organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(1H-Benzimidazol-2-yl)benzo­nitrile

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: zhaohong@seu.edu.cn

(Received 19 April 2008; accepted 1 May 2008; online 7 May 2008)

The mol­ecule of the title compound, C14H9N3, is essentially planar, the dihedral angle formed by the benzimidazole ring system with the benzene ring being 3.87 (3)°. In the crystal packing, mol­ecules are linked into zigzag chains running parallel to the b axis by inter­molecular N—H⋯N hydrogen-bond inter­actions.

Related literature

For related literature, see: Gallagher et al. (2001[Gallagher, J. F., Hanlon, K. & Howarth, J. (2001). Acta Cryst. C57, 1410-1414.]); Howarth & Hanlon (2001[Howarth, J. & Hanlon, K. (2001). Tetrahedron Lett. 42, 271-274.]); Kazak et al. (2006[Kazak, C., Yilmaz, V. T., Goker, H. & Kus, C. (2006). Cryst. Res. Technol. 5, 528-532.]); Li et al. (1998[Li, P., Scowen, I. J., Davies, J. E. & Halcrow, M. A. (1998). J. Chem. Soc. Dalton Trans. pp. 3791-3799.]); Íkizler & Sancak (1992[Íkizler, A. A. & Sancak, K. (1992). Monatsh. Chem. 123, 257-263.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9N3

  • Mr = 219.24

  • Monoclinic, P 21 /n

  • a = 7.2172 (10) Å

  • b = 11.818 (2) Å

  • c = 12.719 (2) Å

  • β = 92.057 (7)°

  • V = 1084.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.35 × 0.15 × 0.10 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000 (expected range = 0.903–0.992)

  • 11203 measured reflections

  • 2581 independent reflections

  • 2073 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.118

  • S = 1.08

  • 2581 reflections

  • 159 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯N1 0.93 2.54 2.861 (2) 101
N2—H2A⋯N3i 0.910 (17) 2.14 (2) 3.033 (2) 169.1 (15)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzimidazole systems continue to attract much attention in chemical synthesis, structural science and applied biological research (Li et al., 1998; Gallagher et al., 2001; Howarth & Hanlon, 2001; Kazak et al., 2006). Nitriles are parent compounds for the preparation of various functional organic materials having triazole, imidazole or thidiazole moieties (Íkizler & Sancak, 1992) and their derivatives have found many industrial applications. We report here the crystal structure of the title compound, 4-(1H-benzo[d]imidazol-2-yl) benzonitrile.

The structural analysis shows that in the title compound (Fig. 1) the benzimidazole ring system and the phenyl ring are nearly coplanar, the dihedral angle they form being 3.87 (3)°. In the imidazole ring, the C7δb N1 bond length of 1.3191 (16) Å conforms to the value for a double bond. The molecular conformation is stabilized by an intramolecular C—H..N hydrogen bond (Table 1). In the crystal structure, molecules are linked into zig-zag chains running parallel to the b axis by intermolecular N—H···N hydrogen bonding interactions involving the protonated N atom of the imidazole ring as H-donor and the N atom of the nitrile group as acceptor.

Related literature top

For related literature, see: Gallagher et al. (2001); Howarth & Hanlon (2001); Kazak et al. (2006); Li et al. (1998); Íkizler & Sancak (1992).

Experimental top

4-Formylbenzonitrile (2 mmol), malononitrile (1 mmol) and benzene-1,2-diamine (1 mmol) were heated at 100°C with stirring for 5 min. The mixture was washed with dichloromethane(5 mL) and dried. A white solid was obtained after recrystallization from ethanol. 4-(1H-Benzo[d]imidazol-2-yl)benzonitrile (0.3 mmol) was placed in a thick-walled Pyrex tube. EtOH (0.3 mL) and H2O (0.3 mL) were then added, the tube was frozen with liquid N2, evacuated and flame-sealed. The tube was heated at 100°C for 2 days to give colourless crystals of the title compound.

Refinement top

The H atom bound to the imidazole N atom was located in a difference Fourier synthesis and refined freely. All other H atoms were placed in calculated positions and refined using a riding model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
4-(1H-Benzimidazol-2-yl)benzonitrile top
Crystal data top
C14H9N3F(000) = 456
Mr = 219.24Dx = 1.343 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2461 reflections
a = 7.2172 (10) Åθ = 3.2–27.5°
b = 11.818 (2) ŵ = 0.08 mm1
c = 12.719 (2) ÅT = 293 K
β = 92.057 (7)°Prism, colourless
V = 1084.1 (3) Å30.35 × 0.15 × 0.10 mm
Z = 4
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
2581 independent reflections
Radiation source: fine-focus sealed tube2073 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 13.6612 pixels mm-1θmax = 27.9°, θmin = 2.4°
CCD_Profile_fitting scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1515
Tmin = 0.911, Tmax = 1.000l = 1616
11203 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.056P)2 + 0.1336P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2581 reflectionsΔρmax = 0.16 e Å3
159 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.115 (7)
Crystal data top
C14H9N3V = 1084.1 (3) Å3
Mr = 219.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2172 (10) ŵ = 0.08 mm1
b = 11.818 (2) ÅT = 293 K
c = 12.719 (2) Å0.35 × 0.15 × 0.10 mm
β = 92.057 (7)°
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
2581 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2073 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 1.000Rint = 0.037
11203 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.16 e Å3
2581 reflectionsΔρmin = 0.17 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.23276 (15)0.98417 (9)0.07818 (9)0.0381 (3)
C80.14908 (17)0.84634 (11)0.06171 (10)0.0367 (3)
N10.08189 (15)0.82641 (9)0.12784 (8)0.0404 (3)
C70.15245 (17)0.88501 (10)0.04772 (10)0.0360 (3)
N30.11261 (18)0.68424 (11)0.45407 (10)0.0543 (3)
C110.13598 (18)0.76582 (11)0.26664 (10)0.0389 (3)
C60.21340 (17)0.98948 (10)0.18604 (10)0.0363 (3)
C90.23427 (19)0.90578 (12)0.14485 (10)0.0439 (3)
H9A0.29630.97300.13150.053*
C10.11833 (17)0.89042 (11)0.21590 (10)0.0377 (3)
C50.2689 (2)1.06900 (11)0.25904 (11)0.0443 (3)
H5A0.33001.13510.23840.053*
C140.12508 (18)0.72221 (12)0.37201 (11)0.0425 (3)
C130.05688 (19)0.74595 (12)0.08336 (11)0.0432 (3)
H13A0.00150.70580.02870.052*
C120.05122 (19)0.70550 (12)0.18459 (11)0.0436 (3)
H12A0.00930.63780.19800.052*
C100.2277 (2)0.86617 (12)0.24669 (11)0.0459 (3)
H10A0.28460.90660.30170.055*
C40.2292 (2)1.04531 (13)0.36315 (11)0.0496 (4)
H4A0.26521.09640.41420.060*
C30.1362 (2)0.94670 (13)0.39450 (11)0.0492 (4)
H3A0.11340.93320.46580.059*
C20.07759 (19)0.86882 (12)0.32224 (10)0.0451 (3)
H2B0.01310.80410.34350.054*
H2A0.281 (2)1.0377 (15)0.0336 (13)0.058 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0439 (6)0.0349 (6)0.0354 (6)0.0001 (4)0.0010 (5)0.0012 (4)
C80.0358 (6)0.0391 (7)0.0352 (7)0.0032 (5)0.0033 (5)0.0003 (5)
N10.0455 (6)0.0407 (6)0.0349 (6)0.0031 (5)0.0001 (4)0.0003 (4)
C70.0377 (6)0.0355 (6)0.0350 (7)0.0035 (5)0.0025 (5)0.0001 (5)
N30.0641 (8)0.0563 (8)0.0425 (7)0.0005 (6)0.0002 (6)0.0094 (6)
C110.0391 (7)0.0420 (7)0.0357 (7)0.0050 (5)0.0029 (5)0.0042 (5)
C60.0382 (6)0.0351 (7)0.0357 (7)0.0050 (5)0.0020 (5)0.0003 (5)
C90.0535 (8)0.0389 (7)0.0393 (8)0.0058 (6)0.0006 (6)0.0025 (5)
C10.0394 (6)0.0375 (7)0.0360 (7)0.0042 (5)0.0002 (5)0.0023 (5)
C50.0502 (8)0.0360 (7)0.0468 (8)0.0010 (6)0.0028 (6)0.0046 (6)
C140.0468 (8)0.0425 (7)0.0381 (7)0.0035 (5)0.0011 (6)0.0026 (5)
C130.0463 (7)0.0464 (8)0.0369 (7)0.0059 (6)0.0000 (5)0.0026 (6)
C120.0461 (7)0.0434 (7)0.0414 (7)0.0061 (6)0.0034 (6)0.0025 (6)
C100.0549 (8)0.0448 (8)0.0376 (7)0.0049 (6)0.0038 (6)0.0009 (6)
C40.0590 (9)0.0472 (8)0.0430 (8)0.0079 (6)0.0050 (6)0.0122 (6)
C30.0611 (9)0.0508 (8)0.0354 (7)0.0113 (7)0.0042 (6)0.0050 (6)
C20.0519 (8)0.0439 (7)0.0390 (7)0.0023 (6)0.0058 (6)0.0016 (6)
Geometric parameters (Å, º) top
N2—C71.3696 (16)C9—C101.3798 (19)
N2—C61.3754 (17)C9—H9A0.9300
N2—H2A0.910 (17)C1—C21.3972 (18)
C8—C131.3926 (19)C5—C41.374 (2)
C8—C91.3940 (19)C5—H5A0.9300
C8—C71.4661 (17)C13—C121.3756 (18)
N1—C71.3191 (16)C13—H13A0.9300
N1—C11.3846 (16)C12—H12A0.9300
N3—C141.1427 (17)C10—H10A0.9300
C11—C101.3861 (19)C4—C31.396 (2)
C11—C121.3877 (19)C4—H4A0.9300
C11—C141.4407 (18)C3—C21.378 (2)
C6—C51.3901 (18)C3—H3A0.9300
C6—C11.4025 (18)C2—H2B0.9300
C7—N2—C6107.00 (11)C4—C5—C6116.80 (13)
C7—N2—H2A125.0 (10)C4—C5—H5A121.6
C6—N2—H2A127.8 (10)C6—C5—H5A121.6
C13—C8—C9118.70 (12)N3—C14—C11177.40 (16)
C13—C8—C7118.53 (12)C12—C13—C8120.77 (13)
C9—C8—C7122.77 (12)C12—C13—H13A119.6
C7—N1—C1105.01 (11)C8—C13—H13A119.6
N1—C7—N2112.72 (11)C13—C12—C11119.89 (13)
N1—C7—C8123.42 (12)C13—C12—H12A120.1
N2—C7—C8123.84 (11)C11—C12—H12A120.1
C10—C11—C12120.16 (12)C11—C10—C9119.67 (13)
C10—C11—C14121.25 (12)C11—C10—H10A120.2
C12—C11—C14118.59 (12)C9—C10—H10A120.2
N2—C6—C5132.50 (12)C5—C4—C3121.81 (13)
N2—C6—C1105.27 (11)C5—C4—H4A119.1
C5—C6—C1122.23 (12)C3—C4—H4A119.1
C10—C9—C8120.80 (13)C2—C3—C4121.54 (14)
C10—C9—H9A119.6C2—C3—H3A119.2
C8—C9—H9A119.6C4—C3—H3A119.2
N1—C1—C2130.07 (12)C3—C2—C1117.69 (13)
N1—C1—C6110.01 (11)C3—C2—H2B121.2
C2—C1—C6119.91 (12)C1—C2—H2B121.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···N10.932.542.861 (2)101
N2—H2A···N3i0.910 (17)2.14 (2)3.033 (2)169.1 (15)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H9N3
Mr219.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.2172 (10), 11.818 (2), 12.719 (2)
β (°) 92.057 (7)
V3)1084.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.15 × 0.10
Data collection
DiffractometerRigaku Mercury2 (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.911, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11203, 2581, 2073
Rint0.037
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.118, 1.08
No. of reflections2581
No. of parameters159
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···N10.932.542.861 (2)100.7
N2—H2A···N3i0.910 (17)2.14 (2)3.033 (2)169.1 (15)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by a Start-up Grant from SEU to Professor Ren-Gen Xiong.

References

First citationGallagher, J. F., Hanlon, K. & Howarth, J. (2001). Acta Cryst. C57, 1410–1414.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHowarth, J. & Hanlon, K. (2001). Tetrahedron Lett. 42, 271–274.  Google Scholar
First citationÍkizler, A. A. & Sancak, K. (1992). Monatsh. Chem. 123, 257–263.  Google Scholar
First citationKazak, C., Yilmaz, V. T., Goker, H. & Kus, C. (2006). Cryst. Res. Technol. 5, 528–532.  Web of Science CSD CrossRef Google Scholar
First citationLi, P., Scowen, I. J., Davies, J. E. & Halcrow, M. A. (1998). J. Chem. Soc. Dalton Trans. pp. 3791–3799.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds