C37—H37B109.5
C13—C14—H14112.3H37A—C37—H37B109.5
C15—C14—H14112.3O2—C37—H37C109.5
C29—C15—C16115.9 (2)H37A—C37—H37C109.5
C29—C15—C14120.7 (2)H37B—C37—H37C109.5
C16—C15—C1484.4 (2)C8—N1—C1108.9 (2)
C29—C15—H15111.1C8—N1—H1A125.5
C16—C15—H15111.1C1—N1—H1A125.5
C14—C15—H15111.1C13—N2—C10106.14 (17)
O5—C16—N4131.8 (4)C13—N2—H2126.9
O5—C16—C15135.1 (3)C10—N2—H2126.9
N4—C16—C1593.1 (2)O3—N3—O4124.1 (2)
C18—C17—C22118.0 (3)O3—N3—C12117.0 (2)
C18—C17—N4122.2 (3)O4—N3—C12118.8 (2)
C22—C17—N4119.8 (3)C16—N4—C17130.8 (2)
C17—C18—C19122.1 (3)C16—N4—C1495.5 (2)
C17—C18—H18119.0C17—N4—C14133.2 (2)
C19—C18—H18119.0C36—O2—C37116.1 (3)
C20—C19—C18120.4 (4)C20—O6—C23116.9 (3)
N1—C1—C2—C30.1 (3)C24—C25—C26—C272.3 (6)
N1—C1—C2—C9179.8 (2)C25—C26—C27—C281.5 (6)
C1—C2—C3—C4179.9 (3)C26—C27—C28—C290.8 (5)
C9—C2—C3—C40.0 (4)C25—C24—C29—C281.5 (4)
C1—C2—C3—C80.0 (3)C25—C24—C29—C15179.3 (3)
C9—C2—C3—C8179.9 (2)C27—C28—C29—C240.7 (4)
C8—C3—C4—C50.0 (4)C27—C28—C29—C15178.5 (3)
C2—C3—C4—C5179.9 (3)C16—C15—C29—C2421.8 (3)
C3—C4—C5—C60.4 (4)C14—C15—C29—C2477.4 (3)
C4—C5—C6—C70.8 (5)C16—C15—C29—C28160.5 (3)
C5—C6—C7—C80.8 (4)C14—C15—C29—C28100.3 (3)
C6—C7—C8—N1179.4 (3)C12—C11—C30—C3526.5 (3)
C6—C7—C8—C30.4 (4)C10—C11—C30—C3593.9 (3)
C4—C3—C8—N1179.9 (2)C12—C11—C30—C31152.7 (2)
C2—C3—C8—N10.1 (3)C10—C11—C30—C3186.9 (3)
C4—C3—C8—C70.0 (4)C35—C30—C31—C320.0 (4)
C2—C3—C8—C7179.9 (2)C11—C30—C31—C32179.3 (2)
C1—C2—C9—C1072.9 (3)C30—C31—C32—C331.1 (4)
C3—C2—C9—C10107.0 (3)C31—C32—C33—C341.4 (5)
C2—C9—C10—N265.0 (2)C31—C32—C33—Br1179.2 (2)
C2—C9—C10—C3653.9 (2)C32—C33—C34—C350.6 (5)
C2—C9—C10—C11176.64 (18)Br1—C33—C34—C35179.9 (2)
N2—C10—C11—C30131.23 (19)C31—C30—C35—C340.8 (4)
C36—C10—C11—C30112.1 (2)C11—C30—C35—C34178.4 (3)
C9—C10—C11—C3010.8 (2)C33—C34—C35—C300.6 (5)
N2—C10—C11—C125.2 (2)N2—C10—C36—O12.4 (3)
C36—C10—C11—C12121.86 (19)C9—C10—C36—O1122.1 (3)
C9—C10—C11—C12115.22 (19)C11—C10—C36—O1112.8 (3)
C30—C11—C12—N3133.95 (19)N2—C10—C36—O2178.07 (18)
C10—C11—C12—N398.99 (19)C9—C10—C36—O258.4 (2)
C30—C11—C12—C13108.8 (2)C11—C10—C36—O266.7 (2)
C10—C11—C12—C1318.3 (2)C7—C8—N1—C1179.9 (3)
N3—C12—C13—N282.7 (2)C3—C8—N1—C10.1 (3)
C11—C12—C13—N236.4 (2)C2—C1—N1—C80.1 (3)
N3—C12—C13—C1444.5 (3)C14—C13—N2—C10171.01 (19)
C11—C12—C13—C14163.6 (2)C12—C13—N2—C1040.8 (2)
N2—C13—C14—N468.2 (3)C36—C10—N2—C13145.89 (18)
C12—C13—C14—N4169.0 (2)C9—C10—N2—C1394.4 (2)
N2—C13—C14—C15167.4 (2)C11—C10—N2—C1328.5 (2)
C12—C13—C14—C1569.8 (3)C11—C12—N3—O3161.8 (2)
N4—C14—C15—C29116.5 (3)C13—C12—N3—O384.1 (3)
C13—C14—C15—C291.0 (4)C11—C12—N3—O421.0 (3)
N4—C14—C15—C160.30 (19)C13—C12—N3—O493.0 (2)
C13—C14—C15—C16115.8 (2)O5—C16—N4—C178.2 (6)
C29—C15—C16—O557.5 (5)C15—C16—N4—C17173.2 (3)
C14—C15—C16—O5178.9 (4)O5—C16—N4—C14179.0 (4)
C29—C15—C16—N4121.1 (2)C15—C16—N4—C140.4 (2)
C14—C15—C16—N40.3 (2)C18—C17—N4—C16147.7 (3)
C22—C17—C18—C191.0 (5)C22—C17—N4—C1634.2 (5)
N4—C17—C18—C19179.1 (3)C18—C17—N4—C1422.5 (5)
C17—C18—C19—C202.8 (6)C22—C17—N4—C14155.6 (3)
C18—C19—C20—O6178.0 (4)C13—C14—N4—C16118.3 (2)
C18—C19—C20—C214.1 (6)C15—C14—N4—C160.3 (2)
C19—C20—C21—C221.8 (7)C13—C14—N4—C1769.2 (4)
O6—C20—C21—C22179.9 (4)C15—C14—N4—C17172.9 (3)
C20—C21—C22—C171.9 (7)O1—C36—O2—C371.6 (4)
C18—C17—C22—C213.2 (6)C10—C36—O2—C37178.9 (3)
N4—C17—C22—C21178.6 (4)C19—C20—O6—C2317.0 (6)
C29—C24—C25—C262.4 (5)C21—C20—O6—C23161.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O40.982.272.717 (3)107
C4—H4···O4i0.932.573.186 (3)124
C31—H31···O4ii0.932.553.399 (3)152
N1—H1A···O5iii0.862.022.820 (3)155
C18—H18···Cgiv0.932.803.641 (4)151
Symmetry codes: (i) x, y, z1; (ii) x, y+2, z1/2; (iii) x+1/2, y+3/2, z1/2; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC37H33BrN4O6
Mr709.58
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)11.3988 (4), 34.8587 (13), 8.7039 (3)
β (°) 100.982 (2)
V3)3395.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.30 × 0.22 × 0.22
Data collection
DiffractometerBruker Kappa APEX2
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.703, 0.769
No. of measured, independent and
observed [I > 2σ(I)] reflections
37282, 8532, 6397
Rint0.028
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.120, 1.04
No. of reflections8532
No. of parameters433
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.37
Absolute structureFlack (1983), 4142 Friedel pairs
Absolute structure parameter0.008 (6)

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O40.982.272.717 (3)106.5
C4—H4···O4i0.932.573.186 (3)123.9
C31—H31···O4ii0.932.553.399 (3)151.9
N1—H1A···O5iii0.862.022.820 (3)154.9
C18—H18···Cgiv0.932.803.641 (4)151.0
Symmetry codes: (i) x, y, z1; (ii) x, y+2, z1/2; (iii) x+1/2, y+3/2, z1/2; (iv) x, y, z+1.
 

Acknowledgements

SN thanks Professor M. N. Ponnuswamy, Department of Crystallography and Biophysics, University of Madras, India, for his guidance and valuable suggestions. SN thanks SRM management, India, for their support.

References

First citationAmal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–409.  Web of Science PubMed Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKamala, E. T. S., Nirmala, S., Sudha, L., Arumugam, N. & Raghunathan, R. (2008). Acta Cryst. E64, o716–o717.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLukacs, G. & Ohno, M. (1990). Editors. Recent Progress in the Chemical Synthesis of Antibiotics. Berlin: Springer.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundari Bhaskaran, Selvanayagam, S., Velmurugan, D., Ravikumar, K., Arumugam, N. & Raghunathan, R. (2006). Anal. Sci. 22, 57–58.  Web of Science PubMed Google Scholar
First citationSuzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119–6122.  CrossRef CAS Web of Science Google Scholar
First citationÜlkü, D., Ercan, F. & Güner, V. (1997). Acta Cryst. C53, 1945–1947.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, Q.-C., Seiler, P. & Dunitz, J. D. (1987). Acta Cryst. C43, 565–567.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1095-o1096
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds