metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-[2-(1H-indol-3-yl)ethyl­imino­meth­yl]phenolato-κ2N,O}nickel(II) N,N-di­methyl­formamide disolvate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 29 January 2008; accepted 2 May 2008; online 10 May 2008)

The Ni atom in the title compound, [Ni(C17H15N2O)2]·2C3H7NO, lies on a twofold rotation axis. It is N,O-chelated by the deprotonated Schiff base 2-[2-(1H-indol-3-yl)ethyl­imino­meth­yl]phenolate ligand in a square-planar coordination environment. The mol­ecule is linked to a solvent mol­ecule by an indole–dimethyl­formamide N—H⋯O hydrogen bond.

Related literature

For the structures of Schiff bases derived from the consensation of 2-(indol-3-yl)ethyl­amine and other substituted salicylaldehydes, see: Ali et al. (2007a[Ali, H. M., Emmy Maryati, O. & Ng, S. W. (2007a). Acta Cryst. E63, o3458.],b[Ali, H. M., Zuraini, K., Wan Jefrey, B. & Ng, S. W. (2007b). Acta Cryst. E63, o1729-o1730.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C17H15N2O)2]·2C3H7NO

  • Mr = 731.52

  • Monoclinic, C 2/c

  • a = 38.927 (2) Å

  • b = 5.6999 (3) Å

  • c = 15.7560 (8) Å

  • β = 98.489 (2)°

  • V = 3457.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 103 (2) K

  • 0.70 × 0.32 × 0.07 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.673, Tmax = 0.958

  • 7704 measured reflections

  • 3875 independent reflections

  • 2900 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.133

  • S = 1.03

  • 3875 reflections

  • 234 parameters

  • H-atom parameters constrained

  • Δρmax = 2.82 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 1.829 (2)
Ni1—N1 1.922 (2)
O1—Ni1—N1 92.81 (9)
O1—Ni1—N1i 87.19 (9)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3n⋯O2 0.88 1.97 2.811 (3) 159

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

We have reported a number of metal complexes of Schiff bases derived from the condensation of salicylaldehyde and a biologically active primary amine. The structure of the presence Schiff base, has not been reported, but it is likely to exist as a zwitterion, 2-{[3-(1H-indol-3-yl)-propenyl]ammonio}phenolate as 2-{[3-(1H-Indol-3-yl)-propenyl]methylammonio}phenolate, synthesized from 2-(indol-3-yl)ethylamine and 2-hydroxy-5-methylacetophenone, exists in this form (Ali et al., 2007a, 2007b). The nickel derivative crystallizes from DMF as a disolvate (Scheme I, Fig. 1). The metal atom is N,O-chelated by the deprotonated Schiff base in a square planar coordination enviroment. The molecule is linked to the solvent molecule by an N–Hindole···ODMF hydrogen bond.

Related literature top

For the structures of Schiff bases derived from the consensation of 2-(indol-3-yl)ethylamine and other substituted salicylaldehydes, see: Ali et al. (2007a,b).

Experimental top

Tryptamine (0.30 g, 1.87 mmol) and salicylaldehyde (0.23 g, 1.86 mmol) were heated in ethanol (50 ml) for an hour. The solvent was removed to give the Schiff base. The ligand (0.49 g, 1.91 mmol) and nickel acetate tetrahydrate (0.23 g, 0.93 mmol) were reacted in ethanol (50 ml); several drops of triethylamine were also added. The solvent was removed and the product was recrystallized from DMF.

Refinement top

The carbon-bound H atoms were placed at calculated positions (C—H = 0.95–0.98 Å) and were included in the refinement in the riding-model approximation, with U(H) set to 1.2–1.5Ueq(C). The amino H atom also similarly generated [N—H = 0.88Å and U(H) = 1.2Ueq(N)].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of Ni(C17H14N2O)2.2DMF; displacement ellipsoids are drawn at the 70% probability level, and H atoms are shown as spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
Bis{2-[2-(1H-indol-3-yl)ethyliminomethyl]phenolato- κ2N,O}nickel(II) N,N-dimethylformamide disolvate top
Crystal data top
[Ni(C17H14N2O)2]·2C3H7NOF(000) = 1544
Mr = 731.52Dx = 1.405 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2399 reflections
a = 38.927 (2) Åθ = 2.6–28.5°
b = 5.6999 (3) ŵ = 0.61 mm1
c = 15.7560 (8) ÅT = 103 K
β = 98.489 (2)°Plate, yellow
V = 3457.6 (3) Å30.70 × 0.32 × 0.07 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
3875 independent reflections
Radiation source: medium-focus sealed tube2900 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 4850
Tmin = 0.673, Tmax = 0.958k = 75
7704 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0586P)2 + 9.176P]
where P = (Fo2 + 2Fc2)/3
3875 reflections(Δ/σ)max = 0.001
234 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Ni(C17H14N2O)2]·2C3H7NOV = 3457.6 (3) Å3
Mr = 731.52Z = 4
Monoclinic, C2/cMo Kα radiation
a = 38.927 (2) ŵ = 0.61 mm1
b = 5.6999 (3) ÅT = 103 K
c = 15.7560 (8) Å0.70 × 0.32 × 0.07 mm
β = 98.489 (2)°
Data collection top
Bruker APEXII
diffractometer
3875 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2900 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.958Rint = 0.030
7704 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.03Δρmax = 0.82 e Å3
3875 reflectionsΔρmin = 0.48 e Å3
234 parameters
Special details top

Experimental. A medium-focus collimator of 0.8 mm diameter was used on the diffractometer to measure the somewhat large crystal.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.25000.75000.50000.01379 (15)
O10.27749 (5)0.8616 (4)0.42443 (12)0.0208 (5)
O20.08509 (9)0.4015 (5)0.56375 (17)0.0564 (9)
N10.23434 (6)0.4881 (4)0.42765 (14)0.0151 (5)
N30.11380 (6)0.0268 (5)0.48184 (16)0.0224 (6)
H3N0.11020.15700.50920.027*
N40.06308 (7)0.7205 (4)0.62051 (16)0.0215 (5)
C10.29181 (7)0.7412 (5)0.36804 (16)0.0169 (5)
C20.32195 (8)0.8312 (5)0.34033 (17)0.0199 (6)
H20.33110.97760.36180.024*
C30.33829 (8)0.7079 (5)0.28206 (18)0.0215 (6)
H30.35890.76880.26500.026*
C40.32486 (8)0.4956 (6)0.24797 (18)0.0229 (6)
H40.33600.41390.20710.027*
C50.29539 (8)0.4055 (5)0.27382 (17)0.0202 (6)
H50.28600.26180.25010.024*
C60.27889 (7)0.5234 (5)0.33495 (17)0.0168 (6)
C70.24926 (7)0.4181 (5)0.36379 (16)0.0165 (6)
H70.23960.28420.33320.020*
C80.20526 (7)0.3382 (5)0.44577 (18)0.0169 (6)
H8A0.20870.29980.50770.020*
H8B0.20580.18920.41370.020*
C90.16973 (7)0.4520 (5)0.42173 (17)0.0171 (6)
H9A0.16830.59440.45700.021*
H9B0.16660.49970.36070.021*
C100.14497 (8)0.0886 (5)0.48646 (19)0.0211 (6)
H100.16600.03880.52010.025*
C110.14169 (7)0.2850 (5)0.43600 (17)0.0175 (6)
C120.10598 (7)0.2930 (5)0.39755 (17)0.0175 (6)
C130.08600 (8)0.4471 (6)0.34154 (18)0.0229 (7)
H130.09640.58070.31970.028*
C140.05115 (8)0.4034 (6)0.31834 (19)0.0286 (7)
H140.03750.50910.28080.034*
C150.03524 (8)0.2044 (6)0.3492 (2)0.0283 (8)
H150.01110.17790.33190.034*
C160.05416 (8)0.0488 (6)0.40391 (19)0.0249 (7)
H160.04350.08510.42480.030*
C170.08943 (8)0.0937 (5)0.42782 (17)0.0192 (6)
C180.08801 (10)0.5798 (7)0.6027 (2)0.0379 (9)
H180.11110.62750.62370.045*
C190.02741 (10)0.6713 (8)0.5891 (3)0.0472 (10)
H19A0.02580.52570.55570.071*
H19B0.01450.65370.63760.071*
H19C0.01750.80080.55250.071*
C200.07081 (13)0.9334 (7)0.6694 (3)0.0521 (11)
H20A0.09600.95030.68440.078*
H20B0.06151.06840.63500.078*
H20C0.06020.92580.72200.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0150 (3)0.0131 (3)0.0133 (2)0.0029 (2)0.00219 (17)0.0008 (2)
O10.0248 (11)0.0184 (11)0.0203 (10)0.0039 (9)0.0075 (8)0.0011 (9)
O20.105 (3)0.0285 (15)0.0453 (15)0.0269 (16)0.0436 (16)0.0058 (13)
N10.0133 (12)0.0132 (12)0.0182 (11)0.0002 (9)0.0001 (9)0.0026 (9)
N30.0214 (13)0.0202 (13)0.0256 (13)0.0042 (11)0.0038 (10)0.0072 (11)
N40.0240 (13)0.0171 (13)0.0244 (12)0.0027 (11)0.0074 (10)0.0012 (10)
C10.0200 (14)0.0164 (13)0.0135 (12)0.0025 (13)0.0003 (10)0.0036 (12)
C20.0231 (15)0.0189 (14)0.0174 (13)0.0020 (12)0.0025 (11)0.0020 (11)
C30.0193 (14)0.0256 (17)0.0199 (13)0.0008 (12)0.0042 (11)0.0095 (12)
C40.0265 (16)0.0245 (16)0.0186 (13)0.0070 (13)0.0063 (12)0.0017 (12)
C50.0252 (16)0.0189 (15)0.0163 (13)0.0008 (12)0.0025 (11)0.0004 (11)
C60.0179 (14)0.0167 (14)0.0154 (12)0.0020 (12)0.0015 (10)0.0022 (11)
C70.0180 (14)0.0171 (14)0.0128 (12)0.0009 (11)0.0027 (10)0.0005 (11)
C80.0168 (14)0.0147 (13)0.0191 (13)0.0041 (11)0.0023 (11)0.0006 (11)
C90.0178 (14)0.0170 (14)0.0163 (13)0.0013 (12)0.0019 (10)0.0017 (11)
C100.0183 (15)0.0207 (15)0.0242 (14)0.0010 (12)0.0027 (11)0.0032 (12)
C110.0192 (14)0.0176 (15)0.0161 (12)0.0006 (11)0.0039 (10)0.0022 (11)
C120.0204 (14)0.0193 (15)0.0136 (12)0.0013 (11)0.0052 (10)0.0027 (11)
C130.0233 (16)0.0268 (17)0.0184 (14)0.0003 (13)0.0020 (12)0.0017 (12)
C140.0201 (16)0.042 (2)0.0217 (14)0.0034 (14)0.0018 (12)0.0025 (14)
C150.0197 (15)0.040 (2)0.0250 (15)0.0045 (14)0.0029 (12)0.0057 (14)
C160.0205 (16)0.0300 (18)0.0255 (15)0.0066 (13)0.0074 (12)0.0040 (13)
C170.0198 (15)0.0189 (15)0.0195 (13)0.0034 (12)0.0050 (11)0.0020 (12)
C180.043 (2)0.037 (2)0.0393 (19)0.0171 (17)0.0231 (16)0.0175 (17)
C190.029 (2)0.064 (3)0.047 (2)0.0047 (19)0.0017 (17)0.010 (2)
C200.081 (3)0.032 (2)0.045 (2)0.012 (2)0.016 (2)0.0071 (19)
Geometric parameters (Å, º) top
Ni1—O1i1.829 (2)C8—C91.524 (4)
Ni1—O11.829 (2)C8—H8A0.9900
Ni1—N1i1.922 (2)C8—H8B0.9900
Ni1—N11.922 (2)C9—C111.490 (4)
O1—C11.310 (3)C9—H9A0.9900
O2—C181.184 (5)C9—H9B0.9900
N1—C71.297 (3)C10—C111.368 (4)
N1—C81.479 (3)C10—H100.9500
N3—C171.363 (4)C11—C121.433 (4)
N3—C101.373 (4)C12—C131.397 (4)
N3—H3N0.8800C12—C171.423 (4)
N4—C181.320 (4)C13—C141.375 (4)
N4—C191.431 (4)C13—H130.9500
N4—C201.445 (4)C14—C151.412 (5)
C1—C21.408 (4)C14—H140.9500
C1—C61.410 (4)C15—C161.373 (5)
C2—C31.383 (4)C15—H150.9500
C2—H20.9500C16—C171.393 (4)
C3—C41.394 (4)C16—H160.9500
C3—H30.9500C18—H180.9500
C4—C51.372 (4)C19—H19A0.9800
C4—H40.9500C19—H19B0.9800
C5—C61.405 (4)C19—H19C0.9800
C5—H50.9500C20—H20A0.9800
C6—C71.432 (4)C20—H20B0.9800
C7—H70.9500C20—H20C0.9800
O1i—Ni1—O1180.00 (10)C11—C9—H9A109.6
O1i—Ni1—N1i92.81 (9)C8—C9—H9A109.6
O1—Ni1—N1i87.19 (9)C11—C9—H9B109.6
O1i—Ni1—N187.19 (9)C8—C9—H9B109.6
O1—Ni1—N192.81 (9)H9A—C9—H9B108.1
N1i—Ni1—N1180.000 (1)C11—C10—N3110.8 (3)
C1—O1—Ni1127.41 (19)C11—C10—H10124.6
C7—N1—C8114.6 (2)N3—C10—H10124.6
C7—N1—Ni1124.0 (2)C10—C11—C12105.9 (2)
C8—N1—Ni1121.26 (17)C10—C11—C9127.1 (3)
C17—N3—C10108.6 (2)C12—C11—C9127.0 (2)
C17—N3—H3N125.7C13—C12—C17118.4 (3)
C10—N3—H3N125.7C13—C12—C11134.6 (3)
C18—N4—C19120.9 (3)C17—C12—C11107.0 (2)
C18—N4—C20121.4 (3)C14—C13—C12119.3 (3)
C19—N4—C20117.6 (3)C14—C13—H13120.3
O1—C1—C2118.5 (3)C12—C13—H13120.3
O1—C1—C6123.2 (2)C13—C14—C15121.3 (3)
C2—C1—C6118.3 (3)C13—C14—H14119.3
C3—C2—C1120.4 (3)C15—C14—H14119.3
C3—C2—H2119.8C16—C15—C14120.9 (3)
C1—C2—H2119.8C16—C15—H15119.6
C2—C3—C4120.9 (3)C14—C15—H15119.6
C2—C3—H3119.5C15—C16—C17117.9 (3)
C4—C3—H3119.5C15—C16—H16121.1
C5—C4—C3119.5 (3)C17—C16—H16121.1
C5—C4—H4120.2N3—C17—C16130.1 (3)
C3—C4—H4120.2N3—C17—C12107.7 (3)
C4—C5—C6120.7 (3)C16—C17—C12122.2 (3)
C4—C5—H5119.6O2—C18—N4127.9 (4)
C6—C5—H5119.6O2—C18—H18116.1
C5—C6—C1120.0 (3)N4—C18—H18116.1
C5—C6—C7119.2 (3)N4—C19—H19A109.5
C1—C6—C7120.8 (2)N4—C19—H19B109.5
N1—C7—C6126.2 (3)H19A—C19—H19B109.5
N1—C7—H7116.9N4—C19—H19C109.5
C6—C7—H7116.9H19A—C19—H19C109.5
N1—C8—C9113.5 (2)H19B—C19—H19C109.5
N1—C8—H8A108.9N4—C20—H20A109.5
C9—C8—H8A108.9N4—C20—H20B109.5
N1—C8—H8B108.9H20A—C20—H20B109.5
C9—C8—H8B108.9N4—C20—H20C109.5
H8A—C8—H8B107.7H20A—C20—H20C109.5
C11—C9—C8110.4 (2)H20B—C20—H20C109.5
N1i—Ni1—O1—C1153.4 (2)N1—C8—C9—C11176.0 (2)
N1—Ni1—O1—C126.6 (2)C17—N3—C10—C110.0 (3)
O1i—Ni1—N1—C7164.6 (2)N3—C10—C11—C120.2 (3)
O1—Ni1—N1—C715.4 (2)N3—C10—C11—C9178.0 (3)
O1i—Ni1—N1—C810.6 (2)C8—C9—C11—C1019.2 (4)
O1—Ni1—N1—C8169.4 (2)C8—C9—C11—C12158.7 (3)
Ni1—O1—C1—C2155.2 (2)C10—C11—C12—C13179.0 (3)
Ni1—O1—C1—C623.5 (4)C9—C11—C12—C132.8 (5)
O1—C1—C2—C3178.8 (3)C10—C11—C12—C170.3 (3)
C6—C1—C2—C30.0 (4)C9—C11—C12—C17177.9 (3)
C1—C2—C3—C41.6 (4)C17—C12—C13—C140.8 (4)
C2—C3—C4—C51.3 (4)C11—C12—C13—C14178.5 (3)
C3—C4—C5—C60.8 (4)C12—C13—C14—C150.7 (5)
C4—C5—C6—C12.4 (4)C13—C14—C15—C160.4 (5)
C4—C5—C6—C7176.7 (3)C14—C15—C16—C170.0 (4)
O1—C1—C6—C5179.3 (3)C10—N3—C17—C16178.7 (3)
C2—C1—C6—C52.0 (4)C10—N3—C17—C120.2 (3)
O1—C1—C6—C71.6 (4)C15—C16—C17—N3178.4 (3)
C2—C1—C6—C7177.1 (3)C15—C16—C17—C120.1 (4)
C8—N1—C7—C6177.0 (3)C13—C12—C17—N3179.1 (2)
Ni1—N1—C7—C61.5 (4)C11—C12—C17—N30.3 (3)
C5—C6—C7—N1169.8 (3)C13—C12—C17—C160.4 (4)
C1—C6—C7—N19.3 (4)C11—C12—C17—C16179.0 (3)
C7—N1—C8—C9108.6 (3)C19—N4—C18—O22.6 (5)
Ni1—N1—C8—C975.7 (3)C20—N4—C18—O2179.7 (3)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O20.881.972.811 (3)159

Experimental details

Crystal data
Chemical formula[Ni(C17H14N2O)2]·2C3H7NO
Mr731.52
Crystal system, space groupMonoclinic, C2/c
Temperature (K)103
a, b, c (Å)38.927 (2), 5.6999 (3), 15.7560 (8)
β (°) 98.489 (2)
V3)3457.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.70 × 0.32 × 0.07
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.673, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
7704, 3875, 2900
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.133, 1.03
No. of reflections3875
No. of parameters234
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.48

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Selected bond lengths (Å) top
Ni1—O11.829 (2)Ni1—N11.922 (2)
 

Acknowledgements

The authors thank the University of Canterbury, New Zealand, for the diffraction measurements, and the Science Fund (12–02-03–2031) for supporting this study.

References

First citationAli, H. M., Emmy Maryati, O. & Ng, S. W. (2007a). Acta Cryst. E63, o3458.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, H. M., Zuraini, K., Wan Jefrey, B. & Ng, S. W. (2007b). Acta Cryst. E63, o1729–o1730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds