metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1H-benzimidazole-κN3)bis­­(4-methyl­benzoato-κ2O,O′)copper(II)

aCollege of Science, Guang Dong Ocean University, Zhan Jiang 524088, People's Republic of China, and bCollege of Fisheries, Guang Dong Ocean University, Zhan Jiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@126.com

(Received 17 April 2008; accepted 29 April 2008; online 3 May 2008)

In the title mononuclear complex, [Cu(C8H7O2)2(C7H6N2)2], the CuII atom lies on an inversion centre and is coordinated by two O atoms of two monodentate 4-methyl­benzoate ligands and two N atoms of two benzimidazole ligands in a square-planar geometry. The mol­ecules are linked into chains running parallel to the b axis by inter­molecular N—H⋯O hydrogen bonds and by ππ stacking inter­actions [centroid–centroid distance = 3.669 (2) Å] involving centrosymmetrically related imidazole rings.

Related literature

For related literature, see: Song et al. (2007[Song, W.-D., Gu, C.-S., Hao, X.-M. & Liu, J.-W. (2007). Acta Cryst. E63, m1023-m1024.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H7O2)2(C7H6N2)2]

  • Mr = 570.10

  • Triclinic, [P \overline 1]

  • a = 7.2623 (2) Å

  • b = 7.6068 (1) Å

  • c = 12.9624 (2) Å

  • α = 99.687 (2)°

  • β = 96.390 (1)°

  • γ = 104.776 (3)°

  • V = 673.54 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 296 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.726, Tmax = 0.848

  • 8200 measured reflections

  • 2743 independent reflections

  • 2445 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.121

  • S = 0.88

  • 2743 reflections

  • 179 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.86 1.95 2.780 (2) 163
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the structural investigation of 4-methylbenzate complexes, it has been found that 4-methylbenzoic acid can act as a multidentate ligand (Song et al., 2007), with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound, a new Cu complex obtained by the reaction of 4-methylbenzoic acid, benzimidazole and copper chloride in alkaline aqueous solution.

As illustrated in Fig. 1, the complex molecule has an inversion symmetry where the CuII atom exists in a square planar coordination geometry, defined by two carboxyl O atoms from two monodentate 4-methylbenzate ligands and two N atoms from two benzimidazole ligands. In the crystal structure, intermolecular N—H···O hydrogen bonding interactions (Table 1) and π-π stacking interactions (centroid-centroid distance = 3.669 (2) Å) occurring between the imidazole rings of centrosymmetrically-related complexes form chains running parallel to the b axis (Fig. 2).

Related literature top

For related literature, see: Song et al. (2007).

Experimental top

A mixture of copper chloride (1 mmol), 4-methylbenzoic acid (1 mmol), benzimidazole (1 mmol), NaOH (1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor and heated to 433 K for three days. After cooling to room temperature at a rate of 10 K h-1, the crystals obtained were washed with water and dryed in air.

Refinement top

All H atoms were placed at calculated positions and treated as riding on their parent atoms, with C—H = 0.93 - 0.96 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and 30% probability displacement ellipsoids. Unlabelled atoms are related to the labelled atoms by the symmetry operator (1-x, 2-y, 1-z).
[Figure 2] Fig. 2. Packing diagram of the title compound viewed approximately along the a axis. Dashed lines indicate hydrogen bonds.
Bis(1H-benzimidazole-κN3)bis(4-methylbenzoato- κ2O,O')copper(II) top
Crystal data top
[Cu(C8H7O2)2(C7H6N2)2]Z = 1
Mr = 570.10F(000) = 295
Triclinic, P1Dx = 1.406 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2623 (2) ÅCell parameters from 3600 reflections
b = 7.6068 (1) Åθ = 1.4–28°
c = 12.9624 (2) ŵ = 0.85 mm1
α = 99.687 (2)°T = 296 K
β = 96.390 (1)°Block, blue
γ = 104.776 (3)°0.40 × 0.30 × 0.20 mm
V = 673.54 (3) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
2743 independent reflections
Radiation source: fine-focus sealed tube2445 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 26.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.726, Tmax = 0.848k = 99
8200 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.1115P)2]
where P = (Fo2 + 2Fc2)/3
2743 reflections(Δ/σ)max = 0.045
179 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Cu(C8H7O2)2(C7H6N2)2]γ = 104.776 (3)°
Mr = 570.10V = 673.54 (3) Å3
Triclinic, P1Z = 1
a = 7.2623 (2) ÅMo Kα radiation
b = 7.6068 (1) ŵ = 0.85 mm1
c = 12.9624 (2) ÅT = 296 K
α = 99.687 (2)°0.40 × 0.30 × 0.20 mm
β = 96.390 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
2743 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2445 reflections with I > 2σ(I)
Tmin = 0.726, Tmax = 0.848Rint = 0.026
8200 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 0.88Δρmax = 0.31 e Å3
2743 reflectionsΔρmin = 0.22 e Å3
179 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3775 (3)0.6448 (3)0.56672 (17)0.0404 (5)
H10.45830.69880.63120.048*
C20.1775 (3)0.4328 (3)0.43989 (18)0.0397 (5)
C30.0533 (4)0.2729 (3)0.3739 (2)0.0516 (6)
H30.02770.15860.39420.062*
C40.0289 (4)0.2922 (4)0.2778 (2)0.0602 (7)
H40.11130.18820.23130.072*
C50.0079 (4)0.4657 (4)0.2474 (2)0.0553 (7)
H50.05170.47390.18180.066*
C60.1304 (3)0.6235 (3)0.31304 (18)0.0449 (5)
H60.15300.73800.29310.054*
C70.2189 (3)0.6062 (3)0.40969 (17)0.0355 (4)
C150.5949 (3)0.8828 (3)0.31242 (16)0.0400 (5)
C160.5876 (4)0.8343 (3)0.19460 (17)0.0404 (5)
C170.4260 (4)0.8288 (3)0.12438 (18)0.0462 (5)
H170.32050.85740.15030.055*
C180.4215 (4)0.7808 (4)0.01597 (18)0.0553 (7)
H180.31170.77660.02990.066*
C190.5742 (5)0.7394 (3)0.02547 (19)0.0548 (7)
C200.7351 (5)0.7454 (4)0.0439 (2)0.0631 (8)
H200.84050.71790.01720.076*
C210.7426 (4)0.7920 (4)0.1535 (2)0.0547 (6)
H210.85220.79470.19900.066*
C220.5672 (6)0.6885 (4)0.1443 (2)0.0736 (9)
H22A0.44080.61110.17680.110*
H22B0.66100.62260.15890.110*
H22C0.59550.79960.17250.110*
Cu10.50001.00000.50000.03466 (16)
N10.3479 (3)0.7375 (2)0.49250 (13)0.0363 (4)
N20.2793 (3)0.4642 (3)0.54000 (15)0.0423 (4)
H20.28000.38290.57870.051*
O10.4718 (2)0.9625 (2)0.34485 (11)0.0403 (4)
O20.7185 (3)0.8455 (2)0.37312 (13)0.0503 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0484 (12)0.0394 (11)0.0344 (10)0.0100 (9)0.0095 (9)0.0123 (9)
C20.0398 (11)0.0345 (11)0.0472 (12)0.0092 (9)0.0146 (9)0.0120 (9)
C30.0490 (13)0.0304 (11)0.0703 (17)0.0020 (10)0.0139 (12)0.0077 (11)
C40.0503 (14)0.0473 (14)0.0661 (17)0.0060 (12)0.0027 (12)0.0001 (12)
C50.0482 (13)0.0559 (15)0.0496 (14)0.0006 (12)0.0038 (10)0.0070 (11)
C60.0436 (12)0.0433 (12)0.0450 (12)0.0051 (10)0.0048 (9)0.0134 (10)
C70.0347 (10)0.0322 (10)0.0387 (10)0.0064 (8)0.0083 (8)0.0077 (8)
C150.0504 (12)0.0264 (10)0.0361 (11)0.0028 (9)0.0011 (9)0.0122 (8)
C160.0547 (13)0.0270 (10)0.0367 (11)0.0063 (9)0.0049 (9)0.0081 (8)
C170.0549 (13)0.0463 (13)0.0353 (11)0.0118 (11)0.0060 (9)0.0068 (9)
C180.0672 (16)0.0571 (14)0.0345 (11)0.0113 (13)0.0016 (11)0.0039 (11)
C190.0819 (19)0.0394 (12)0.0422 (13)0.0155 (12)0.0152 (12)0.0046 (10)
C200.079 (2)0.0590 (17)0.0591 (16)0.0291 (15)0.0263 (15)0.0094 (13)
C210.0649 (16)0.0508 (14)0.0498 (14)0.0200 (13)0.0067 (12)0.0100 (11)
C220.114 (3)0.0659 (18)0.0417 (14)0.0259 (18)0.0221 (15)0.0049 (13)
Cu10.0445 (2)0.0294 (2)0.0273 (2)0.00483 (15)0.00285 (14)0.00858 (14)
N10.0443 (10)0.0329 (9)0.0307 (8)0.0074 (8)0.0053 (7)0.0091 (7)
N20.0533 (11)0.0344 (9)0.0461 (10)0.0143 (8)0.0149 (8)0.0197 (8)
O10.0508 (9)0.0359 (8)0.0310 (7)0.0067 (7)0.0045 (6)0.0076 (6)
O20.0587 (10)0.0457 (9)0.0455 (9)0.0101 (8)0.0018 (7)0.0202 (7)
Geometric parameters (Å, º) top
C1—N11.315 (3)C16—C171.390 (3)
C1—N21.342 (3)C17—C181.386 (3)
C1—H10.9300C17—H170.9300
C2—N21.371 (3)C18—C191.368 (4)
C2—C31.394 (3)C18—H180.9300
C2—C71.407 (3)C19—C201.379 (4)
C3—C41.368 (4)C19—C221.516 (3)
C3—H30.9300C20—C211.396 (4)
C4—C51.410 (4)C20—H200.9300
C4—H40.9300C21—H210.9300
C5—C61.378 (3)C22—H22A0.9600
C5—H50.9300C22—H22B0.9600
C6—C71.386 (3)C22—H22C0.9600
C6—H60.9300Cu1—O1i1.9630 (14)
C7—N11.402 (3)Cu1—O11.9630 (14)
C15—O21.246 (3)Cu1—N12.0007 (16)
C15—O11.272 (3)Cu1—N1i2.0007 (16)
C15—C161.501 (3)N2—H20.8600
C16—C211.384 (4)
N1—C1—N2113.20 (19)C19—C18—H18119.1
N1—C1—H1123.4C17—C18—H18119.1
N2—C1—H1123.4C18—C19—C20118.2 (2)
N2—C2—C3132.2 (2)C18—C19—C22121.0 (3)
N2—C2—C7105.66 (19)C20—C19—C22120.8 (3)
C3—C2—C7122.2 (2)C19—C20—C21121.2 (3)
C4—C3—C2116.8 (2)C19—C20—H20119.4
C4—C3—H3121.6C21—C20—H20119.4
C2—C3—H3121.6C16—C21—C20120.2 (3)
C3—C4—C5121.7 (2)C16—C21—H21119.9
C3—C4—H4119.2C20—C21—H21119.9
C5—C4—H4119.2C19—C22—H22A109.5
C6—C5—C4121.3 (2)C19—C22—H22B109.5
C6—C5—H5119.3H22A—C22—H22B109.5
C4—C5—H5119.3C19—C22—H22C109.5
C5—C6—C7117.9 (2)H22A—C22—H22C109.5
C5—C6—H6121.0H22B—C22—H22C109.5
C7—C6—H6121.0O1i—Cu1—O1180.00 (10)
C6—C7—N1131.56 (19)O1i—Cu1—N188.20 (6)
C6—C7—C2120.1 (2)O1—Cu1—N191.80 (6)
N1—C7—C2108.32 (19)O1i—Cu1—N1i91.80 (6)
O2—C15—O1123.3 (2)O1—Cu1—N1i88.20 (6)
O2—C15—C16119.9 (2)N1—Cu1—N1i180.00 (11)
O1—C15—C16116.81 (19)C1—N1—C7105.17 (17)
C21—C16—C17118.4 (2)C1—N1—Cu1122.68 (15)
C21—C16—C15120.2 (2)C7—N1—Cu1131.45 (14)
C17—C16—C15121.3 (2)C1—N2—C2107.64 (18)
C18—C17—C16120.3 (2)C1—N2—H2126.2
C18—C17—H17119.9C2—N2—H2126.2
C16—C17—H17119.9C15—O1—Cu1109.52 (13)
C19—C18—C17121.8 (3)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2ii0.861.952.780 (2)163
Symmetry code: (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C8H7O2)2(C7H6N2)2]
Mr570.10
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.2623 (2), 7.6068 (1), 12.9624 (2)
α, β, γ (°)99.687 (2), 96.390 (1), 104.776 (3)
V3)673.54 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.726, 0.848
No. of measured, independent and
observed [I > 2σ(I)] reflections
8200, 2743, 2445
Rint0.026
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.121, 0.88
No. of reflections2743
No. of parameters179
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.22

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.861.952.780 (2)163.4
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge Guang Dong Ocean University for supporting this work.

References

First citationBruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-D., Gu, C.-S., Hao, X.-M. & Liu, J.-W. (2007). Acta Cryst. E63, m1023–m1024.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds