organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o952-o953

4-Benzyl-3-(2-fur­yl)-1H-1,2,4-triazole-5(4H)-thione hemihydrate

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: mzareef71@yahoo.com

(Received 9 April 2008; accepted 28 April 2008; online 3 May 2008)

In the asymmetric unit of the title compound, C13H11N3OS·0.5H2O, there are two independent mol­ecules of 4-benzyl-3-(2-fur­yl)-1H-1,2,4-triazole-5(4H)-thione and a water mol­ecule of hydration. The conformation of the two organic mol­ecules is slightly different, the dihedral angles formed by the furyl and triazole rings being 5.63 (15) and 17.66 (13)°. The water mol­ecule of hydration links three adjacent triazole mol­ecules to form a cluster via inter­molecular O—H⋯S, N—H⋯S and N—H⋯O hydrogen bonds, generating a 10-membered ring of graph set R33(10). The crystal structure is further stabilized by intra- and inter­molecular C—H⋯S, C—H⋯O and C—H⋯N hydrogen bonds and by ππ stacking inter­actions involving the furyl and triazole rings of centrosymmetrically related mol­ecules, with a centroid–centroid separation of 3.470 (2) Å.

Related literature

For related literature, see: Ahmad et al. (2001[Ahmad, R., Iqbal, R., Akhtar, R. H., Haq, Z. U., Duddeck, H., Stefaniak, L. & Sitkowski, J. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 1671-1682.]); Altman & Solomost (1993[Altman, A. & Solomost, T. (1993). Hortic. Sci. 28, 201-203.]); Chai et al. (2003[Chai, B., Qian, X., Cao, S., Liu, H. & Song, G. (2003). Arkivoc. ii, 141-145.]); Dege et al. (2004[Dege, N., Andac, O., Cansız, A., Çetin, A., Şekerci, M. & Dinçer, M. (2004). Acta Cryst. E60, o1405-o1407.]); Hashimoto et al. (1990[Hashimoto, F., Sugimoto, C. & Hayashi, H. (1990). Chem. Pharm. Bull. 38, 2532-2536.]); Kanazawa et al. (1988[Kanazawa, S., Driscoll, M. & Struhl, K. (1988). Mol. Cell. Biol. 8, 644-673.]); Öztürk et al. (2004[Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004). Acta Cryst. E60, o425-o427.]); Yıldırım et al. (2004[Yıldırım, S. Ö., Akkurt, M., Koparır, M., Cansız, A., Şekerci, M. & Heinemann, F. W. (2004). Acta Cryst. E60, o2368-o2370.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11N3OS·0.5H2O

  • Mr = 266.33

  • Triclinic, [P \overline 1]

  • a = 6.082 (2) Å

  • b = 12.069 (4) Å

  • c = 17.818 (5) Å

  • α = 92.43 (2)°

  • β = 94.35 (2)°

  • γ = 103.83 (2)°

  • V = 1263.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 173 (2) K

  • 0.18 × 0.16 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.956, Tmax = 0.990

  • 10729 measured reflections

  • 5735 independent reflections

  • 4365 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.096

  • S = 1.03

  • 5735 reflections

  • 347 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N5i 0.85 (2) 2.08 (2) 2.906 (2) 165 (2)
N1—H1A⋯S2ii 0.88 (2) 2.47 (2) 3.267 (2) 151 (2)
N4—H4A⋯O3iii 0.89 (2) 1.81 (2) 2.697 (2) 174 (2)
C7—H7A⋯N2iv 0.99 2.60 3.304 (3) 128
C7—H7B⋯O1iv 0.99 2.59 3.440 (2) 144
O3—H3B⋯S1 0.85 (2) 2.50 (2) 3.320 (2) 162 (2)
C7—H7A⋯S1 0.99 2.74 3.237 (2) 112
C9—H9⋯N3 0.95 2.56 2.893 (2) 101
C26—H26⋯N6 0.95 2.58 2.903 (3) 100
C20—H20B⋯S2 0.99 2.78 3.214 (2) 107
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y-1, z; (iii) x-1, y+1, z; (iv) x-1, y, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. and R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, much attention has been focused on disubstituted 1,2,4-triazole derivatives for their broad-spectrum biological and pharmacological activities, such as fungicidal, herbicidal, anticonvulsant, antitumoral and inhibition of cholesterol (Chai et al., 2003; Kanazawa et al., 1988; Hashimoto et al., 1990). In addition, they have many applications in agriculture domain (Altman & Solomost, 1993). In this paper, we report the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound is composed of two independent molecules (hereafter called A and B) depicted in Fig. 1 and 2, respectively, and a water molecule of hydration. The furyl and triazole rings in molecule A are substantially planar (maximum deviation 0.0586 (13) Å for atom N2), with the S1 atom 0.1980 (16) Å out of this plane; the mean-planes of the furyl and triazole form a dihedral angle of 5.63 (15)°. The corresponding furyl and triazole rings in molecule B are far from planar with atoms O2 and C17 deviating from the plane by 0.2571 (11) and -0.1633 (15) Å, respectively. The mean-planes of the five-membered rings in molecule B form an angle 17.66 (13)°. In both molecules, the benzyl rings are oriented at 80.72 (4) and 80.70 (4)°, from the planes formed by the ten atoms of the furyl and triazole rings in the molecules A and B, respectively. Bond distances and angles in the two molecules agree well with each other. Similar bond distances and bond angles have been reported in compounds closely related to the title compound, e.g., 4-chlorophenyl analogue (Öztürk et al., 2004), 4-methoxyphenyl analogue (Yıldırım et al., 2004) and 4-p-tolyl (Dege et al., 2004); in all these compounds, the mean-planes of the phenyl rings and those of the furyl and triazole rings lie close to right angles. The water molecule of hydration links three adjacent molecules of the title compound to form a cluster via intermolecular hydrogen bonds (Fig. 3, Table 1), forming a 10-membered ring of graph set R33(10) (Etter, 1990; Bernstein et al., 1995). Nonconventional intermolecular C—H···N and C—H···O H-bonds are also present in addition to intramolecular C—H···S and C—H···N hydrogen interactions (Table 1). The crystal structure is further stabilized by π-π stacking interactions involving centrosymmetrically related furyl and triazole rings at (x, y, z) and (1-x, -y, -z) with a centroid-centroid separation of 3.470 (2) Å.

Related literature top

For related literature, see: Ahmad et al. (2001); Altman & Solomost (1993); Chai et al. (2003); Dege et al. (2004); Hashimoto et al. (1990); Kanazawa et al. (1988); Öztürk et al. (2004); Yıldırım et al. (2004); Bernstein et al. (1995); Etter (1990).

Experimental top

The title compound was prepared from the corresponding thiosemicarbazide by following the reported procedure (Ahmad et al., 2001). 4-Benzyl-1-(2-furoyl)thiosemicarbazide (10 mmol) was dissolved in an aqueous 4 N sodium hydroxide solution (50 ml). The solution was heated to reflux for 7 h, cooled and filtered. The filtrate was acidified to pH of 4–5, with 4 N hydrochloric acid. The solid crude product was filtered off, washed with water and recrystallized from aqueous ethanol (60%). Crystals of the title compound were grown by slow evaporation of an ethanol solution over 11 days at room temperature (yield 81%).

Refinement top

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms bonded to C-atoms were included at geometrically idealized positions and refined in the riding-model approximation with the following constraints: benzyl/furyl and methylene C—H distances were set to 0.95 and 0.99 Å, respectively; in all these instances Uiso(H) = 1.2 Ueq(C). H-atoms bonded to N– and water of hydration were located from a difference Fourier map and were allowed to refine with Uiso = 1.2 times Ueq of the atoms to which they were bonded. The final difference map was free of any chemically significant feature.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of molecule A with displacement ellipsoids plotted at the 50% probability level.
[Figure 2] Fig. 2. ORTEP-3 (Farrugia, 1997) drawing of molecule B with displacement ellipsoids plotted at the 50% probability level.
[Figure 3] Fig. 3. Packing diagram of the title compound showing intermolecular hydrogen bonds as dashed lines. H atoms not involved in H bonding are omitted for clarity.
4-Benzyl-3-(2-furyl)-1H-1,2,4-triazole-5(4H)-thione hemihydrate top
Crystal data top
C13H11N3OS·0.5H2OZ = 4
Mr = 266.33F(000) = 556
Triclinic, P1Dx = 1.400 Mg m3
Hall symbol: -P 1Melting point = 458–459 K
a = 6.082 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.069 (4) ÅCell parameters from 10729 reflections
c = 17.818 (5) Åθ = 3.0–27.5°
α = 92.43 (2)°µ = 0.25 mm1
β = 94.35 (2)°T = 173 K
γ = 103.83 (2)°Plate, colourless
V = 1263.9 (7) Å30.18 × 0.16 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
5735 independent reflections
Radiation source: fine-focus sealed tube4365 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 77
Tmin = 0.956, Tmax = 0.990k = 1515
10729 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.468P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5735 reflectionsΔρmax = 0.22 e Å3
347 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (2)
Crystal data top
C13H11N3OS·0.5H2Oγ = 103.83 (2)°
Mr = 266.33V = 1263.9 (7) Å3
Triclinic, P1Z = 4
a = 6.082 (2) ÅMo Kα radiation
b = 12.069 (4) ŵ = 0.25 mm1
c = 17.818 (5) ÅT = 173 K
α = 92.43 (2)°0.18 × 0.16 × 0.04 mm
β = 94.35 (2)°
Data collection top
Nonius KappaCCD
diffractometer
5735 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
4365 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.990Rint = 0.031
10729 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.22 e Å3
5735 reflectionsΔρmin = 0.24 e Å3
347 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34044 (8)0.05680 (4)0.28003 (3)0.03056 (13)
S20.20179 (8)0.77953 (4)0.25164 (2)0.02763 (13)
O10.8468 (2)0.08820 (11)0.01137 (7)0.0305 (3)
O20.5602 (2)0.82229 (11)0.51122 (7)0.0325 (3)
O30.7588 (3)0.03225 (11)0.40424 (8)0.0333 (3)
H3A0.752 (4)0.0567 (19)0.4491 (13)0.040*
H3B0.633 (4)0.0293 (19)0.3796 (13)0.040*
N10.6822 (3)0.01773 (13)0.20087 (8)0.0260 (3)
H1A0.725 (3)0.0312 (17)0.2307 (11)0.031*
N20.7734 (3)0.03375 (13)0.13290 (8)0.0268 (3)
N30.4856 (2)0.11614 (11)0.14138 (8)0.0213 (3)
N40.0028 (3)0.87457 (12)0.38823 (8)0.0247 (3)
H4A0.085 (3)0.9228 (17)0.3954 (11)0.030*
N50.1725 (3)0.86844 (12)0.44183 (8)0.0254 (3)
N60.1475 (2)0.74212 (11)0.34577 (8)0.0222 (3)
C10.5050 (3)0.06404 (14)0.20819 (9)0.0232 (4)
C20.6504 (3)0.09428 (14)0.09778 (9)0.0223 (4)
C30.6860 (3)0.13059 (14)0.02235 (9)0.0240 (4)
C40.5984 (4)0.19649 (17)0.02503 (10)0.0371 (5)
H40.48380.23540.01550.044*
C50.7116 (4)0.19619 (17)0.09219 (11)0.0393 (5)
H50.68710.23510.13610.047*
C60.8591 (3)0.13059 (16)0.08148 (10)0.0331 (4)
H60.95800.11560.11730.040*
C70.3061 (3)0.17367 (14)0.12078 (10)0.0243 (4)
H7A0.19000.15640.15740.029*
H7B0.23190.14170.07050.029*
C80.3862 (3)0.30216 (14)0.11841 (9)0.0246 (4)
C90.5982 (3)0.36345 (15)0.14907 (10)0.0296 (4)
H90.70040.32460.17290.035*
C100.6630 (4)0.48138 (16)0.14531 (11)0.0371 (5)
H100.80900.52280.16650.045*
C110.5153 (4)0.53864 (17)0.11072 (11)0.0404 (5)
H110.55990.61920.10790.048*
C120.3028 (4)0.47821 (17)0.08038 (12)0.0414 (5)
H120.20060.51740.05700.050*
C130.2381 (3)0.36062 (16)0.08393 (11)0.0335 (4)
H130.09180.31950.06270.040*
C140.0174 (3)0.79991 (14)0.32916 (9)0.0223 (4)
C150.2585 (3)0.78665 (14)0.41473 (9)0.0233 (4)
C160.4402 (3)0.74833 (15)0.45380 (9)0.0242 (4)
C170.5195 (3)0.65286 (16)0.44984 (10)0.0303 (4)
H170.46530.58840.41510.036*
C180.7002 (3)0.66805 (17)0.50797 (10)0.0321 (4)
H180.79050.61570.51960.039*
C190.7177 (3)0.77051 (17)0.54297 (11)0.0332 (4)
H190.82520.80280.58430.040*
C200.2004 (3)0.65628 (14)0.29446 (9)0.0239 (4)
H20A0.36740.66700.29740.029*
H20B0.14890.66930.24220.029*
C210.0932 (3)0.53434 (14)0.31051 (9)0.0226 (4)
C220.1902 (3)0.44799 (16)0.28516 (10)0.0307 (4)
H220.32700.46680.26100.037*
C230.0880 (4)0.33463 (17)0.29509 (11)0.0389 (5)
H230.15490.27600.27740.047*
C240.1094 (4)0.30642 (17)0.33038 (12)0.0405 (5)
H240.17880.22850.33690.049*
C250.2063 (4)0.39117 (18)0.35627 (12)0.0410 (5)
H250.34240.37190.38080.049*
C260.1044 (3)0.50534 (16)0.34637 (11)0.0318 (4)
H260.17140.56370.36440.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0307 (3)0.0369 (3)0.0255 (2)0.0094 (2)0.00647 (18)0.00482 (19)
S20.0285 (3)0.0262 (2)0.0270 (2)0.00626 (19)0.00410 (18)0.00176 (17)
O10.0316 (7)0.0369 (7)0.0265 (6)0.0140 (6)0.0061 (5)0.0016 (5)
O20.0357 (8)0.0306 (7)0.0296 (7)0.0091 (6)0.0090 (6)0.0012 (5)
O30.0415 (9)0.0352 (7)0.0271 (7)0.0190 (7)0.0012 (6)0.0030 (6)
N10.0273 (8)0.0293 (8)0.0243 (7)0.0114 (7)0.0023 (6)0.0072 (6)
N20.0280 (8)0.0299 (8)0.0256 (8)0.0116 (7)0.0040 (6)0.0065 (6)
N30.0206 (8)0.0218 (7)0.0225 (7)0.0071 (6)0.0008 (6)0.0029 (5)
N40.0268 (8)0.0231 (7)0.0253 (7)0.0093 (6)0.0010 (6)0.0007 (6)
N50.0266 (8)0.0262 (7)0.0237 (7)0.0083 (6)0.0019 (6)0.0009 (6)
N60.0233 (8)0.0199 (7)0.0232 (7)0.0055 (6)0.0011 (6)0.0008 (6)
C10.0241 (9)0.0213 (8)0.0230 (8)0.0044 (7)0.0010 (7)0.0003 (7)
C20.0221 (9)0.0212 (8)0.0243 (8)0.0072 (7)0.0009 (7)0.0005 (7)
C30.0236 (9)0.0258 (9)0.0235 (8)0.0073 (7)0.0040 (7)0.0004 (7)
C40.0512 (13)0.0423 (11)0.0282 (10)0.0277 (10)0.0126 (9)0.0110 (8)
C50.0592 (14)0.0384 (11)0.0263 (10)0.0194 (10)0.0126 (9)0.0103 (8)
C60.0382 (12)0.0355 (10)0.0256 (9)0.0070 (9)0.0097 (8)0.0007 (8)
C70.0211 (9)0.0257 (9)0.0276 (9)0.0093 (7)0.0002 (7)0.0019 (7)
C80.0304 (10)0.0245 (9)0.0210 (8)0.0109 (8)0.0022 (7)0.0008 (7)
C90.0339 (11)0.0281 (9)0.0272 (9)0.0108 (8)0.0036 (8)0.0004 (7)
C100.0440 (12)0.0290 (10)0.0328 (10)0.0016 (9)0.0062 (9)0.0021 (8)
C110.0609 (15)0.0250 (10)0.0350 (11)0.0113 (10)0.0012 (10)0.0037 (8)
C120.0549 (14)0.0336 (11)0.0405 (11)0.0231 (10)0.0070 (10)0.0053 (9)
C130.0327 (11)0.0320 (10)0.0371 (10)0.0131 (9)0.0046 (8)0.0007 (8)
C140.0213 (9)0.0193 (8)0.0262 (8)0.0034 (7)0.0038 (7)0.0052 (7)
C150.0238 (9)0.0227 (8)0.0224 (8)0.0037 (7)0.0020 (7)0.0022 (7)
C160.0238 (9)0.0274 (9)0.0207 (8)0.0055 (7)0.0001 (7)0.0013 (7)
C170.0305 (10)0.0340 (10)0.0280 (9)0.0123 (8)0.0009 (8)0.0012 (8)
C180.0279 (10)0.0413 (11)0.0308 (10)0.0150 (9)0.0016 (8)0.0057 (8)
C190.0281 (10)0.0427 (11)0.0281 (9)0.0090 (9)0.0058 (8)0.0069 (8)
C200.0253 (9)0.0244 (9)0.0228 (8)0.0068 (7)0.0053 (7)0.0005 (7)
C210.0246 (9)0.0237 (8)0.0202 (8)0.0080 (7)0.0001 (7)0.0011 (7)
C220.0390 (11)0.0327 (10)0.0248 (9)0.0165 (9)0.0043 (8)0.0012 (7)
C230.0612 (15)0.0280 (10)0.0306 (10)0.0201 (10)0.0055 (10)0.0015 (8)
C240.0527 (14)0.0241 (9)0.0384 (11)0.0019 (9)0.0137 (10)0.0062 (8)
C250.0339 (12)0.0383 (11)0.0485 (12)0.0020 (9)0.0050 (9)0.0146 (10)
C260.0296 (11)0.0277 (9)0.0402 (11)0.0091 (8)0.0085 (8)0.0049 (8)
Geometric parameters (Å, º) top
S1—C11.676 (2)C8—C91.382 (3)
S2—C141.682 (2)C8—C131.394 (2)
O1—C61.370 (2)C9—C101.389 (3)
O1—C31.372 (2)C9—H90.9500
O2—C191.364 (2)C10—C111.383 (3)
O2—C161.369 (2)C10—H100.9500
O3—H3A0.85 (2)C11—C121.380 (3)
O3—H3B0.85 (2)C11—H110.9500
N1—C11.339 (2)C12—C131.385 (3)
N1—N21.372 (2)C12—H120.9500
N1—H1A0.88 (2)C13—H130.9500
N2—C21.309 (2)C15—C161.440 (2)
N3—C11.380 (2)C16—C171.353 (2)
N3—C21.380 (2)C17—C181.425 (3)
N3—C71.460 (2)C17—H170.9500
N4—C141.335 (2)C18—C191.338 (3)
N4—N51.370 (2)C18—H180.9500
N4—H4A0.89 (2)C19—H190.9500
N5—C151.314 (2)C20—C211.509 (2)
N6—C141.374 (2)C20—H20A0.9900
N6—C151.378 (2)C20—H20B0.9900
N6—C201.461 (2)C21—C261.382 (3)
C2—C31.447 (2)C21—C221.390 (2)
C3—C41.349 (3)C22—C231.386 (3)
C4—C51.425 (3)C22—H220.9500
C4—H40.9500C23—C241.375 (3)
C5—C61.340 (3)C23—H230.9500
C5—H50.9500C24—C251.377 (3)
C6—H60.9500C24—H240.9500
C7—C81.514 (2)C25—C261.394 (3)
C7—H7A0.9900C25—H250.9500
C7—H7B0.9900C26—H260.9500
C6—O1—C3106.50 (14)C12—C11—H11120.1
C19—O2—C16106.33 (14)C10—C11—H11120.1
H3A—O3—H3B108 (2)C11—C12—C13120.22 (18)
C1—N1—N2114.05 (14)C11—C12—H12119.9
C1—N1—H1A126.0 (13)C13—C12—H12119.9
N2—N1—H1A118.8 (13)C12—C13—C8120.44 (19)
C2—N2—N1103.59 (14)C12—C13—H13119.8
C1—N3—C2107.51 (14)C8—C13—H13119.8
C1—N3—C7124.11 (14)N4—C14—N6104.29 (14)
C2—N3—C7128.16 (14)N4—C14—S2128.50 (13)
C14—N4—N5113.20 (14)N6—C14—S2127.21 (13)
C14—N4—H4A126.2 (13)N5—C15—N6110.73 (15)
N5—N4—H4A120.5 (13)N5—C15—C16123.67 (15)
C15—N5—N4104.25 (14)N6—C15—C16125.58 (15)
C14—N6—C15107.53 (14)C17—C16—O2109.93 (15)
C14—N6—C20124.07 (14)C17—C16—C15135.42 (16)
C15—N6—C20128.21 (14)O2—C16—C15114.60 (14)
N1—C1—N3103.46 (14)C16—C17—C18106.48 (17)
N1—C1—S1128.34 (13)C16—C17—H17126.8
N3—C1—S1128.17 (13)C18—C17—H17126.8
N2—C2—N3111.36 (15)C19—C18—C17106.48 (16)
N2—C2—C3122.82 (15)C19—C18—H18126.8
N3—C2—C3125.81 (15)C17—C18—H18126.8
C4—C3—O1109.95 (15)C18—C19—O2110.79 (16)
C4—C3—C2135.93 (17)C18—C19—H19124.6
O1—C3—C2114.11 (15)O2—C19—H19124.6
C3—C4—C5106.47 (17)N6—C20—C21114.33 (14)
C3—C4—H4126.8N6—C20—H20A108.7
C5—C4—H4126.8C21—C20—H20A108.7
C6—C5—C4106.89 (17)N6—C20—H20B108.7
C6—C5—H5126.6C21—C20—H20B108.7
C4—C5—H5126.6H20A—C20—H20B107.6
C5—C6—O1110.20 (16)C26—C21—C22119.00 (17)
C5—C6—H6124.9C26—C21—C20122.02 (15)
O1—C6—H6124.9C22—C21—C20118.90 (16)
N3—C7—C8114.60 (14)C23—C22—C21120.24 (19)
N3—C7—H7A108.6C23—C22—H22119.9
C8—C7—H7A108.6C21—C22—H22119.9
N3—C7—H7B108.6C24—C23—C22120.41 (19)
C8—C7—H7B108.6C24—C23—H23119.8
H7A—C7—H7B107.6C22—C23—H23119.8
C9—C8—C13118.95 (17)C23—C24—C25119.95 (19)
C9—C8—C7122.93 (15)C23—C24—H24120.0
C13—C8—C7118.12 (16)C25—C24—H24120.0
C8—C9—C10120.53 (17)C24—C25—C26119.9 (2)
C8—C9—H9119.7C24—C25—H25120.1
C10—C9—H9119.7C26—C25—H25120.1
C11—C10—C9120.12 (19)C21—C26—C25120.52 (18)
C11—C10—H10119.9C21—C26—H26119.7
C9—C10—H10119.9C25—C26—H26119.7
C12—C11—C10119.73 (18)
C1—N1—N2—C21.32 (19)C7—C8—C13—C12179.87 (18)
C14—N4—N5—C150.33 (19)N5—N4—C14—N60.32 (19)
N2—N1—C1—N31.84 (19)N5—N4—C14—S2179.83 (13)
N2—N1—C1—S1176.30 (13)C15—N6—C14—N40.18 (18)
C2—N3—C1—N11.59 (18)C20—N6—C14—N4175.62 (14)
C7—N3—C1—N1176.47 (14)C15—N6—C14—S2179.97 (13)
C2—N3—C1—S1176.56 (13)C20—N6—C14—S24.5 (2)
C7—N3—C1—S11.7 (2)N4—N5—C15—N60.20 (19)
N1—N2—C2—N30.20 (19)N4—N5—C15—C16178.34 (16)
N1—N2—C2—C3179.37 (16)C14—N6—C15—N50.02 (19)
C1—N3—C2—N20.90 (19)C20—N6—C15—N5175.17 (15)
C7—N3—C2—N2175.50 (15)C14—N6—C15—C16178.48 (16)
C1—N3—C2—C3178.23 (16)C20—N6—C15—C166.3 (3)
C7—N3—C2—C33.6 (3)C19—O2—C16—C170.2 (2)
C6—O1—C3—C40.6 (2)C19—O2—C16—C15177.89 (15)
C6—O1—C3—C2179.92 (15)N5—C15—C16—C17159.8 (2)
N2—C2—C3—C4175.6 (2)N6—C15—C16—C1718.5 (3)
N3—C2—C3—C45.4 (3)N5—C15—C16—O217.1 (2)
N2—C2—C3—O15.1 (2)N6—C15—C16—O2164.55 (16)
N3—C2—C3—O1173.93 (15)O2—C16—C17—C180.2 (2)
O1—C3—C4—C50.4 (2)C15—C16—C17—C18177.2 (2)
C2—C3—C4—C5179.8 (2)C16—C17—C18—C190.1 (2)
C3—C4—C5—C60.1 (2)C17—C18—C19—O20.0 (2)
C4—C5—C6—O10.3 (2)C16—O2—C19—C180.1 (2)
C3—O1—C6—C50.5 (2)C14—N6—C20—C2198.91 (19)
C1—N3—C7—C8111.39 (18)C15—N6—C20—C2186.6 (2)
C2—N3—C7—C874.8 (2)N6—C20—C21—C2625.8 (2)
N3—C7—C8—C913.9 (2)N6—C20—C21—C22157.33 (16)
N3—C7—C8—C13166.36 (16)C26—C21—C22—C230.8 (3)
C13—C8—C9—C100.3 (3)C20—C21—C22—C23176.17 (16)
C7—C8—C9—C10180.00 (17)C21—C22—C23—C240.3 (3)
C8—C9—C10—C110.0 (3)C22—C23—C24—C250.2 (3)
C9—C10—C11—C120.4 (3)C23—C24—C25—C260.2 (3)
C10—C11—C12—C130.5 (3)C22—C21—C26—C250.7 (3)
C11—C12—C13—C80.3 (3)C20—C21—C26—C25176.14 (17)
C9—C8—C13—C120.1 (3)C24—C25—C26—C210.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N5i0.85 (2)2.08 (2)2.906 (2)165 (2)
N1—H1A···S2ii0.88 (2)2.47 (2)3.267 (2)151 (2)
N4—H4A···O3iii0.89 (2)1.81 (2)2.697 (2)174 (2)
C7—H7A···N2iv0.992.603.304 (3)128
C7—H7B···O1iv0.992.593.440 (2)144
O3—H3B···S10.85 (2)2.50 (2)3.320 (2)162 (2)
C7—H7A···S10.992.743.237 (2)112
C9—H9···N30.952.562.893 (2)101
C26—H26···N60.952.582.903 (3)100
C20—H20B···S20.992.783.214 (2)107
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1, z; (iii) x1, y+1, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC13H11N3OS·0.5H2O
Mr266.33
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.082 (2), 12.069 (4), 17.818 (5)
α, β, γ (°)92.43 (2), 94.35 (2), 103.83 (2)
V3)1263.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.18 × 0.16 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.956, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
10729, 5735, 4365
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.096, 1.03
No. of reflections5735
No. of parameters347
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.24

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N5i0.85 (2)2.08 (2)2.906 (2)165 (2)
N1—H1A···S2ii0.88 (2)2.47 (2)3.267 (2)151 (2)
N4—H4A···O3iii0.89 (2)1.81 (2)2.697 (2)174 (2)
C7—H7A···N2iv0.992.603.304 (3)128
C7—H7B···O1iv0.992.593.440 (2)144
O3—H3B···S10.85 (2)2.50 (2)3.320 (2)162 (2)
C7—H7A···S10.992.743.237 (2)112
C9—H9···N30.952.562.893 (2)101
C26—H26···N60.952.582.903 (3)100
C20—H20B···S20.992.783.214 (2)107
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1, z; (iii) x1, y+1, z; (iv) x1, y, z.
 

References

First citationAhmad, R., Iqbal, R., Akhtar, R. H., Haq, Z. U., Duddeck, H., Stefaniak, L. & Sitkowski, J. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 1671–1682.  CrossRef PubMed CAS Google Scholar
First citationAltman, A. & Solomost, T. (1993). Hortic. Sci. 28, 201–203.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChai, B., Qian, X., Cao, S., Liu, H. & Song, G. (2003). Arkivoc. ii, 141–145.  CrossRef Google Scholar
First citationDege, N., Andac, O., Cansız, A., Çetin, A., Şekerci, M. & Dinçer, M. (2004). Acta Cryst. E60, o1405–o1407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHashimoto, F., Sugimoto, C. & Hayashi, H. (1990). Chem. Pharm. Bull. 38, 2532–2536.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKanazawa, S., Driscoll, M. & Struhl, K. (1988). Mol. Cell. Biol. 8, 644–673.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationÖztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004). Acta Cryst. E60, o425–o427.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYıldırım, S. Ö., Akkurt, M., Koparır, M., Cansız, A., Şekerci, M. & Heinemann, F. W. (2004). Acta Cryst. E60, o2368–o2370.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o952-o953
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds