organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[4-(Di­ethyl­amino)benzyl­­idene­amino]-4H-1,2,4-triazole

aHefei National Laboratory for Physical Sciences at Microscale, and Department of Materials Science & Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China
*Correspondence e-mail: cqw@ustc.edu.cn

(Received 6 March 2008; accepted 3 April 2008; online 3 May 2008)

The title compound, C13H17N5, is a Schiff base synthesized by the reaction of 4-amino-4H-1,2,4-triazole and 4-(diethyl­amino)benzaldehyde. The triazole ring forms a dihedral angle of 5.77 (16)° with the benzene ring. The crystal structure is stabilized by an inter­molecular C—H⋯N hydrogen bond.

Related literature

For related literature, see: Zhu et al. (2000[Zhu, D.-R., Xu, Y., Liu, Y.-J., Song, Y., Zhang, Y. & You, X.-Z. (2000). Acta Cryst. C56, 242-243.]), Atalay et al. (2003[Atalay, Ş., Yavuz, M., Bekircan, O., Ağar, A. & Şaşmaz, S. (2003). Acta Cryst. E59, o1528-o1529.]); Petek et al. (2004[Petek, H., Şenel, İ., Bekircan, O., Ağar, E. & Şaşmaz, S. (2004). Acta Cryst. E60, o831-o832.]); Brasselet et al. (1999[Brasselet, S., Cherioux, F., Audebert, P. & Zyss, J. (1999). Chem. Mater. 11, 1915-1920.]); Cornelissen et al. (1992[Cornelissen, J. P., van Diemen, J. H., Groeneveld, L. R., Haasnoot, J. G., Spek, A. L. & Reedijk, J. (1992). Inorg. Chem. 31, 198-202.]); Demirbs & Ugurluoglu Demirbas (2002[Demirbs, N. & Ugurluoglu Demirbas, A. (2002). Bioorg. Med. Chem. 10, 3717-3723.]); Fujigaya et al. (2003[Fujigaya, T., Jiang, D. L. & Aida, T. (2003). J. Am. Chem. Soc. 125, 14690-14691.]); Garcia et al. (1997[Garcia, Y., van Koningsbruggen, P. J., Codjovi, E., Lapouyade, R., Kahn, O. & Rabardel, L. (1997). J. Mater. Chem. 7, 857-858.]); Kahn & Martinez (1998[Kahn, O. & Martinez, C. J. (1998). Science, 279, 44-48.]); Moliner et al. (2001[Moliner, N., Gaspar, A. B., Munoz, M. C., Niel, V., Cano, J. & Real, J. A. (2001). Inorg. Chem. 40, 3986-3991.]); Tozkoparan et al. (2000[Tozkoparan, B., Gökhan, N., Aktay, G., Yesilada, E. & Ertan, M. (2000). Eur. J. Med. Chem. 35, 743-750.]); Turan-Zitouni et al. (1999[Turan-Zitouni, G., Kaplancikli, Z. A., Erol, K. & Killic, F. S. (1999). Farmaco, 54, 218-223.]).

[Scheme 1]

Experimental

Crystal data
  • C13H17N5

  • Mr = 243.32

  • Orthorhombic, P 21 21 21

  • a = 7.740 (3) Å

  • b = 9.238 (4) Å

  • c = 18.497 (7) Å

  • V = 1322.5 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.37 × 0.35 × 0.11 mm

Data collection
  • Bruker APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.972, Tmax = 0.992

  • 6650 measured reflections

  • 1359 independent reflections

  • 895 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.131

  • S = 1.09

  • 1359 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N1i 0.93 2.43 3.296 (7) 155
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recent interest in substituted 1,2,4-triazoles has arisen in part from their transition metal complexes with intriguing structures and specific magnetic properties (Garcia et al., 1997; Kahn & Martinez, 1998; Moliner et al., 2001; Fujigaya et al., 2003). In addition, many compounds containing a 1,2,4-triazole unit display a broad range of biological and pharmacological activities, finding application as anti-inflammatory (Tozkoparan et al., 2000), antitumour (Demirbs & Ugurluoglu Demirbas, 2002), analgesic (Turan-Zitouni et al., 1999), antibacterial and antiviral agents (Cornelissen et al., 1992). In a continuation of our interest in the chemical and pharmacological properties of triazole derivatives, we have synthesized the title compound and report here its crystal structure.

The molecular structure and the atom-numbering scheme of the title compound are shown in Fig. 1. In the molecule, all bond lengths and angles are within normal ranges and comparable with the reported values (Atalay et al., 2003; Zhu et al., 2000). In the triazole ring, the N2?C1 and N1?C2 bonds display double-bond character, with bond distances of 1.288 (6) and 1.313 (6) Å, respectively. The 1,2,4-triazole ring is strictly planar (maximum displacement 0.006 (5) Å for C2) and forms a dihedral angle of 5.77 (16) °. The crystal packing is stabilized by an intermolecular C—H···N hydrogen bonding interaction (Table 1).

Related literature top

For related literature, see: Zhu et al. (2000), Atalay et al. (2003); Petek et al. (2004); Brasselet et al. (1999); Cornelissen et al. (1992); Demirbs & Ugurluoglu Demirbas (2002); Fujigaya et al. (2003); Garcia et al. (1997); Kahn & Martinez (1998); Moliner et al. (2001); Tozkoparan et al. (2000); Turan-Zitouni, Kaplancikli, Erol & Killic (1999).

Experimental top

A mixture of 4-amino-l,2,4-triazole (0.88 g, 10 mmol) and 4-(diethylamino)benzaldehyde (1.77 g, 10 mmol), which was prepared by standard procedures (Brasselet et al., 1999), was dissolved in ethanol (180 ml) and stirred for 1 h. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the ethanol solution.

Refinement top

The H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
4-[4-(Diethylamino)benzylideneamino]-4H-1,2,4-triazole top
Crystal data top
C13H17N5F(000) = 520
Mr = 243.32Dx = 1.222 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 870 reflections
a = 7.740 (3) Åθ = 2.5–20.5°
b = 9.238 (4) ŵ = 0.08 mm1
c = 18.497 (7) ÅT = 293 K
V = 1322.5 (9) Å3Block, yellow
Z = 40.37 × 0.35 × 0.11 mm
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
1359 independent reflections
Radiation source: fine-focus sealed tube895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.972, Tmax = 0.992k = 1010
6650 measured reflectionsl = 2113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0187P)2 + 0.429P]
where P = (Fo2 + 2Fc2)/3
1359 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C13H17N5V = 1322.5 (9) Å3
Mr = 243.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.740 (3) ŵ = 0.08 mm1
b = 9.238 (4) ÅT = 293 K
c = 18.497 (7) Å0.37 × 0.35 × 0.11 mm
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
1359 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
895 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.992Rint = 0.075
6650 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.09Δρmax = 0.19 e Å3
1359 reflectionsΔρmin = 0.17 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0028 (7)0.8829 (5)0.2061 (3)0.0777 (15)
H11.06150.80290.22410.093*
C20.8502 (7)1.0221 (5)0.1387 (3)0.0888 (17)
H20.78241.05690.10100.107*
C30.9580 (6)0.6644 (4)0.0936 (2)0.0632 (12)
H31.01400.64370.13680.076*
C40.9482 (6)0.5533 (4)0.0388 (2)0.0562 (11)
C50.8680 (7)0.5730 (4)0.0283 (2)0.0667 (13)
H50.81500.66110.03840.080*
C60.8654 (6)0.4652 (4)0.0798 (2)0.0629 (13)
H60.80850.48150.12340.076*
C70.9468 (6)0.3314 (4)0.0680 (2)0.0582 (11)
C81.0235 (6)0.3114 (4)0.0006 (2)0.0635 (12)
H81.07460.22310.01170.076*
C91.0236 (6)0.4195 (4)0.0505 (2)0.0642 (12)
H91.07700.40260.09480.077*
C101.0615 (7)0.0993 (4)0.1119 (2)0.0684 (13)
H10A1.10770.07460.15910.082*
H10B1.15830.12400.08100.082*
C110.9734 (7)0.0308 (4)0.0814 (3)0.0824 (15)
H11A0.87490.05460.11060.124*
H11B1.05230.11100.08090.124*
H11C0.93620.01060.03290.124*
C120.8512 (7)0.2348 (5)0.1858 (2)0.0754 (14)
H12A0.81450.13830.19970.091*
H12B0.74830.29170.17650.091*
C130.9488 (9)0.3017 (6)0.2477 (3)0.112 (2)
H13A1.04640.24210.25960.168*
H13B0.87420.30940.28900.168*
H13C0.98820.39640.23410.168*
N10.8934 (7)1.0979 (5)0.1959 (3)0.1007 (15)
N20.9902 (7)1.0065 (5)0.2379 (2)0.0907 (14)
N30.9164 (5)0.8878 (4)0.1417 (2)0.0651 (10)
N40.8933 (5)0.7886 (4)0.08490 (19)0.0679 (11)
N50.9521 (5)0.2252 (3)0.11934 (19)0.0654 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.109 (5)0.067 (3)0.057 (3)0.009 (3)0.003 (3)0.004 (2)
C20.103 (5)0.079 (3)0.084 (4)0.022 (3)0.012 (3)0.010 (3)
C30.077 (3)0.069 (3)0.044 (3)0.002 (3)0.002 (2)0.001 (2)
C40.065 (3)0.057 (2)0.047 (2)0.003 (2)0.001 (2)0.0034 (19)
C50.085 (4)0.056 (2)0.059 (3)0.005 (2)0.006 (2)0.008 (2)
C60.081 (4)0.062 (3)0.045 (3)0.005 (2)0.012 (2)0.004 (2)
C70.064 (3)0.061 (2)0.049 (3)0.006 (2)0.002 (2)0.005 (2)
C80.075 (3)0.060 (2)0.056 (3)0.007 (2)0.006 (2)0.004 (2)
C90.068 (3)0.069 (3)0.055 (3)0.001 (2)0.010 (2)0.003 (2)
C100.079 (3)0.069 (3)0.057 (3)0.010 (3)0.001 (2)0.010 (2)
C110.097 (4)0.073 (3)0.077 (4)0.008 (3)0.006 (3)0.003 (3)
C120.092 (4)0.077 (3)0.058 (3)0.008 (3)0.011 (3)0.001 (2)
C130.143 (6)0.140 (4)0.053 (3)0.027 (5)0.005 (4)0.024 (3)
N10.117 (4)0.082 (3)0.104 (4)0.009 (3)0.003 (3)0.025 (3)
N20.125 (4)0.078 (3)0.070 (3)0.016 (3)0.002 (3)0.012 (2)
N30.081 (3)0.061 (2)0.054 (2)0.002 (2)0.000 (2)0.0043 (18)
N40.087 (3)0.061 (2)0.056 (2)0.002 (2)0.002 (2)0.0061 (19)
N50.081 (3)0.067 (2)0.049 (2)0.005 (2)0.009 (2)0.0040 (18)
Geometric parameters (Å, º) top
C1—N21.288 (6)C8—H80.9300
C1—N31.366 (6)C9—H90.9300
C1—H10.9300C10—N51.445 (5)
C2—N11.313 (6)C10—C111.493 (6)
C2—N31.344 (5)C10—H10A0.9700
C2—H20.9300C10—H10B0.9700
C3—N41.262 (5)C11—H11A0.9600
C3—C41.444 (5)C11—H11B0.9600
C3—H30.9300C11—H11C0.9600
C4—C91.384 (6)C12—N51.459 (6)
C4—C51.400 (6)C12—C131.505 (7)
C5—C61.378 (6)C12—H12A0.9700
C5—H50.9300C12—H12B0.9700
C6—C71.405 (5)C13—H13A0.9600
C6—H60.9300C13—H13B0.9600
C7—N51.366 (5)C13—H13C0.9600
C7—C81.412 (6)N1—N21.369 (6)
C8—C91.361 (5)N3—N41.406 (4)
N2—C1—N3109.4 (5)N5—C10—H10B108.6
N2—C1—H1125.3C11—C10—H10B108.6
N3—C1—H1125.3H10A—C10—H10B107.6
N1—C2—N3111.2 (5)C10—C11—H11A109.5
N1—C2—H2124.4C10—C11—H11B109.5
N3—C2—H2124.4H11A—C11—H11B109.5
N4—C3—C4122.4 (4)C10—C11—H11C109.5
N4—C3—H3118.8H11A—C11—H11C109.5
C4—C3—H3118.8H11B—C11—H11C109.5
C9—C4—C5116.2 (4)N5—C12—C13113.4 (4)
C9—C4—C3120.2 (4)N5—C12—H12A108.9
C5—C4—C3123.6 (4)C13—C12—H12A108.9
C6—C5—C4121.7 (4)N5—C12—H12B108.9
C6—C5—H5119.1C13—C12—H12B108.9
C4—C5—H5119.1H12A—C12—H12B107.7
C5—C6—C7121.4 (4)C12—C13—H13A109.5
C5—C6—H6119.3C12—C13—H13B109.5
C7—C6—H6119.3H13A—C13—H13B109.5
N5—C7—C6122.5 (4)C12—C13—H13C109.5
N5—C7—C8121.2 (4)H13A—C13—H13C109.5
C6—C7—C8116.3 (4)H13B—C13—H13C109.5
C9—C8—C7121.0 (4)C2—N1—N2105.5 (4)
C9—C8—H8119.5C1—N2—N1109.2 (5)
C7—C8—H8119.5C2—N3—C1104.7 (4)
C8—C9—C4123.3 (4)C2—N3—N4121.5 (4)
C8—C9—H9118.4C1—N3—N4133.8 (4)
C4—C9—H9118.4C3—N4—N3116.6 (4)
N5—C10—C11114.6 (4)C7—N5—C10121.9 (3)
N5—C10—H10A108.6C7—N5—C12121.8 (4)
C11—C10—H10A108.6C10—N5—C12116.3 (3)
N4—C3—C4—C9179.0 (5)N1—C2—N3—C11.1 (6)
N4—C3—C4—C50.4 (7)N1—C2—N3—N4177.3 (4)
C9—C4—C5—C60.4 (7)N2—C1—N3—C21.0 (6)
C3—C4—C5—C6178.3 (4)N2—C1—N3—N4177.2 (4)
C4—C5—C6—C71.5 (7)C4—C3—N4—N3178.2 (4)
C5—C6—C7—N5177.2 (4)C2—N3—N4—C3178.8 (5)
C5—C6—C7—C83.0 (7)C1—N3—N4—C33.3 (7)
N5—C7—C8—C9177.5 (4)C6—C7—N5—C10168.6 (4)
C6—C7—C8—C92.7 (7)C8—C7—N5—C1011.6 (6)
C7—C8—C9—C41.0 (7)C6—C7—N5—C129.5 (6)
C5—C4—C9—C80.6 (7)C8—C7—N5—C12170.2 (4)
C3—C4—C9—C8178.1 (4)C11—C10—N5—C796.1 (5)
N3—C2—N1—N20.8 (7)C11—C10—N5—C1285.7 (5)
N3—C1—N2—N10.5 (6)C13—C12—N5—C792.9 (5)
C2—N1—N2—C10.2 (7)C13—C12—N5—C1085.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N1i0.932.433.296 (7)155
Symmetry code: (i) x+2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H17N5
Mr243.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.740 (3), 9.238 (4), 18.497 (7)
V3)1322.5 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.37 × 0.35 × 0.11
Data collection
DiffractometerBruker APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.972, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
6650, 1359, 895
Rint0.075
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.131, 1.09
No. of reflections1359
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: APEX2 (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N1i0.932.433.296 (7)155.4
Symmetry code: (i) x+2, y1/2, z1/2.
 

Acknowledgements

We gratefully acknowledge the financial support of the National Natural Science Foundation of China.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAtalay, Ş., Yavuz, M., Bekircan, O., Ağar, A. & Şaşmaz, S. (2003). Acta Cryst. E59, o1528–o1529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrasselet, S., Cherioux, F., Audebert, P. & Zyss, J. (1999). Chem. Mater. 11, 1915–1920.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCornelissen, J. P., van Diemen, J. H., Groeneveld, L. R., Haasnoot, J. G., Spek, A. L. & Reedijk, J. (1992). Inorg. Chem. 31, 198–202.  CSD CrossRef CAS Web of Science Google Scholar
First citationDemirbs, N. & Ugurluoglu Demirbas, A. (2002). Bioorg. Med. Chem. 10, 3717–3723.  Web of Science PubMed Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFujigaya, T., Jiang, D. L. & Aida, T. (2003). J. Am. Chem. Soc. 125, 14690–14691.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGarcia, Y., van Koningsbruggen, P. J., Codjovi, E., Lapouyade, R., Kahn, O. & Rabardel, L. (1997). J. Mater. Chem. 7, 857–858.  CrossRef CAS Web of Science Google Scholar
First citationKahn, O. & Martinez, C. J. (1998). Science, 279, 44–48.  Web of Science CrossRef CAS Google Scholar
First citationMoliner, N., Gaspar, A. B., Munoz, M. C., Niel, V., Cano, J. & Real, J. A. (2001). Inorg. Chem. 40, 3986–3991.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPetek, H., Şenel, İ., Bekircan, O., Ağar, E. & Şaşmaz, S. (2004). Acta Cryst. E60, o831–o832.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTozkoparan, B., Gökhan, N., Aktay, G., Yesilada, E. & Ertan, M. (2000). Eur. J. Med. Chem. 35, 743–750.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTuran-Zitouni, G., Kaplancikli, Z. A., Erol, K. & Killic, F. S. (1999). Farmaco, 54, 218–223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhu, D.-R., Xu, Y., Liu, Y.-J., Song, Y., Zhang, Y. & You, X.-Z. (2000). Acta Cryst. C56, 242–243.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds