organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Eth­­oxy-N-(3-phenyl­prop-2-enyl­­idene)aniline

aAnalytical and Testing Center of Beihua Univerisity, Jilin 132031, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: wdq4899@163.com

(Received 23 March 2008; accepted 10 May 2008; online 17 May 2008)

The title compound, C17H17NO, was prepared by the condensation of cinnamaldehyde with p-phenetidine in ethanol. The prop-2-enyl­idene group exhibits an E configuration at the N=C and C=C double bonds, with C—N—C—C and C—C—C—C torsion angles of −179.9 (3) and −175.9 (3)°, respectively. The prop-2-enyl­idene group is not strictly planar [maximum deviation = 0.054 (4) Å] and forms dihedral angles of 28.0 (3) and 34.9 (3)° with the attached aromatic rings.

Related literature

For general background, see: Lindoy et al. (1976[Lindoy, L. F., Lip, H. C., Power, L. F. & Rea, T. H. (1976). Inorg. Chem. 15, 1724-1727.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17NO

  • Mr = 251.32

  • Monoclinic, P 21 /c

  • a = 31.12 (2) Å

  • b = 7.198 (6) Å

  • c = 6.315 (5) Å

  • β = 95.822 (10)°

  • V = 1407.3 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 (2) K

  • 0.52 × 0.47 × 0.30 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.963, Tmax = 0.978

  • 6773 measured reflections

  • 2449 independent reflections

  • 1165 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.221

  • S = 1.02

  • 2449 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are known to be important due to their applications in the synthesis of dyes, liquid crystals and as powerful corrosion inhibitors. Furthermore, they are involved in the mechanisms of many biochemical processes (Lindoy et al., 1976). We report here the synthesis and crystal structure of the title compound, a new Schiff base compound.

The molecular structure of the title compound is shown in Fig. 1. The prop-2-enylidene group exhibits an E configuration at the N1C1 (1.276 (4) Å) and C2C3 (1.321 (5) Å) double bonds, with C10-N1-C1-C2 and C1-C2-C3-C4 torsion angles of -179.9 (3)° and -175.9 (3)° respectively. This group is not strictly planar (maximum deviation 0.054 (4) Å for atom C2) and forms dihedral angles of 28.0 (3) and 34.9 (3)° with the attached aromatic rings. The crystal structure (Fig. 2) is stabilized only by van der Waals interactions.

Related literature top

For general background, see: Lindoy et al. (1976).

Experimental top

Cinnamaldehyde (5 mmol, 660.8 mg) in absolute ethanol (10 ml) was added dropwise to an absolute ethanol solution (10 ml) of p-phenetidine (5 mmol, 690.7 mg). The mixture was heated under reflux with stirring for 4 h and then filtered. The resulting clear solution was kept at room temperature for one week, after which large pale-yellow block-shaped crystals of the title compound suitable for X-ray diffraction analysis were obtained.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.93-0.97 Å, and Uiso(H) =1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Perspective view of the crystal packing of the title compound along the c axis. Hydrogen atoms are omitted for clarity.
4-Ethoxy-N-(3-phenylprop-2-enylidene)aniline top
Crystal data top
C17H17NOF(000) = 536
Mr = 251.32Dx = 1.186 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1073 reflections
a = 31.12 (2) Åθ = 2.6–23.2°
b = 7.198 (6) ŵ = 0.07 mm1
c = 6.315 (5) ÅT = 298 K
β = 95.822 (10)°Block, pale-yellow
V = 1407.3 (19) Å30.52 × 0.47 × 0.30 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
2449 independent reflections
Radiation source: fine-focus sealed tube1165 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3637
Tmin = 0.963, Tmax = 0.978k = 87
6773 measured reflectionsl = 75
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.221H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0854P)2 + 0.6793P]
where P = (Fo2 + 2Fc2)/3
2449 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C17H17NOV = 1407.3 (19) Å3
Mr = 251.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 31.12 (2) ŵ = 0.07 mm1
b = 7.198 (6) ÅT = 298 K
c = 6.315 (5) Å0.52 × 0.47 × 0.30 mm
β = 95.822 (10)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2449 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1165 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.978Rint = 0.072
6773 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.221H-atom parameters constrained
S = 1.02Δρmax = 0.17 e Å3
2449 reflectionsΔρmin = 0.35 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.26172 (9)0.5173 (4)0.8270 (5)0.0442 (8)
O10.09317 (8)0.5040 (4)1.0522 (4)0.0547 (8)
C10.27064 (12)0.5295 (5)0.6347 (6)0.0434 (10)
H10.24810.53430.52620.052*
C20.31443 (12)0.5359 (5)0.5801 (6)0.0452 (10)
H20.33640.55060.69030.054*
C30.32565 (12)0.5225 (5)0.3845 (6)0.0450 (10)
H30.30330.51620.27500.054*
C40.36937 (11)0.5166 (5)0.3235 (6)0.0410 (10)
C50.37720 (13)0.4321 (6)0.1308 (6)0.0503 (11)
H50.35420.38540.04080.060*
C60.41851 (14)0.4178 (6)0.0742 (6)0.0588 (12)
H60.42320.36020.05320.071*
C70.45320 (14)0.4877 (6)0.2034 (7)0.0608 (12)
H70.48110.47720.16430.073*
C80.44578 (12)0.5730 (6)0.3907 (6)0.0537 (11)
H80.46880.62140.47880.064*
C90.40471 (11)0.5873 (5)0.4489 (6)0.0454 (10)
H90.40040.64620.57620.054*
C100.21832 (10)0.5112 (5)0.8727 (5)0.0353 (9)
C110.20976 (11)0.4159 (5)1.0554 (5)0.0387 (9)
H110.23230.35781.13820.046*
C120.16848 (11)0.4062 (5)1.1158 (6)0.0431 (10)
H120.16330.33791.23570.052*
C130.13480 (11)0.4965 (5)1.0008 (6)0.0390 (9)
C140.14323 (11)0.5926 (5)0.8180 (6)0.0414 (9)
H140.12080.65280.73700.050*
C150.18419 (11)0.5995 (5)0.7561 (5)0.0398 (9)
H150.18910.66470.63370.048*
C160.08474 (13)0.4248 (7)1.2501 (7)0.0698 (14)
H16A0.10520.47181.36370.084*
H16B0.08760.29071.24510.084*
C170.03980 (16)0.4766 (9)1.2899 (9)0.119 (2)
H17A0.03330.42451.42290.179*
H17B0.01980.42931.17690.179*
H17C0.03740.60951.29550.179*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.048 (2)0.048 (2)0.0374 (19)0.0020 (15)0.0063 (14)0.0004 (16)
O10.0566 (18)0.057 (2)0.0525 (18)0.0042 (13)0.0146 (13)0.0112 (15)
C10.047 (2)0.039 (3)0.044 (2)0.0006 (17)0.0020 (18)0.0006 (19)
C20.050 (2)0.045 (3)0.041 (2)0.0010 (18)0.0020 (18)0.0020 (19)
C30.049 (2)0.042 (3)0.042 (2)0.0004 (18)0.0036 (18)0.0033 (19)
C40.051 (2)0.035 (2)0.037 (2)0.0016 (17)0.0039 (18)0.0060 (18)
C50.064 (3)0.049 (3)0.037 (2)0.003 (2)0.003 (2)0.001 (2)
C60.084 (3)0.052 (3)0.043 (3)0.008 (2)0.020 (2)0.001 (2)
C70.059 (3)0.068 (3)0.057 (3)0.009 (2)0.016 (2)0.011 (3)
C80.046 (2)0.063 (3)0.052 (3)0.0026 (19)0.0015 (19)0.001 (2)
C90.046 (2)0.046 (3)0.044 (2)0.0013 (18)0.0048 (18)0.0039 (19)
C100.040 (2)0.028 (2)0.037 (2)0.0033 (15)0.0005 (16)0.0010 (17)
C110.046 (2)0.038 (2)0.031 (2)0.0041 (16)0.0019 (16)0.0030 (17)
C120.057 (3)0.036 (2)0.036 (2)0.0005 (18)0.0066 (18)0.0039 (18)
C130.041 (2)0.035 (2)0.042 (2)0.0028 (17)0.0089 (18)0.0037 (18)
C140.050 (2)0.035 (2)0.039 (2)0.0034 (17)0.0006 (17)0.0016 (18)
C150.059 (2)0.030 (2)0.031 (2)0.0018 (17)0.0074 (17)0.0044 (17)
C160.064 (3)0.083 (4)0.066 (3)0.001 (2)0.022 (2)0.016 (3)
C170.083 (4)0.168 (7)0.116 (5)0.020 (4)0.057 (3)0.049 (5)
Geometric parameters (Å, º) top
N1—C11.276 (4)C8—H80.9300
N1—C101.410 (4)C9—H90.9300
O1—C131.368 (4)C10—C151.384 (5)
O1—C161.422 (4)C10—C111.391 (4)
C1—C21.440 (5)C11—C121.378 (4)
C1—H10.9300C11—H110.9300
C2—C31.321 (5)C12—C131.376 (5)
C2—H20.9300C12—H120.9300
C3—C41.452 (5)C13—C141.393 (5)
C3—H30.9300C14—C151.372 (4)
C4—C91.386 (5)C14—H140.9300
C4—C51.404 (5)C15—H150.9300
C5—C61.373 (5)C16—C171.493 (6)
C5—H50.9300C16—H16A0.9700
C6—C71.380 (6)C16—H16B0.9700
C6—H60.9300C17—H17A0.9600
C7—C81.373 (5)C17—H17B0.9600
C7—H70.9300C17—H17C0.9600
C8—C91.369 (5)
C1—N1—C10120.1 (3)C15—C10—N1125.2 (3)
C13—O1—C16117.2 (3)C11—C10—N1117.0 (3)
N1—C1—C2122.2 (3)C12—C11—C10121.1 (3)
N1—C1—H1118.9C12—C11—H11119.4
C2—C1—H1118.9C10—C11—H11119.4
C3—C2—C1124.6 (4)C13—C12—C11120.7 (3)
C3—C2—H2117.7C13—C12—H12119.6
C1—C2—H2117.7C11—C12—H12119.6
C2—C3—C4126.4 (4)O1—C13—C12125.6 (3)
C2—C3—H3116.8O1—C13—C14116.1 (3)
C4—C3—H3116.8C12—C13—C14118.3 (3)
C9—C4—C5117.2 (3)C15—C14—C13120.9 (3)
C9—C4—C3123.3 (3)C15—C14—H14119.6
C5—C4—C3119.5 (3)C13—C14—H14119.6
C6—C5—C4120.5 (4)C14—C15—C10121.1 (3)
C6—C5—H5119.8C14—C15—H15119.4
C4—C5—H5119.8C10—C15—H15119.4
C5—C6—C7121.1 (4)O1—C16—C17107.9 (4)
C5—C6—H6119.5O1—C16—H16A110.1
C7—C6—H6119.5C17—C16—H16A110.1
C8—C7—C6118.8 (4)O1—C16—H16B110.1
C8—C7—H7120.6C17—C16—H16B110.1
C6—C7—H7120.6H16A—C16—H16B108.4
C9—C8—C7120.6 (4)C16—C17—H17A109.5
C9—C8—H8119.7C16—C17—H17B109.5
C7—C8—H8119.7H17A—C17—H17B109.5
C8—C9—C4121.8 (4)C16—C17—H17C109.5
C8—C9—H9119.1H17A—C17—H17C109.5
C4—C9—H9119.1H17B—C17—H17C109.5
C15—C10—C11117.8 (3)
C10—N1—C1—C2179.9 (3)C1—N1—C10—C11151.0 (3)
N1—C1—C2—C3170.1 (4)C15—C10—C11—C121.4 (5)
C1—C2—C3—C4175.9 (3)N1—C10—C11—C12178.5 (3)
C2—C3—C4—C923.3 (6)C10—C11—C12—C132.4 (5)
C2—C3—C4—C5155.2 (4)C16—O1—C13—C125.5 (5)
C9—C4—C5—C61.4 (5)C16—O1—C13—C14173.2 (3)
C3—C4—C5—C6177.2 (4)C11—C12—C13—O1176.5 (3)
C4—C5—C6—C70.7 (6)C11—C12—C13—C142.1 (5)
C5—C6—C7—C80.2 (6)O1—C13—C14—C15177.7 (3)
C6—C7—C8—C90.4 (6)C12—C13—C14—C151.0 (5)
C7—C8—C9—C40.3 (6)C13—C14—C15—C100.1 (5)
C5—C4—C9—C81.2 (5)C11—C10—C15—C140.3 (5)
C3—C4—C9—C8177.3 (4)N1—C10—C15—C14177.1 (3)
C1—N1—C10—C1532.2 (5)C13—O1—C16—C17170.5 (4)

Experimental details

Crystal data
Chemical formulaC17H17NO
Mr251.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)31.12 (2), 7.198 (6), 6.315 (5)
β (°) 95.822 (10)
V3)1407.3 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.52 × 0.47 × 0.30
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.963, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
6773, 2449, 1165
Rint0.072
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.221, 1.02
No. of reflections2449
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.35

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge the financial support of the Shandong Province Science Foundation and the State Key Laboratory of Crystalline Materials, Shandong University, People's Republic of China.

References

First citationLindoy, L. F., Lip, H. C., Power, L. F. & Rea, T. H. (1976). Inorg. Chem. 15, 1724–1727.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds