organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1078-o1079

(−)-N,N′-Bis[(1S,2R,5S)-6,6-di­methyl-bi­cyclo­[3.1.1]heptan-2-ylmeth­yl]pyridine-2,6-dicarboxamide monohydrate

aDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico, and bLaboratorio de Síntesis de Complejos, Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, A.P. 1067, 72001 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@Hotmail.com

(Received 16 April 2008; accepted 8 May 2008; online 14 May 2008)

The title compound, C27H39N3O2·H2O, is a chiral pyridine-2,6-dicarboxamide derivative including cis-myrtanyl groups as amine substituents. The pyridine-2,6-dicarboxamide core approximates C2 point symmetry and a solvent water mol­ecule lies on the pseudo-twofold axis. The water mol­ecule serves both as acceptor and donor for efficient hydrogen bonds involving N—H and C=O functional groups as donor and acceptor groups, respectively. As a result, each water mol­ecule in the crystal structure is tetra­hedrally bonded to three symmetry-related mol­ecules, forming a three-dimensional supra­molecular network. Such an arrangement is a common feature found in the majority of X-ray-characterized sym­metrically substituted pyridine-2,6-dicarboxamide derivatives.

Related literature

For background to the solvent–free synthesis used for the preparation of the title compound, see: Tanaka & Toda (2000[Tanaka, K. & Toda, F. (2000). Chem. Rev. 100, 1025-1074.]); Vázquez et al. (2004[Vázquez, J., Bernès, S., Reyes, Y., Moya, M., Sharma, P., Alvarez, C. & Gutiérrez, R. (2004). Synthesis, pp. 1955-1958.]); Tovar et al. (2007[Tovar, A., Peña, U., Hernández, G., Portillo, R. & Gutiérrez, R. (2007). Synthesis, pp. 22-24.]); Pérez-Flores & Gutiérrez (2008[Pérez-Flores, F. J. & Gutiérrez, R. (2008). Synthesis. Submitted.]). For hydrates of pyridine-2,6-dicarboxamide derivatives, see: Yu et al. (1999[Yu, Q., Baroni, T. E., Borovik, A. S., Liable-Sands, L., Yap, G. P. A. & Rheingold, A. L. (1999). Chem. Commun. pp. 1467-1468.]); Qi et al. (2002[Qi, J. Y., Chen, J., Yang, Q. Y., Zhou, Z. Y. & Chan, A. S. C. (2002). Acta Cryst. E58, o1232-o1233.]); Jain et al. (2004[Jain, S. L., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z., Crayston, J. A. & Woollins, J. D. (2004). J. Chem. Soc. Dalton Trans., pp. 862-871.]); Odriozola et al. (2004[Odriozola, I., Kyritsakas, N. & Lehn, J.-M. (2004). Chem. Commun. pp. 62-63.]).

[Scheme 1]

Experimental

Crystal data
  • C27H39N3O2·H2O

  • Mr = 455.63

  • Monoclinic, P 21

  • a = 6.8476 (11) Å

  • b = 12.1101 (14) Å

  • c = 16.012 (2) Å

  • β = 91.173 (15)°

  • V = 1327.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 (1) K

  • 0.6 × 0.6 × 0.2 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: none

  • 6391 measured reflections

  • 3180 independent reflections

  • 2580 reflections with I > 2σ(I)

  • Rint = 0.035

  • 3 standard reflections every 97 reflections intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.107

  • S = 1.04

  • 3180 reflections

  • 319 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3 0.82 (2) 2.16 (2) 2.941 (3) 160 (2)
N3—H3⋯O3 0.86 (3) 2.19 (3) 3.017 (3) 159 (2)
O3—H31⋯O2i 0.87 (5) 1.90 (5) 2.756 (3) 167 (4)
O3—H32⋯O1ii 0.90 (4) 1.86 (5) 2.754 (3) 171 (3)
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+2]; (ii) x+1, y, z.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and POV-RAY (Cason, 2004[Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Nowadays, reactions conducted in the absence of solvents under mild reaction conditions are becoming an important method in laboratories worldwide as an environment–friendly technique for the efficient syntheses of organic molecules. The main advantages of solvent-free organic synthesis are shorter reaction times, minimum waste and generally higher yields, operational simplicity as well as reduction of thermal degradative byproducts along with cleaner work–up (Tanaka & Toda, 2000). As part of an ongoing program aiming to develop simpler and eco–friendly methods for organic transformations under solvent–free conditions (Tovar et al., 2007; Vázquez et al., 2004), we engaged the preparation of chiral pincer ligands (Pérez-Flores & Gutiérrez, 2008). The title compound resulted from this research, by introducing chiral cis–myrtanyl groups as amine substituents.

The X–ray characterized monohydrate has the expected molecular geometry (Fig. 1). The pyridine–2,6–dicarboxamide core approximates a C2 point symmetry, with the pseudo 2–fold axis passing through N1 and C24. The guest water molecule O3 is placed on the pseudo 2–fold axis and is involved in two N—H···O hydrogen bonds within the asymmetric unit (Fig. 1 and Table 1, lines 1 and 2). The same water molecule is a donor group for two CO···H intermolecular hydrogen bonds of relatively strong strength (Table 1, lines 3 and 4). As a consequence, a three–dimensional supramolecular structure is formed in the crystal structure, with water molecules being bonded in a tetrahedral arrangement (Fig. 2) to three symmetry–related molecules. Such a feature seems to be common for symmetrically substituted pyridine–2,6–dicarboxamide derivatives. These compounds are generally crystallized as hydrates, and, at least for X–ray characterized compounds, water molecules form hydrogen bonds similar to those observed in the title molecule (e.g. Yu et al., 1999; Qi et al., 2002; Jain et al., 2004; Odriozola et al., 2004).

Related literature top

For background to the solvent–free synthesis used for the preparation of the title compound, see: Tanaka & Toda (2000); Vázquez et al. (2004); Tovar et al. (2007); Pérez-Flores & Gutiérrez (2008). For hydrates of pyridine-2,6-dicarboxamide derivatives, see: Yu et al. (1999); Qi et al. (2002); Jain et al. (2004); Odriozola et al. (2004).

Experimental top

Under solvent–free conditions, (-)-cis–myrtanylamine (0.38 g, 2.5 mmol) and 2,6–pyridinedicarbonyl dichloride (0.30 g, 1.5 mmol) were mixed at room temperature, giving a white solid. The crude was recrystallized from EtOH affording the corresponding dicarboxamide (98% yield).

Refinement top

C–bonded H atoms were placed in idealized positions and refined with a riding model approximation. Constrained C—H distances: 0.93 (aromatic CH), 0.96 (methyl CH3), 0.97 (methylene CH2) or 0.98 Å (methine CH). Isotropic displacement parameters: Uiso= 1.5Ueq(carrier C atom) for methyl groups and Uiso = 1.2Ueq(carrier C atom) otherwise. Methyl groups were considered as rigid rotating groups. Other H atoms (amine groups and water molecule) were found in a difference map and refined freely. Measured Friedel pairs (287) were merged.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and POV-RAY (Cason, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit for the title compound, with the numbering scheme. Displacement ellipsoids for non–H atoms are drawn at the 40% probability level. H atoms are presented as small spheres of arbitrary radius. Dashed bonds are hydrogen bonds involving N—H groups as donor groups.
[Figure 2] Fig. 2. A part of the packing structure for the title compound, showing the four H bonds formed by a water molecule, in a tetrahedral geometry (dashed bonds). Symmetry codes: (i) 1+x, y, z; (ii) 2-x, 1/2+y, 2-z. H atoms not involved in hydrogen bonds have been omitted for clarity.
(-)-N,N'-Bis[(1S,2R,5S)-6,6-dimethyl- bicyclo[3.1.1]heptan-2-ylmethyl]pyridine-2,6-dicarboxamide monohydrate top
Crystal data top
C27H39N3O2·H2OF(000) = 496
Mr = 455.63Dx = 1.140 Mg m3
Monoclinic, P21Melting point = 398–401 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 6.8476 (11) ÅCell parameters from 60 reflections
b = 12.1101 (14) Åθ = 4.6–12.5°
c = 16.012 (2) ŵ = 0.07 mm1
β = 91.173 (15)°T = 298 K
V = 1327.5 (3) Å3Plate, colourless
Z = 20.6 × 0.6 × 0.2 mm
Data collection top
Bruker P4
diffractometer
Rint = 0.035
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 2.1°
Graphite monochromatorh = 86
ω scansk = 115
6391 measured reflectionsl = 2020
3180 independent reflections3 standard reflections every 97 reflections
2580 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: FullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.0694P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3180 reflectionsΔρmax = 0.14 e Å3
319 parametersΔρmin = 0.13 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.037 (7)
Primary atom site location: structure-invariant direct methods
Crystal data top
C27H39N3O2·H2OV = 1327.5 (3) Å3
Mr = 455.63Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.8476 (11) ŵ = 0.07 mm1
b = 12.1101 (14) ÅT = 298 K
c = 16.012 (2) Å0.6 × 0.6 × 0.2 mm
β = 91.173 (15)°
Data collection top
Bruker P4
diffractometer
Rint = 0.035
6391 measured reflections3 standard reflections every 97 reflections
3180 independent reflections intensity decay: 2%
2580 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.14 e Å3
3180 reflectionsΔρmin = 0.13 e Å3
319 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6298 (3)0.24506 (16)0.95082 (10)0.0520 (4)
N20.5268 (3)0.37490 (17)0.81930 (11)0.0558 (5)
H20.636 (4)0.374 (2)0.8414 (14)0.049 (6)*
N30.9690 (3)0.29137 (18)1.03447 (12)0.0576 (5)
H30.926 (3)0.330 (2)0.9926 (17)0.058 (7)*
O10.2258 (2)0.29762 (18)0.81492 (11)0.0731 (5)
O20.9360 (4)0.13912 (17)1.11410 (13)0.0893 (6)
C10.4749 (3)0.30035 (19)0.63787 (13)0.0529 (5)
H1A0.46420.24240.68030.063*
C20.5749 (3)0.4058 (2)0.66831 (13)0.0556 (5)
H2A0.71220.38690.67930.067*
C30.5733 (5)0.4954 (2)0.59935 (16)0.0724 (7)
H3A0.70400.52570.59550.087*
H3B0.48770.55490.61620.087*
C40.5059 (6)0.4548 (3)0.51078 (18)0.0866 (9)
H4A0.40460.50370.48930.104*
H4B0.61540.45890.47340.104*
C50.4292 (4)0.3386 (2)0.51132 (15)0.0737 (7)
H5A0.38430.31080.45670.088*
C60.2858 (3)0.3192 (2)0.58333 (14)0.0598 (5)
C70.5754 (4)0.2641 (2)0.55738 (16)0.0737 (7)
H7A0.71030.28780.55360.088*
H7B0.56130.18620.54450.088*
C80.1734 (5)0.2103 (3)0.5733 (2)0.0834 (8)
H8A0.08570.21520.52590.125*
H8B0.10030.19640.62270.125*
H8C0.26410.15100.56500.125*
C90.1402 (4)0.4092 (3)0.6038 (2)0.0831 (8)
H9A0.03860.41090.56170.125*
H9B0.20570.47930.60570.125*
H9C0.08430.39430.65720.125*
C100.4962 (4)0.45157 (19)0.74996 (14)0.0597 (5)
H10A0.56100.52090.76300.072*
H10B0.35760.46630.74300.072*
C110.9333 (3)0.3930 (2)1.20404 (14)0.0620 (6)
H11A0.81470.36101.17880.074*
C121.0879 (3)0.4242 (2)1.14197 (14)0.0604 (6)
H12A1.03400.48551.10880.072*
C131.2723 (5)0.4692 (3)1.18754 (18)0.0875 (9)
H13A1.30800.53851.16160.105*
H13B1.37840.41771.17880.105*
C141.2550 (5)0.4890 (3)1.28285 (19)0.0920 (10)
H14A1.36060.45071.31190.110*
H14B1.26920.56731.29420.110*
C151.0623 (5)0.4496 (3)1.31641 (16)0.0800 (8)
H15A1.04550.46111.37640.096*
C161.0091 (4)0.3322 (3)1.28420 (15)0.0737 (7)
C170.8967 (5)0.4939 (3)1.26053 (18)0.0884 (9)
H17A0.92450.56451.23460.106*
H17B0.76990.49421.28650.106*
C180.8353 (7)0.2817 (5)1.3307 (2)0.1257 (16)
H18A0.87570.26331.38680.189*
H18B0.79170.21621.30220.189*
H18C0.73050.33431.33220.189*
C191.1675 (6)0.2462 (3)1.2809 (2)0.0988 (11)
H19A1.27880.27621.25330.148*
H19B1.12010.18291.25050.148*
H19C1.20470.22451.33660.148*
C201.1400 (3)0.3334 (2)1.08030 (14)0.0637 (6)
H20A1.23280.36221.04090.076*
H20B1.20240.27311.11040.076*
C210.3935 (3)0.3035 (2)0.84428 (13)0.0548 (5)
C220.4577 (3)0.22560 (19)0.91276 (13)0.0540 (5)
C230.3379 (4)0.1377 (2)0.93392 (16)0.0700 (7)
H23A0.21800.12700.90680.084*
C240.4017 (5)0.0662 (3)0.99674 (19)0.0831 (8)
H24A0.32530.00631.01200.100*
C250.5781 (5)0.0851 (2)1.03575 (16)0.0756 (7)
H25A0.62380.03811.07770.091*
C260.6875 (4)0.17521 (19)1.01182 (13)0.0580 (5)
C270.8771 (4)0.2008 (2)1.05701 (14)0.0625 (6)
O30.9282 (3)0.42517 (19)0.87612 (13)0.0712 (5)
H310.970 (6)0.493 (4)0.871 (2)0.103 (12)*
H321.020 (6)0.384 (4)0.851 (2)0.111 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0609 (10)0.0502 (9)0.0449 (8)0.0055 (8)0.0042 (7)0.0049 (8)
N20.0580 (10)0.0596 (11)0.0496 (9)0.0052 (9)0.0080 (8)0.0031 (8)
N30.0677 (11)0.0598 (11)0.0448 (9)0.0007 (10)0.0059 (8)0.0011 (9)
O10.0527 (8)0.0858 (12)0.0805 (11)0.0020 (9)0.0054 (8)0.0119 (10)
O20.1293 (17)0.0611 (11)0.0760 (12)0.0033 (12)0.0296 (11)0.0112 (10)
C10.0608 (11)0.0457 (10)0.0521 (10)0.0023 (10)0.0015 (9)0.0007 (9)
C20.0563 (11)0.0551 (12)0.0553 (11)0.0027 (10)0.0024 (9)0.0011 (10)
C30.0943 (18)0.0577 (14)0.0651 (14)0.0191 (14)0.0012 (13)0.0020 (12)
C40.127 (2)0.0740 (17)0.0585 (14)0.0293 (18)0.0019 (15)0.0070 (13)
C50.1024 (19)0.0689 (16)0.0497 (12)0.0215 (15)0.0041 (12)0.0041 (12)
C60.0670 (13)0.0535 (12)0.0584 (12)0.0066 (11)0.0102 (9)0.0019 (10)
C70.0846 (16)0.0659 (15)0.0711 (15)0.0043 (13)0.0138 (13)0.0193 (13)
C80.0909 (18)0.0741 (18)0.0846 (18)0.0257 (16)0.0117 (15)0.0012 (15)
C90.0700 (15)0.0827 (18)0.096 (2)0.0101 (15)0.0225 (14)0.0004 (16)
C100.0726 (13)0.0508 (12)0.0553 (11)0.0009 (11)0.0083 (10)0.0044 (10)
C110.0634 (13)0.0698 (15)0.0523 (11)0.0122 (11)0.0061 (9)0.0083 (11)
C120.0732 (14)0.0547 (13)0.0527 (11)0.0017 (11)0.0121 (10)0.0028 (10)
C130.0916 (19)0.100 (2)0.0709 (16)0.0322 (18)0.0087 (14)0.0056 (16)
C140.118 (2)0.088 (2)0.0689 (16)0.0129 (19)0.0287 (16)0.0106 (15)
C150.105 (2)0.0843 (19)0.0502 (12)0.0075 (17)0.0120 (12)0.0118 (13)
C160.0944 (17)0.0774 (18)0.0491 (12)0.0003 (15)0.0076 (11)0.0035 (12)
C170.102 (2)0.092 (2)0.0702 (16)0.0267 (18)0.0074 (14)0.0248 (16)
C180.154 (3)0.151 (4)0.0734 (19)0.040 (3)0.026 (2)0.006 (2)
C190.145 (3)0.0752 (19)0.0743 (17)0.023 (2)0.0426 (19)0.0044 (16)
C200.0604 (12)0.0768 (17)0.0539 (11)0.0021 (12)0.0013 (9)0.0068 (12)
C210.0500 (11)0.0603 (12)0.0542 (11)0.0010 (10)0.0036 (8)0.0155 (10)
C220.0580 (12)0.0564 (12)0.0481 (10)0.0066 (10)0.0098 (9)0.0131 (9)
C230.0706 (15)0.0743 (16)0.0654 (14)0.0205 (13)0.0127 (11)0.0153 (13)
C240.101 (2)0.0730 (17)0.0755 (16)0.0347 (16)0.0194 (15)0.0035 (14)
C250.108 (2)0.0615 (15)0.0573 (13)0.0187 (15)0.0054 (13)0.0036 (12)
C260.0786 (14)0.0501 (11)0.0456 (10)0.0036 (11)0.0059 (10)0.0029 (9)
C270.0860 (16)0.0513 (12)0.0501 (11)0.0064 (12)0.0031 (11)0.0034 (10)
O30.0613 (10)0.0674 (12)0.0853 (12)0.0080 (10)0.0110 (8)0.0047 (10)
Geometric parameters (Å, º) top
N1—C221.337 (3)C11—C171.544 (4)
N1—C261.345 (3)C11—C161.559 (3)
N2—C211.325 (3)C11—H11A0.9800
N2—C101.459 (3)C12—C201.525 (4)
N2—H20.82 (2)C12—C131.545 (4)
N3—C271.318 (3)C12—H12A0.9800
N3—C201.461 (3)C13—C141.552 (4)
N3—H30.86 (3)C13—H13A0.9700
O1—C211.234 (3)C13—H13B0.9700
O2—C271.242 (3)C14—C151.512 (5)
C1—C21.524 (3)C14—H14A0.9700
C1—C71.537 (3)C14—H14B0.9700
C1—C61.564 (3)C15—C171.527 (4)
C1—H1A0.9800C15—C161.553 (4)
C2—C101.528 (3)C15—H15A0.9800
C2—C31.548 (3)C16—C191.506 (5)
C2—H2A0.9800C16—C181.543 (5)
C3—C41.562 (4)C17—H17A0.9700
C3—H3A0.9700C17—H17B0.9700
C3—H3B0.9700C18—H18A0.9600
C4—C51.502 (4)C18—H18B0.9600
C4—H4A0.9700C18—H18C0.9600
C4—H4B0.9700C19—H19A0.9600
C5—C71.526 (4)C19—H19B0.9600
C5—C61.548 (4)C19—H19C0.9600
C5—H5A0.9800C20—H20A0.9700
C6—C91.518 (4)C20—H20B0.9700
C6—C81.534 (4)C21—C221.505 (3)
C7—H7A0.9700C22—C231.390 (4)
C7—H7B0.9700C23—C241.391 (4)
C8—H8A0.9600C23—H23A0.9300
C8—H8B0.9600C24—C251.368 (4)
C8—H8C0.9600C24—H24A0.9300
C9—H9A0.9600C25—C261.382 (4)
C9—H9B0.9600C25—H25A0.9300
C9—H9C0.9600C26—C271.506 (3)
C10—H10A0.9700O3—H310.87 (5)
C10—H10B0.9700O3—H320.90 (4)
C11—C121.514 (4)
C22—N1—C26117.60 (19)C20—C12—C13111.1 (2)
C21—N2—C10123.8 (2)C11—C12—H12A106.5
C21—N2—H2119.2 (17)C20—C12—H12A106.5
C10—N2—H2116.9 (17)C13—C12—H12A106.5
C27—N3—C20122.3 (2)C12—C13—C14116.2 (3)
C27—N3—H3120.2 (17)C12—C13—H13A108.2
C20—N3—H3117.4 (17)C14—C13—H13A108.2
C2—C1—C7107.55 (19)C12—C13—H13B108.2
C2—C1—C6114.69 (18)C14—C13—H13B108.2
C7—C1—C687.32 (18)H13A—C13—H13B107.4
C2—C1—H1A114.7C15—C14—C13112.7 (2)
C7—C1—H1A114.7C15—C14—H14A109.1
C6—C1—H1A114.7C13—C14—H14A109.1
C1—C2—C10114.43 (19)C15—C14—H14B109.1
C1—C2—C3111.28 (17)C13—C14—H14B109.1
C10—C2—C3111.0 (2)H14A—C14—H14B107.8
C1—C2—H2A106.5C14—C15—C17108.9 (3)
C10—C2—H2A106.5C14—C15—C16111.8 (3)
C3—C2—H2A106.5C17—C15—C1687.8 (2)
C2—C3—C4115.1 (2)C14—C15—H15A115.1
C2—C3—H3A108.5C17—C15—H15A115.1
C4—C3—H3A108.5C16—C15—H15A115.1
C2—C3—H3B108.5C19—C16—C18107.8 (3)
C4—C3—H3B108.5C19—C16—C15118.8 (3)
H3A—C3—H3B107.5C18—C16—C15112.3 (3)
C5—C4—C3112.8 (2)C19—C16—C11121.7 (2)
C5—C4—H4A109.0C18—C16—C11109.7 (3)
C3—C4—H4A109.0C15—C16—C1185.0 (2)
C5—C4—H4B109.0C15—C17—C1186.4 (2)
C3—C4—H4B109.0C15—C17—H17A114.3
H4A—C4—H4B107.8C11—C17—H17A114.3
C4—C5—C7109.3 (2)C15—C17—H17B114.3
C4—C5—C6111.9 (2)C11—C17—H17B114.2
C7—C5—C688.31 (19)H17A—C17—H17B111.4
C4—C5—H5A114.8C16—C18—H18A109.5
C7—C5—H5A114.8C16—C18—H18B109.5
C6—C5—H5A114.8H18A—C18—H18B109.5
C9—C6—C8108.1 (2)C16—C18—H18C109.5
C9—C6—C5118.8 (2)H18A—C18—H18C109.5
C8—C6—C5112.2 (2)H18B—C18—H18C109.5
C9—C6—C1121.6 (2)C16—C19—H19A109.5
C8—C6—C1109.9 (2)C16—C19—H19B109.5
C5—C6—C184.67 (18)H19A—C19—H19B109.5
C5—C7—C186.32 (19)C16—C19—H19C109.5
C5—C7—H7A114.3H19A—C19—H19C109.5
C1—C7—H7A114.3H19B—C19—H19C109.5
C5—C7—H7B114.3N3—C20—C12112.38 (19)
C1—C7—H7B114.3N3—C20—H20A109.1
H7A—C7—H7B111.4C12—C20—H20A109.1
C6—C8—H8A109.5N3—C20—H20B109.1
C6—C8—H8B109.5C12—C20—H20B109.1
H8A—C8—H8B109.5H20A—C20—H20B107.9
C6—C8—H8C109.5O1—C21—N2124.4 (2)
H8A—C8—H8C109.5O1—C21—C22119.8 (2)
H8B—C8—H8C109.5N2—C21—C22115.86 (18)
C6—C9—H9A109.5N1—C22—C23122.9 (2)
C6—C9—H9B109.5N1—C22—C21117.59 (19)
H9A—C9—H9B109.5C23—C22—C21119.5 (2)
C6—C9—H9C109.5C22—C23—C24118.4 (2)
H9A—C9—H9C109.5C22—C23—H23A120.8
H9B—C9—H9C109.5C24—C23—H23A120.8
N2—C10—C2111.88 (19)C25—C24—C23119.2 (3)
N2—C10—H10A109.2C25—C24—H24A120.4
C2—C10—H10A109.2C23—C24—H24A120.4
N2—C10—H10B109.2C24—C25—C26118.9 (3)
C2—C10—H10B109.2C24—C25—H25A120.5
H10A—C10—H10B107.9C26—C25—H25A120.5
C12—C11—C17108.1 (2)N1—C26—C25123.0 (2)
C12—C11—C16115.7 (2)N1—C26—C27117.2 (2)
C17—C11—C1686.95 (19)C25—C26—C27119.7 (2)
C12—C11—H11A114.3O2—C27—N3123.5 (2)
C17—C11—H11A114.3O2—C27—C26119.6 (2)
C16—C11—H11A114.3N3—C27—C26116.9 (2)
C11—C12—C20114.9 (2)H31—O3—H32103 (4)
C11—C12—C13110.7 (2)
C7—C1—C2—C10178.2 (2)C14—C15—C16—C18168.8 (3)
C6—C1—C2—C1086.5 (2)C17—C15—C16—C1881.7 (3)
C7—C1—C2—C354.9 (3)C14—C15—C16—C1181.9 (2)
C6—C1—C2—C340.3 (3)C17—C15—C16—C1127.6 (2)
C1—C2—C3—C410.1 (4)C12—C11—C16—C1939.6 (4)
C10—C2—C3—C4138.8 (3)C17—C11—C16—C19148.2 (3)
C2—C3—C4—C57.6 (4)C12—C11—C16—C18166.7 (3)
C3—C4—C5—C750.0 (4)C17—C11—C16—C1884.7 (3)
C3—C4—C5—C646.1 (4)C12—C11—C16—C1581.3 (3)
C4—C5—C6—C940.2 (3)C17—C11—C16—C1527.3 (2)
C7—C5—C6—C9150.4 (2)C14—C15—C17—C1184.4 (3)
C4—C5—C6—C8167.5 (3)C16—C15—C17—C1127.8 (2)
C7—C5—C6—C882.3 (2)C12—C11—C17—C1588.3 (2)
C4—C5—C6—C183.1 (2)C16—C11—C17—C1527.7 (2)
C7—C5—C6—C127.07 (17)C27—N3—C20—C1297.3 (3)
C2—C1—C6—C939.5 (3)C11—C12—C20—N355.0 (3)
C7—C1—C6—C9147.6 (3)C13—C12—C20—N3178.4 (2)
C2—C1—C6—C8167.1 (2)C10—N2—C21—O14.0 (3)
C7—C1—C6—C884.8 (2)C10—N2—C21—C22175.63 (19)
C2—C1—C6—C581.2 (2)C26—N1—C22—C230.4 (3)
C7—C1—C6—C526.87 (18)C26—N1—C22—C21179.78 (18)
C4—C5—C7—C185.2 (3)O1—C21—C22—N1170.6 (2)
C6—C5—C7—C127.51 (18)N2—C21—C22—N19.8 (3)
C2—C1—C7—C587.9 (2)O1—C21—C22—C239.3 (3)
C6—C1—C7—C527.22 (18)N2—C21—C22—C23170.4 (2)
C21—N2—C10—C295.3 (3)N1—C22—C23—C240.9 (4)
C1—C2—C10—N262.7 (2)C21—C22—C23—C24179.2 (2)
C3—C2—C10—N2170.3 (2)C22—C23—C24—C250.5 (4)
C17—C11—C12—C20179.3 (2)C23—C24—C25—C260.3 (4)
C16—C11—C12—C2085.2 (3)C22—N1—C26—C250.6 (3)
C17—C11—C12—C1353.8 (3)C22—N1—C26—C27177.24 (19)
C16—C11—C12—C1341.6 (3)C24—C25—C26—N10.9 (4)
C11—C12—C13—C148.2 (4)C24—C25—C26—C27176.8 (3)
C20—C12—C13—C14137.1 (3)C20—N3—C27—O26.1 (4)
C12—C13—C14—C155.6 (5)C20—N3—C27—C26171.8 (2)
C13—C14—C15—C1748.7 (4)N1—C26—C27—O2179.6 (2)
C13—C14—C15—C1646.6 (4)C25—C26—C27—O21.8 (3)
C14—C15—C16—C1941.7 (3)N1—C26—C27—N31.6 (3)
C17—C15—C16—C19151.2 (3)C25—C26—C27—N3176.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.82 (2)2.16 (2)2.941 (3)160 (2)
N3—H3···O30.86 (3)2.19 (3)3.017 (3)159 (2)
O3—H31···O2i0.87 (5)1.90 (5)2.756 (3)167 (4)
O3—H32···O1ii0.90 (4)1.86 (5)2.754 (3)171 (3)
Symmetry codes: (i) x+2, y+1/2, z+2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC27H39N3O2·H2O
Mr455.63
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)6.8476 (11), 12.1101 (14), 16.012 (2)
β (°) 91.173 (15)
V3)1327.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.6 × 0.6 × 0.2
Data collection
DiffractometerBruker P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6391, 3180, 2580
Rint0.035
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.04
No. of reflections3180
No. of parameters319
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.13

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and POV-RAY (Cason, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.82 (2)2.16 (2)2.941 (3)160 (2)
N3—H3···O30.86 (3)2.19 (3)3.017 (3)159 (2)
O3—H31···O2i0.87 (5)1.90 (5)2.756 (3)167 (4)
O3—H32···O1ii0.90 (4)1.86 (5)2.754 (3)171 (3)
Symmetry codes: (i) x+2, y+1/2, z+2; (ii) x+1, y, z.
 

Acknowledgements

Partial support from VIEP–UAP (14/G/NAT/05) is acknowledged.

References

First citationCason, C. J. (2004). POV-RAY for Windows. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJain, S. L., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z., Crayston, J. A. & Woollins, J. D. (2004). J. Chem. Soc. Dalton Trans., pp. 862–871.  CrossRef Google Scholar
First citationOdriozola, I., Kyritsakas, N. & Lehn, J.-M. (2004). Chem. Commun. pp. 62–63.  Web of Science CSD CrossRef Google Scholar
First citationPérez-Flores, F. J. & Gutiérrez, R. (2008). Synthesis. Submitted.  Google Scholar
First citationQi, J. Y., Chen, J., Yang, Q. Y., Zhou, Z. Y. & Chan, A. S. C. (2002). Acta Cryst. E58, o1232–o1233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTanaka, K. & Toda, F. (2000). Chem. Rev. 100, 1025–1074.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTovar, A., Peña, U., Hernández, G., Portillo, R. & Gutiérrez, R. (2007). Synthesis, pp. 22–24.  Google Scholar
First citationVázquez, J., Bernès, S., Reyes, Y., Moya, M., Sharma, P., Alvarez, C. & Gutiérrez, R. (2004). Synthesis, pp. 1955–1958.  Google Scholar
First citationYu, Q., Baroni, T. E., Borovik, A. S., Liable-Sands, L., Yap, G. P. A. & Rheingold, A. L. (1999). Chem. Commun. pp. 1467–1468.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1078-o1079
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds